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Bremsstrahlung Emission from Low-Energy Electrons on Atoms*
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General expressions are given for the bremsstrahlung cross section resulting from electron —neutral-atom
collisions at energies comparable to or lower than the excitation energies of the atom and for the brems-
strahlung emission from an electron-neutral-atom gas. These quantities have been evaluated for oxygen
and nitrogen, and appear to be consistent with shock-tube data. Electron scattering is treated by Hartree-
Fock equations which contain neutral-atom bound orbitals and a semiempirical polarization potential.
Elastic-scattering data are Gtted by the adjustment of a single parameter in the polarization potential. The
bremsstrahlung cross section is derived from a distorted-wave theory. The dipole-acceleration form of the
matrix element is used for numerical convenience. Because each angular-momentum state has diGerent direct
and exchange potentials, the conventional bremsstrahlung formula must be generalized. Approximate
analytical expressions for the bremsstrahlung cross section are also obtained from the dipole-length form
of the matrix element. From two sorts of resonance phenomena exhibited by the bremsstrahlung cross
section —one associated with maxima and minima in the elastic scattering, and one with the relative pro-
portion of p-wave to s-wave scattering —it may be concluded that an accurate treatment of the electron
scattering is necessary for the reliable prediction of bremsstrahlung.

I. INTRODUCTION

~ 'EUTRAL bremsstrahlung and inverse brems-
strahlung are major contributors to emission

and absorption processes in a weakly ionized gas. Cases
in which these processes are signi6cant typically in-
volve gas temperatures of several thousand degrees
Kelvin and include stellar atmospheres, ' possibly gase-
ous nebulae, strong shock waves (notably in shock
tubes'), and the initiation of gaseous breakdown by
lasers. '

For electron energies comparable to or lower than
atomic excitation energies, bremsstrahlung emission is
strongly dependent on the details of the electron-atom
interaction, and the theoretical description of the emis-
sion is not highly developed. A theory is given here for
energies of several eV or less in which the electron is
assumed to make direct and exchange interactions with
the atomic charge cloud via undistorted atomic orbitals
in Hartree-Fock equations. A semiempirical polariza-
tion potential has been added to account for distortion
of the orbitals and to compensate for other approxima-
tions in the treatment of the scattering. At higher
energies it is necessary to give a different treatment of
the electron-atom interaction.

Previously published work on neutral bremsstrahlung
includes measurements of gas emissivities, ' 4 analytical'
and numerical' treatments of model potentials, and

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

~ See, for example, S. Geltman, Astrophys. J. 141, 376 (1965)
and references cited therein.

2 R. L. Taylor, J. Chem. Phys. 39, 2354 (1963).' This process has recently been considered both experimentally
and theoretically. Results are perhaps typihed by J. M. Dawson,
Phys. Fluids 7, 981 (1964).

4 G. Boldt, Z. Physik 154, 319 (1959); 154, 330 (1959).' L. Nedelsky, Phys. Rev. 42, 641 (1932).
e R. V. De Vore, Phys. Rev. 136, A666 (1964); 140, AB3 (1965).
7 R. G. Breene, Jr., and M. Nardone, J. Opt. Soc. Am. 53, 924

(1963).' M. Ashkin, Phys. Rev. 141, 41 (1966).

general approximations' "relating the bremsstrahlung
cross section to the elas ic scattering. In particular,
Ohmura and Ohmura' develop an analytic expression
for the cross section in terms of the s-wave elastic-
scattering phase shift, while Kas'yanov and Starostin'
express the cross section in terms of an integral over the
differential cross section for elastic scattering.

The results obtained here represent a natural
generalization of the Ohmura-Ohmura formula and
a somewhat less straightforward generalization of the
Kas'yanov and Starostin expression. Specifically, an
approximation to the dipole length form of the present
theory leads to an analytic expression for the cross sec-
tion involving the s and p-wave -phase shifts that appear
in the theory, each state of total orbital and spin angular
momentum having its own set of phase shifts. This
expression reduces to the Ohmura-Ohmura formula
when the p-wave phase shifts are set equal to zero
and the angular momentum of the atom is ignored.
In the limit in which the photon energy is much less
than the initial electron energy, the Kas'yanov and
Starostin expression is proportional to the total mo-
mentum transfer cross section. The analytic approxima-
tion obtained here is, in the same limit, proportional to
the leading term in an angular-momentum decomposi-
tion of the momentum transfer cross section. In the
Kas'yanov and Starostin work, the treatment is based
on consistently ignoring momentum dependences in
the elastic-scattering amplitude. The present work puts
in such dependences using a model which is an idealiza-
tion of the actual scattering process but which is
brought as close as possible to experiment by adjusting
a single parameter.

e T. Ohmura and H. Ohmura, Astrophys. J. 131, 8 (1960).
V. Kas'yanov and A. Starostin, Zh. Eksperim. i Teor. Fiz.

48, 295 (1965) LEnglish transl. : Soviet Phys. —JETP 21, 193
(1965)g."R. L. Taylor and B. Kivel, J. Quant. Spectry. Radiative
Transfer 4, 239 (1964).
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The bremsstrahlung cross section is sensitive not only
to the total elastic scattering but also to the ratios of
the p-wave to s-wave scattering. Potential scattering
models are unlikely to yield this much detail correctly,
and have not given accurate values even for the total
elastic scattering. ""Thus it is appropriate to intro-
duce the complications of a Hartree-Fock type of
approach into the treatment of the electron scattering.

In Sec. II a perturbation theory of the electron-atom
scattering is given in which the zeroth-order wave func-
tion gs describes elastic scattering while Pt describes one-
photon emission. Other inelastic processes are ignored.
A method for evaluating Ps is given and a distorted wave
theory is developed for evaluating the asymptotic form
of Pt. In Sec. III general expressions for the brems-
strahlung cross section and a number of useful approxi-
mations to these expressions are given. In Sec. IV the
expression for the emissivity of an optically thin gas
is noted. Finally, in Sec. V detailed numerical results are
given for oxygen and nitrogen.

and explicit antisymmetrization is secured by taking
the wave function to be a determinant composed of one-

particle orbitals. To perform coordinate integrations in
the space it is useful to denote

N+1

dy, =— d r, g and dg;=—P dy;,
0's j=1

jHi

while coordinate integrations in the full (4%+4)-
dimensional space of the scattering problem are de-
noted by

N+1
dy= g dy;.

Ground-state wave functions which are eigenfunc-
tions of L2, S', L„and S, will have the form

gr m&, m&(y, ) g C m~mID (g.)

where

II. DESCRIPTION OF ELECTRON-ATOM
SCATTERING

A. Atomic States

In the present treatment of electron-atom scattering
it is assumed that the atom remains in its ground state
during the course of the scattering and that polarization
effects are adequately described by a central potential
acting on the free electron only. The ground-state
atomic wave functions are assumed to be linear com-
binations of determinantal wave functions, the linear
combinations chosen so as to produce eigenfunctions of
L', S', L„and S,. The determinants are to be con-
structed as usual from one-particle wave functions, and
it will be assumed that the same set of radial orbitals is
used in each determinant, while the angular and spin
parts of the wave functions vary among the deter-
minants. The mathematical description of such systems
is by now fairly standard. "However, it is desired to pre-
sent the basic equations of the theory in explicit nota-
tion in which the numerous quantum numbers are
specified in detail. Much of the notation is defined in this
subsection and the following.

Quantum numbers n= (e, l,m', m') for individual
bound orbitals, are introduced; the collections of Ã sets
of a's used in a determinantal wave function are de-
noted by y. The spatial and spin coordinates of the
electrons are denoted by y;=fr;, o;), s=1, X+1,
where X electrons are bound and one is free. To
facilitate the construction of antisymmetric wave. func-
tions, a 4E-dimensional space is introduced having 3E
continuous dimensions and E discrete ones. In this
space, the wave function is just a number at each point,

'~ M. M. Klein and K. A. Brueckner, Phys. Rev. 111, 1j.15
(&958).

'3 J. Cooper and J. Martin, Phys. Rev. 126, 1482 (1962).
"M. J. Seaton, Proc. Roy. Soc. (London) 245A, 469 (1953).

Dv(g;) is a Slater determinant, and the Wi„, '

satisfy the usual orthonormality conditions.
The subscripts 2 on the quantum numbers of L' and

S' are introduced for later convenience in the scattering
problem in which the free electron (system 1) inter-
acts with the atom (system 2). The Cv

' ' are readily
computed by the methods of Slater, '5 when the rele-
vant configurations are not degenerate, but their speci-
fic values are not needed in the remainder of the paper.
In an assemblage of ground-state atoms, all values of
m' and m' will occur, but it seems preferable to work
with the 5'E„, ' ' and sum partial cross sections over
nz' and m' rather than to work with incoherent sums of
the S'~

with

8(o; mt') Wi, "' ""(g) (2)
(2s.)'~'

ri+t ( 1)N+ti—
A;= P'=t (1V+1)'I'

"J. C. Slater, Phys. Rev. 34, 1293 (1929).

B. States of the Scattering System

In order to obtain uncoupled equations for the various
partial waves of the free electron, it is necessary to
make approximations to the Hartree-Fock equations for
the free orbitals. Fewer approximations are made by
choosing the partial waves to be eigenstates of the total
L, S', L„and S, operators of the entire system. The
resulting equations then have couplings only among the
possible values for the orbital angular momentum of the
free electron and these couplings are ignored.

The wave functions Qs(ks, y) ~ ~ describing the elastic
scattering of the system have incoming part

y in(k y) —~ikP ~ Zs
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lim
Zi, ~~(kr, ) 0 (24+1)'~'

&&expib~, sin(kr; older+—5~—, )

The axis of quantization for the angular functions in the
bound orbitals is chosen to be kp, the direction. of the in-
coming wave. The functions take the form

Po(ko,y)~~2 =A;P P P(lgl2Llom')(2s2Slm, 'm2 )
S ly

+Lg. Ls(k r )/r tGG
.

&

m. ,my+m2 (g.) (3)

where Pp has been represented in terms of the
eigenfunctions

Gzs~, '' '(g;)

=p p(lgl2Llm' —mr, mr)( 2s2S-lm' m—2, m2)
mg fsg

XF') (4 ' ko)8(p'' m m2)Wl282 ' (g4) (3a)

of angular-momentum operators for the scattering
system and the free radial orbitals R&P e(kr, )/r, having
the asymptotic form

2L+1p4 2S+1
~a=I EEZ

k ko &t & r 2(2s2+1) (2lz+ 1)(2l2+ 1)

I'; is a projection operator acting on the radial orbital
for the ith electron and having the eigenvalue 1 if the
orbital is free and 0 if the orbital is bound. The second
form of the polarization potential is used in the numeri-
cal work reported in this paper, as discussed in Sec.
IIC. The functions Pp describe all the possible elastic-
scattering states of the electron-atom system. An
arbitrary electron beam may be decomposed into plane
waves with the wave vector serving as a quantization
axis while the atom before scattering is in some one of
the states 8'~„, ' ". Since only the relative orienta-
tion of the electron and atom is of signihcance for the
scattering, it is permissible to choose some Axed value
for m&'. However, it is necessary to consider all possible
values for m' and m2'.

When the phase shifts 8&, are determined by solu-
tion of the radial equations, the asymptotic form of the
pp sufEces to determine the elastic scattering. In par-
ticular, the cross sections for elastic scattering 0,~ and
momentum transfer 0 are given by

&&(2lq+1) sin 8~ e (7)

�

4m 2S+1 (2L+ 1)(2L'+ 1)
EZRA

ko' ~» «' 2(2s2+1) (2l2+1)

&&W'(/, ,L/~+1L
I
l21)(12+1) sin'(B~ ~e—8~,+p'e) (8)

In the present work, (l&l2jlm&m2) represent vector
coupling coeKcients. "The free orbitals E~, are to be and
distinguished from the bound orbitals E„,.~,. The latter
appear in the' bound wave functions only and are
orthonormal.

The radial functions R~, are determined from
approximations to the Hartree-Fock equations,

dg; dQ;P G*r:e t
'' '(g')

It'kp'
X &o-&~-

21n

where 8' is a Racah coeKcient. '6

Bremsstrahlung emission is described by functions
&2;(k,y) ~ ~ which satisfy the equations

A(kpy) ' '=0 (4)

where E~ is the Hartree-Fock energy of the atom,

N+I N+1
Ho= g T+ Q V;;,

T,= —(k2/2m) F42—(Nep/r )+V„(r;)P;
and

V;;=e'/Ir, r;I. —
Note that T; is a full one-particle Hamiltonian, not
just the kinetic-energy operator. Here 1/'„ is a polariza-
tion potential having either the standard'7 form

V (r) = —2«'/(r'+rp')' (3)

or the second form

V (r) l~e2»4/(»2+» 2)4 (6)
Ie M. E. Rose, E/ementary Theory of Azzgzdar Momentum (John

Wiley R Sons, Inc. , New York, 1957).The vector coupling coefII-
cients used in this work have the properties of Rose's C(ljl2j;
m&m2) symbols.

"M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198
(1959); R. A. Buckingham, Proc. Roy. Soc. (Loz.don) A160, 94
(&937).

Ho &z Pi—(k,y)—' '= —Hx'@o(ko, y) ' ' (9)
2m

where 'U is a normalization volume for the photon
density, k2 is the photon wave vector, o; are unit
polarization vectors perpendicular to k2. Of course,
both polarizations contribute to the total cross section
for bremsstrahlung emission. The physical solutions g&;
of Kq. (9) have the asymptotic form

.ssym(k y) ~ ~

en&' sr''
f'(" ~

I

m'm'm' m')-
y W m&'o, m~'(y ) (10)

in the same sense that the functions go(ko, y) & ~ satisfy
the unperturbed Schrodinger equation dehned by Hp.
In the above, Bp and E& are as de6ned previously and

icky hc ~
'I' ~+~

Hg; ———
I I

p; Qv';, i=12,
mc) km'
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corresponding to spherical outgoing waves. Only the
asymptotic form of the @I; is needed to determine the
bremsstrahlung cross section.

dr'r"JL s I, (r,r') [RI;L's'(k pr')/r' j

where

—Q XlL'8""[R„,.I,(r)/rj, (11)
j=l

oo

VL~s 4 (r) = —Ne /r+ V&(r)+e P P ul '

A=Q j 1

oo N

JL 8 l ~(«') =e' Z 2 4 ' ' '"'
k=0 j=l

Q

r(' R„,.l,.(r) R, l,.(r')

(X
%+1 y r'

N is the number of independent pairs of quantum
numbers n, l;, and r&(r~) is the smaller (larger) of r
and r'. The constants ),~'s'&' are chosen so as to en-

force orthogonality between the free and the bound
orbitals when the orthogonality is not guaranteed by
the angular parts of the functions. Otherwise X. ' ""
is zero. The constants a~;~'s"" and b~ ~'s"" may be
found by a formal application of plater's" method for
finding electrostatic energies of an atom. Appropriate
diagonal matrix elements of BQ are forxned and diff erenti-
ated functionally with respect to the free orbital. After
functional differentiation, all quantities become 6nite

C. Evaluation Of pp RIld pI

When lI&lI' terms are dropped from Eq. (4), and
the necessary sums and integrations over coordinates
are performed, the equation may be brought to the form

and Eq. (11) is obtained. The advantage of the method
is that it is not necessary to construct G& s &,

directly. In case of degeneracy the procedure is made
definite by retaining only terms arising from the ground
state of the atom in forming the diagonal matrix ele-

ments. The coefficients al, L's'~' and b~
L'~'~' may be

obtained by inspection either before or after functional
differentiation of the appropriate matrix elements.

The form of the polarization potential of Eq. (6) has
been used in all the numerical work reported here. The
polarization potential as used here serves to compensate
for approximations made in the treatment of the scat-
tering: the neglect of various con6gurations of the atom
in setting up Hartree-Fock equations, the neglect of
couplings in these equations, and the use of undis-
torted atomic orbitals in the equations for the free
orbitals. Thus the polarization potential typically has
to compensate for both polarization and correlation
effects. The form of the polarization potential used here
is much closer to the Bauer and Brown" expression for
a correlation potential at intermediate distances of ~

to several Bohr radii than is the standard form. In the
standard form of the potential, a variational calculation
yields an expression for rQ in terms of 0,."Frequently
the use of the semiempirical potential involves varying
cz while maintaining the connection between rQ and 0..
Here the procedure is to hold o. fixed while varying rQ.

The justification for the latter is that a is an experi-
mental number, typically known to within 15%.More-
over, in view of the number of the effects for which the
potential is required to compensate, neither the mathe-
matical form of the cutoff nor the relation between rQ

and n can be regarded as given a Priori. In fitting elastic-
scattering cross sections numerically, it has been found
that the uncertainty in the measured values of 0. may
be compensated for by small changes in rQ.

The values of X;~'s'&' are in general determined
variationally. However, the numerical work reported
here has been done with all X ~'s'~' equal to zero. For
test cases this has resulted in little error, since the values
of ) necessary to secure proper orthogonality were smaB.

Only the asymptotic form of $1 is needed for the
evaluation of bremsstrahlung. This simplifies the
application of Green's-function techniques for the de-
termination of the scattering amplitude f; This cal.-

culation is outlined in Appendix A and yields

1I2

f;(r,o)m'm', m'm")=SIr'i~ — p p g p g( ', spS(mI'm-')(-', spS)mI'+m' m", m"—)
(3$p'U LL' $ lyly' M m

X(V4 L'(M m', m')—(hlpL(oml)(l114'(m' rl, M——m)(l lIp'L(M —m, m)(44L(m' —m, m)

I Sl
L'S'l

&&i'"'[(iI+1)'~'b(lI', iI+1) lI'~'b(lI', lI—1)—] 8(~, ml'+m' m") 7'I, —"'(P,kp) Ir'-I '(p, )kp),
—(12)

(2lI'+1)
' E. Bauer and H. N. Browne, Atomic Collision Processes, edited by M. R. C. McDowell (North-Holland Publishing Company,

Amsterdam, 1964), p. 16.
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where

with

~LS/ LSl Cll, ll Rl LS(kpf)
rdr Rl,.L s(kr) —+

dr r r
(13)

al, , l,+l=——/2 and al, , l, g—= (4+1).
From Eq. (12) it is readily seen that the scattering amplitudes for bremsstrahlung may be determined algebraically
when the radial wave functions for electron-atom elastic scattering are known.

III. BREMSSTRAHLUNG CROSS SECTION

The bremsstrahlung cross section may be obtained from the expression

1 (2~)o /k Vkg'
~ f,(r& o~m'm'm'm") ~'

(2/2+1) (2S2+1) kko ml, ml' m', m" l a Sm'hc
(14)

in which electron and photon statistical weights have been included. The expressions for the cross section and the
scattering amplitude contain all necessary summations and integrations over particle coordinates and channel
indices. The symbol J'dQ, , denotes an integration over all directions of the photon polarization vector o,.

It is convenient to have expressions for the cross section in which the matrix elements are specifically in dimen-
sionless form. To achieve this, all quantities are expressed in atomic units and the free orbitals are normalized
according to the more usual convention

lim Rl, Ls(kr) =—sin(kr —22/llr+ 8l,Ls) .
r ~00 k

Then Eq. (14) takes the form

where
a =Zp(lrapo/Akoc),

25+ 1 (2L+ 1)(2L'+ 1)
W (/] L /lL

~
/21)

( 1)

S k
&o= —~'—Z 2 2

3ll k ll4' s LL'2 2$2+ (2/2+1)
XL(/l+1)/l(/&', /l+1)+/lb(/2', /g —1))~ALS/gL'S" ~2 (16)

0. is the fine structure constant, and a0 is the Bohr radius. In the above, ALs~,
' '" is proportional to ALsg,

L' '1'

of Eq. (13).However, ALsl, L's'&' is formally divergent because of the continuum normalization of the free orbitals.
This difficulty may be removed by carrying through a wave-packet analysis of the scattering problem. This re-
sults in a convergence factor being inserted in the dining expression for the matrix element. However, it is fre-
quently more useful, for numerical evaluation of the matrix element, to employ the dipole acceleration form

L'Sly' gL'Sll'(k 2 k2)——l

2m " — d al l, ( Rl Ls(kor)
(kp' —k') ' rdr Rv

'
(kr) —+ ~

Vr, sl, (r)
h' 0 dr r 'E r

N 00

Ls'lR„,.l,.(r)+
j=1 0

/ / I«'r'&Lsli(r, r')Rl, s(kor') ~+Rl, (kor) —+
dr r )

Rl .L'S(kr)
X VLrS~, r ~ — ~. ' '~'&n,.~,. ~

r j=l
dr'r'JL sl, (r,r')Rl, L's(kr')

0

(17)

which is obtained from Eq. (13) by use of Eq. (11) for the free orbitals and by integration by parts. In the above
expression all integrals are convergent. The ALslp' '&' of Eq. (16) for Zp is defined by Eq. (17).

In applications of the above formalism, sufhcient accuracy may be obtained by neglecting the L(L') dependence
of the matrix element when /&) /&' (/&') /l). In this approximation, Eq. (16) simplifies to

Sy k 25+1 2I.+1
&o= —~~'—g P P (4+1)([~Lsl Ls"+'( '+

( ALsl lLS"
I ')

3x-j k ll s L 2(2so+1) (2/l+1)(2/2+1)

This form of Z0 is used to produce the numerical results for o- reported below.
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It is possible to obtain a direct generalization of the Ohmura-Ohmura formula' by making use of the dipole
length form of the matrix element which in atomic units becomes

A&s&
r's4' x(—k o ko) dr r, '"rR~;z's(kr)R~, zs(kor), (19)

and in which the necessary convergence factor has been inserted explicitly. This expression for the matrix element
is not exact, since the quantities Po(ko, y) ~ * are not really eigenfunctions of Ho, and it differs from the expression
of Eq. (17) by certain integral terms which will be ignored here. When li and li' have the values zero and 1, a useful
approximation to Eq (19) is obtained by assuming that

&P (kr)/r=coslP j~(kr) —sinbP e~(kr), for /=0, 1. (20)

This approximation is not useful for higher / values, however, and no useful extension of Eq. (20) to such values
has been found. Thus, it is necessary to assume that l~, l~ &1 are of negligible importance to the bremsstrahlung
cross section if this approximation is to be used to evaluate 0-. With the above approximations an equation analogous
to Eq. (16) may be derived and is given by

(2) no 25+ 1 (2L+ 1)(2L'+ 1)
Zo ——

j
—

~ Q Q P IF'(li'L'liL~lo1)
E3v')kkoo &i 4' & & &' 2(2so+1) (2lo+1)

kp 2

X b(4,0)b(4', 1) —(ko' —3k') cosbo (ko) sinbiz (k)+2k' sinbo (ko) cosh& (k)
k

k
+&(li',0)&(li,1) —(k' —3ko') cos5o (k) sinai (ko)+2ko'sinbo~s(k) costi (ko)

kp
~ (21)

An expression analogous to Eq. (18) is readily obtained
by neglecting the L(L') dependence of Eq. (21).

In the cases considered numerically, the neglect of
higher /~ and l~' values in these equations leads to as
much as a 20%%uz error in o. Of course neglect of all L
and 8 dependences of the matrix elements in Kq. (18)
yields the corresponding potential scattering formula.
The above expressions for Zp reduce to the Ohmura-
Ohmura formula' when all b~~ are taken to be zero.
It may be verified from Eq. (21) that Zo is proportional
to theleading term of Eq. (8) fora. when k~ko, with
the constant of proportionality given by Kq. (25). It
would appear that the present theory also forms a
generalization of the Kas'yanov-Starostin result, "since
these authors obtain in the same 1imit Zp proportional
to 0. , with the same constant of proportionality. Pre-
sumably, a more accurate treatment of Eq. (19) for
higher orbital angular momenta would con6rm the full
proportionality.

IV. BREMSSTRAHLUNG EMISSION FROM
AN OPTICALLY THIN GAS

A quantity of frequent observational interest is the
volume emission coe%cient of an optically thin gas.
Expressions in which transitions between zero-photon
and one-photon states only are evaluated are given
below for the bremsstrahlung contributions to this
emissivity. The gas is assumed to consist of electrons of
temperature T and density e and a single species of
atoms of density E in the ground state, although the

formulas given may readily be generalized to include
more species of atoms. However, molecules, atoms in
excited states, and ions are not considered. This neglect
is often justi6ed when neutral bremsstrahlung is a
dominant process. To include the contributions from
other species it is necessary to calculate Zp appropri-
ately. The calculation has already been done for ions
in the Coulombic approximation. When neutral brems-
strahlung is the predominant emission mechanism, it is
usually permissible to set S equal to the total atom
density.

The total volume emission coefFicient J is given by

Ee
d'v vf(v) d(kcko) hckoo, (22)

where the electron distribution function

A, p'=. ha'
dkoko'c "'""'Zo W/crn' p sr, (23)

f(v)= (m/2v-kT)'i'exp) —-', (mv'/kT) j,
0. is the bremsstrahlung cross section computed above,
and all photon wave numbers are integrated. To com-
pare with experiment, it is convenient to have an ex-
pression for the emission per unit wavelength. Use of
Eq. (22) and the relation J=J'dX„J(X„), where X„ is
the photon wavelength in microns, leads to

J(X„)=1.204&&10 "En8"9,„'
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FIG. 1. Elastic-scattering cross section of electrons on oxygen.
Theoretical curves have f0 of 1.1 and 1.3 a.u. Data points of
Sunshine et al. , Lin and Kivel, and Neynaber et al (R. Ne. ynaber,
L. Marino, E. Rothe, and S. Trujillo, Phys. Rev. 123, 148 (1961);
129, 2069 (1963)g are given.

where 0=5040/T, the densities are expressed in cm ',
ko and k are expressed in inverse Bohr radii, and Zo is
given by Eq. (16).In the above integration, LN'= ks' —k'
is kept 6xed as ko varies.

For oxygen and nitrogen, Zo is we11 approximated by
Zs=o.o(kos —hk'). With this assumption J(X„) may be
evaluated as

OI 0
CI

6
K
O
I-
LIJ
CO

Ch
CO
OI:
CJ

NITROGEN

ro= l.O

0 0

oo
I

4 6

ELECTRON ENERGY (OV)

I

IO

Frc. 2. Elastic-scattering cross section of electrons on nitrogen.
The theoretical curve with r0=1.0 a.u. is compared with the data
of Neynaber et al. LR. Neynaber, L. Marino, E. Rothe, and S,
Trujillo, Phys. Rev. 123, 148 (1961);129, 2069 (1963)g.

J()„)=2402X10"
Xo lojrgttrt'Pu+2jg'e "W/cm' tt sr (24)

where I—=31.3306k'= 2.855&.„'. The expression of
Eq. (24) is convenient for comparison with experimental
data but does not have general validity. In general,
J (X„) must be evaluated numerically.



BREMSSTRAHLUNG EM ISS ION 105

V. NUMERICAL RESULTS FOR NITROGEN
AND OKYGEN

A. Elastic-Scattering Cross Sections

The key to the evaluatio~ of the bremsstrahlung cross
section is the calculation of accurate radial functions
for the partial waves of the free electrons. The equa-
tion for each partial wave has the form of an uncoupled,
second-order integrodifferential equation. Inputs for
these calculations are values of the polarizability a, the
adjustable parameter ro, and the coeKcients a» '& and
b&.~~'&. The polarizability is obtained from experiment,
though theoretical values also exist. The coefficients

aj, ~~'& and bI, ~8'& are obtained by formal application

O
N

EO

0.3

0.2

O. I

NGTH

0.3—
OXYGEN

yo& I.3

RY

LENGTH

00 I.O 2.0 5.0 4.0
PHOTON ENERGY (eV)

5.0

0.2
ION FrG. 4. Calculated values of Zo for electrons on nitrogen. Re-

sults are given for the full theory and for an analytic approxima-
tion to the dipole length matrix elements.

O
N

in which

O. l

O.I84
2Q (r)/»=

R, , i' s'(kor')
for m) 1,

0 I.O 2.0 3.0 4.0
PHOTON ENERGY (eV)

5.0

and x is a parameter chosen to enforce convergence. At
each iteration [R~, i' s'(kr)/r$„ is obtained from the
solution of an inhomogeneous differential equation and

O.I 5

Fra. 3. Calculated values of Zo for the bremsstrahlung cross sec-
tion of electrons on oxygen. Results are given for the full theory
and for an analytic approximation to the dipole length matrix
elements. The circles represent the Elwert approximation to the
bremsstrahlung from a hydrogen-like ion. For each initial elec-
tron energy, a separate s was needed.

of Slater's method" and are collected for convenience in
Table I. The parameter ro is determined by a fit to the
elastic-scattering cross section data.

The integrodifferential equation for the radial func-
tions is solved by iteration. The eth iterate of Eq. (12)
may be written symbolically as

N
N 0IO—

lal

a
O

LLJ

pf 0.05
O

0 0.2 0.4 0.6
m (46V)/~(4eV)

I i I

0.8 I.O

where

FxG. 5. Dependence of Zo on the ratio of s wave to total elastic
scattering for oxygen. The total elastic-scattering cross section is
kept 6xed at 2 eV and at 4 eV, while the ratios of s-wave to p-wave
scattering are varied. Ratios appropriate to the present theory and
to the theory of Cooper and Martin are indicated.
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I.O

I I I I I I

AIR

T = 8000' K

The oxygen data of Sunshine eI at. ," lie uniformly
higher than the calculated curve. Some efforts have been
made to adjust ro and 0. to determine whether reasonable
fits to these data are possible. However, it appears that
physically unacceptable values of both n and ro would
be necessary in the present model to attain such large
values for the cross section, although a fit to the mean
of all the data presumably could be found.

In the case of nitrogen, the calculated curve gives a
good fit to the experimental data and for both atomic

I 0.0

X = 2.55

X~ 5.88

O.I—

I I I I I

4 5 6 7

PHOTON NAVE LENGTH (MICRONS)

FIG. 6. Calculated and experimental continuum emissivity
for air at 8000'K. Experimental points are from the shock tube
data of Taylor.

is used to compute Q„~&. The process is started by
choosing some reasonable values of Qq as inputs. Con-
verged values of R~,

' ' are used to compute the
bremsstrahlung matrix elements.

The choice of x merits discussion. For x=0 con-
vergence is slow, while in some cases with x= 2 a quasi-
convergence occurs in which [Rfs~ and [Rfs„~r con-
verge to different functions having phase shifts ~ apart.
A value x=0.6 has been found adequate to provide a
rapid and real convergence. Tests of the convergence of
the scheme have been made using widely disparate
Qr values. It is found that convergence to the same
E&;~'~' occurs in every case.

The values chosen for the polarizability in units of
ao' are 5.6 for oxygen and 8.2 for nitrogen, which agree
roughly with theoretical calculations and are within the
experimental errors of existing measurements. " The
precise values are not considered to be critical and small
changes in 0. may be compensated for by changes in ro.

In Figs. 1 and 2 are displayed the fits to the experi-
mental elastic cross section for oxygen (rs ——1.1 and
1.3) and nitrogen (rs ——1.0). Although the shock tube
measurement of Lin and Kivel20 at approximately 0.5
eV disagrees with the calculated curve, considerable
latitude is permitted by present information in the re-
duction of the Lin and Kivel data. It is consistent with
experimental errors to place the Lin and Kivel point
anywhere between 1.3xao' and 4.0~ao'.

"A. Dalgarno, Advan. Phys. 11, 289 (1962).
M S. C. Lin and B. Kivel, Phys. Rev. 114, 1026 (1959).

E

I-l-

.085 p

X & 5.88 + 0.045'

Q.QI
6000

I I

7000 8000
TEMPERATURE ( K)

I

9000

Fxo. 7. Temperature dependence of the continuum emissivity
of air. Taylor's data are displayed together with the present
theoretical results.

B. Bremsstrahlung Cross Section

The radial wave functions, obtained as described in
the previous section, are substituted into Eq. (18) and
yield the cross section for bremsstrahlung. The results
of the calculation are displayed in Figs. 3 and 4 for
atomic oxygen and nitrogen, respectively. The solid
curves represent the complete calculation in which
both s-p and p-d transitions are included. The df-
transition was found to contribute less than 1% in all
cases and was omitted.

2' G. Sunshine, B. Aubrey, and B. Bederson, in Proceedings of
the Fourth International Conference on tlze Physics of Electronic and
Atomic Collisions, Quebec, 1965, edited by L. Kerwin and W. Fite
(Science Bookcrafters, Inc. , Hastings-on-Hudson, New York,
1965).

species the fits were felt to be sufficiently close to
justify using the wave functions for calculating the
bremsstrahlung.
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The dashed curves are calculated from the approxi-
mate dipole length formula and contain only s-p transi-
tions. Thus, at the higher initial energies where the p-d
contribution is of the order of 10 to 20%, the dipole
length approximation departs signi6cantly from the
more exact calculation. However, this approximation
agrees within 5 to 7 jo with the s-p contributions of the
full calculation in each case.

To examine the approximations to the complete
theory, emissivities were calculated for oxygen and
nitrogen with the linear form Eq. (24) and the approxi-
mate dipole length form and compared to the complete
theory. For oxygen 00=0.71X10 6 and for nitrogen
00——0.80X10 '. Except at the lowest wavelengths, the
emissivities are effectively the same in each of the three
cases. Hence, it would appear that for the calculation of
absorption and emission coeKcients the approximate
formulations yield results adequate for most purposes.

On Fig. 3 for oxygen, the bremsstrahlung from a
Coulomb potential is shown. The Elwert" approxima-

ranges. Thus, the use of this approximation to interpret
experimental data, as done, for example, by Taylor, '
is without foundation and may lead to order of magni-
tude errors.

Since the elastic cross sections are the only experi-
mental data against which the present model has been
tested in detail, it is of interest to examine the sensi-
tivity of the bremsstrahlung cross section to the amount
of s wave in the elastic scattering. Kith the total elastic
cross section held fixed, the ratio of s wave to total
elastic cross section was allowed to vary and Zo was
obtained using the approximate dipole length formula-
tion for s-p transitions. The results for oxygen are shown
in Fig. 5.

The curve shows an order of magnitude variation in
Zo. Hence it is apparent that phase shifts which 6t the
elastic-scattering cross section may not give a correct
bremsstrahlung cross section. In particular, a pure po-
tential model of the interaction may yield the elastic
data and yet give a poor representation of the brems-
strahlung. For example, the work of De Vore on nitro-
gen shows order of magnitude differences with the pres-
ent results at some energies.

The point of Cooper and Martin is included for corn-
parison. It was obtained from the ratio of their 4-eV s
wave to their total cross section. The present fI.t con-
tains relatively less p-wave contribution and is indicated
on the graph.

A definitive estimate of the over-all accuracy of the
computed bremsstrahlung cross section cannot be given

lo.o
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FIG. 8. Calculated and experimental continuum emissivity of
nitrogen at 8000'K. Experimental points are from Taylor's data.
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tion was fitted with an effective s at E=Ze/2 for each
initial energy. Not only is the Gtted s very sensitive to
the initial energy, but even for a single electron energy
the purely Coulombic bremsstrahlung does not give a
satisfactory energy dependence for the cross section.
The 6tted s contains a strong energy dependence; use of
a single s for all Eo destroys even order of magnitude
agreement with the present calculation over some energy

's J. Greene, Astrophys. J. 130, 693 (1959).

0.01—

O.OOI
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I

7000
I
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I

9000
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Fn. 9. Temperature dependence of the continuum emissivity of
nitrogen. Experimental points are from Taylor's data.
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at present. Almost certainly the approximations made
in evaluating the theory of Secs. II and III result in
less than a 7% error in Zp, as discussed in the following
paragraphs.

For oxygen, scattering occurs for p waves in 4D, 4I',
4S 'D 'P' and 'S states. The configurations 'D and 'P
are degenerate, and the entire scattering is assumed to
occur in the state with the highest statistical weight, the
4D state. Scattering for 3= 2 is assumed for simplicity to
occur only in a single state in which all exchange terms
are ignored. All scattering in free-electron states with
l)2 is ignored. A similar approximation is made for
nitrogen. This shortens the numerical work and avoids
a direct treatment of degeneracies. The approximation
was tested in a few cases, and it was found that putting
in all the I. and S dependences according to the rules
given in Sec. IIC above lowered Zo by less than 5%.
In addition, all Lagrange multipliers were ignored. This
omission was justiled by a few test cases in which
multipliers forcing the proper orthogonality of the
orbitals were obtained. The multipliers were small and
had little effect on the differential equations.

The uncertainty in the value of ro should result in
less than an 8 or 9%%uo error. The errors in the theory
itself are harder to assess. A number of couplings have
been ignored which can in principle yield appreciable
discrepancies. At low photon energies, these errors will

be manifested through an incorrect calculation of the
momentum-transfer cross section. If the spread of
points in the total elastic-scattering data may be used
as a measure of the uncertainty in the momentum trans-

fer, the error in the bremsstrahlung in the low-photon-

energy limit should be less than 40% for oxygen and
less than 15% for nitrogen. The larger number for
oxygen is due to the extreme spread of the experimental
data and is probably a considerable overestimate.

However, the approximations made in solving for the
zeroth-order wave function of the system may be tested
Inore directly by comparing values of Zo calculated with
the dipole acceleration and dipole length forms of the
matrix element, Eqs. (16) and (21), respectively. The
two equations are equivalent only when the zeroth-
order wave function is a solution of the unperturbed
many-particle Schrodinger equation. Therefore, the
differences in Zo obtained from these equations should

provide an estimate of the uncertainty in Zo. It is found
that the two calculations agree to within 10% in most
cases. Agreement is within 1% in the most favorable
cases and within 20% in the worst case, with the larger
errors occurring when the 6nal electron energy is much
smaller than the initial energy.

C. Calculation of Emissivity

It is possible to combine the above results with an
approximate evaluation of bremsstrahlung emission

from a nitrogen molecule to obtain emissivities for air

and nitrogen gas. To evaluate the electron-molecule
contribution to the radiation two approximations are
made. It is assumed that the zero-photon-energy limit
of the cross section may be used even for photon energies
which are an appreciable fraction of the average elec-
tron energy; it is also assumed that the correct zero-
photon-energy bremsstrahlung is proportional to the
momentum-transfer cross section, i.e.,

Zp ——(4/3n-')k on'o (25)

For the nitrogen molecule 0- given by Engelhardt
et al "was used.

The ernissivities obtained were plotted against the
shock tube data of Taylor' for nitrogen and for air. For
all species, populations were read from the graphs pro-
vided by Tavlor. To produce theoretical curves for a
nitrogen gas, bremsstrahlung from electrons on N and
N2 was evaluated; for air, electron-oxygen brems-
strahlung was calculated in addition.

The calculations are displayed in Figs. 6—9. In Figs.
6 and 8 there were frequently a number of data at the
same wavelength. The range of these data is indicated
by a vertical line and the position of the Inedian point is
encircled. All of Taylor's data were taken at tempera-
tures at which electron-nitrogen molecule collisions are
the dominant mechanism for bremsstrahlung emission.
Moreover, the calculation of emission from the molecule
is suKciently crude that its uncertainty is of the order
of the atomic radiation. The contribution of recombina-
tion radiation to the volume emissivity has not been
plotted in these figures. Calculation shows that it is a
small effect except at the highest photon energies
(X„2),where the emissivity is increased roughly 10%
by recombination radiation.

It can be seen that the emissivities are calculated to
within 20—30% and no patent disagreement exists be-
tween theory and experiment.

Little more than consistency with the data can be
claimed for the calculation of atomic bremsstrahlung.
Yet, it is of interest to note that there is a strong wave-
length dependence in the emissivity which agrees well
with the shape of the calculated atomic bremsstrahlung
curves. Clearly it would be desirable to have a more pre-
cise comparison between theory and experiment. '4"

Note added ie proof In applying this theory to other
atoms it has been found that it is sometimes not possible
to solve the equations by iteration, and a noniterative
Inethod of solution has been devised. The failure of
iterative techniques is connected with the existance of
multiple solutions to the equations, and will be discussed
in detail in a later paper.

' A. Engelhardt, A. Phelps, and C. Risk, Phys. Rev. 135, A1566
(1964).

'4R. Neynaber, L. Marino, E. Rothe, and S. Trujillo, Phys.
Rev. 123, 148 (1961).

25 R. Neynaber, L. Marino, E. Rothe, and S. Trujillo, Phys.
Rev. 129, 2069 (1963).
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APPENDIX A: EVALUATION OP Pi

In general Eq. (9) may be solved for (QI)i by standard Green's function techniques

e~(~a) -f'-~z=()bs"')&~4~(k~a )'
On the assumption that the functions ()))0(ko,y) )„satisfy the Schrodinger equation defined by Ho, the Green s

function is given by

O(y,y')=&;ZZZ Z 2( 1)"-"-(~+1)'&'g'si,(;; )G. ei, " "(go*..'4" "(y ).
L' 8' lI' Ml, MS

lI
(2mk) 2zrz R~,

~' '(kr~)Ri, ~' '(kr )/rzr for r;&r
lim gr, s i, (r;,r )= i")—' exp( 2i8—i, ~'e')l

l
X (A2)

gF00 k Iz' )2li'+1 Ri;~' '(kr/')R~, z'e'(kr;)/r;r for r &r;

In the above, primes are used to distinguish the subscripts from those appearing in Po. The asymptotic form of
I ~

Brs r r is

where Ri.z'8'/r is the outgoing wave solution of the elastic-scattering radial equation (11),having the normalization

lim
Rk, z'8'(kr) 1 (2li'+1

exp(2zI) i, r"8')e'~"
r zrkrE 2

The complete r;, r dependence of g is more diKcult to determine but is not needed here.
When the free electron, is far from the atom, ()))i; takes on the limiting form

()'2m)) e'~'~

~;(k,y).. ~;Z ZZZ El
L' s' lg' 3rl, zre ( Qz j r (2)i'+ 1)iiz

where

t icky ) hc ~
'I'

p,.(r, )= —
l ll l P P P(i,i,l.[0~)(-',s,Sl~, m*)
(tpzcl ikzU) L s (&

R).~'s'(kr )
~(r/) Gr"Bid ' '0) (A3)

&«~g/ dIIP 2 G*"i," " (g, ')'; V, I.Ri,-(k«;)/rflG»i, -'-" -'(~, )

Equation (3a) is used to express the functions G in explicit form. It is then possible to perform many of the summa-

tions and integrations and obtain comparatively simple explicit expressions for the limiting form of Pi;. This proc-
ess yields for the scattering amplitudes Eqs. (12) and (13) of the text.


