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Particle-Hole States in the Alpha Particle with Realistic Forces*
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We solve the Tamm-Banco' equations, using the realistic separable potential of Tabakin, for the odd-
parity excited states of 4He. A comparison is made with results obtained using the hard-core potentials of
Brueckner, Gammel, and Thaler and of Hamada. The calculated spectrum is found to be strongly in-
Quenced by the p-state contributions, particularly by the eBect of the tensor interaction. We predict that
the 0, T=0 state lies close to the 2, T=0 state. The spin-orbit splitting between the P»t 2 and Pzt2 single-
particle states is calculated and found in erst order to depend only on the relative two-body spin-orbit
interaction. Our estimate for the ratio of the probability of an E1 transition from the upper 1,T= 1 state
to the ground state to that of an El transition from the lower 1, T= 1 state is calculated to be 1.6, com-
pared with the experimental ratio which is ~2. We also calculate the squared matrix elements and the total
capture rate for muon capture in 4He. The squared matrix elements are found to be equal within 10 percent,
but the calculated total capture rate is smaller than the experimental rate. Our theoretical results tend to
justify the use of the supermultiplet theory for the excited states of the a particle. We And that our seven
equations for the energy splittings depend upon only four quantities. Consequently, we are able to obtain
three relations, which give the two unobserved energy splittings and the ratio of the E1 transition proba-
bilities in terms of the four observed energy splittings. The two empirical results which can be compared
with experiment are in excellent agreement.

I. INTRODUCTION

HE form of the interaction between nucleons in-
side a nucleus remains one of the most fascinating

problems in nuclear physics. The work of Brueckner and
Gammel' and Bethe and Goldstone' on the properties
of nuclear matter showed that only the two-particle cor-
relations are important and that one can get good re-
sults in nuclear many-body calculations using the free
nucleon-nucleon interaction. This result encouraged
physicists to try calculations for finite nuclei using
realistic two-nucleon potentials. The application of the
Brueckner theory or the "independent pair model" to
finite nuclei was carried out by Brueckner et at. ' 4 and
by Eden and his co-workers, ' ~ who calculated the bind-
ing energy and density of "Q.

Ideally one would like to perform a completely self-
consistent shell-model calculation for finite nuclei in
which the effective interaction between nucleons is
taken to be the free nucleon-nucleon interaction. Such
a calculation would involve, first of all, doing a Hartree-
Fock (H-F) calculation using the free nucleon-nucleon
potential in order to determine the shell-model single-
particle (S-P) energies and wave functions. One could
then do a shell-model calnQation of the spectra of finite
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nuclei using these S-P energies and wave functions and
again taking the free nucleon-nucleon potential as the
effective interaction between nucleons. However, the
singular nature of the hard-core nuclear potential has
prevented physicists from doing the H-F calculation.
New nonsingular and nonlocal forms of the free nu-
cleon-nucleon potential have now made such a H-F
calculation possible, and it has been carried out by
Marthukrisknan and Baranger' using a nonlocal separ-
able potential, by Kerman ef al. ' using the separable
potential of Tabakin, " and by Davies et ul." using
a nonlocal velocity-dependent interaction. All of them
obtain fairly good agreement with the experimental
S-P energies, but they also agree that their results need
to be improved and that the potentials which they used
need to be refined or better determined. So far no one
has tried to use the results of any of these calculations
to do a shell-model calculation of the spectra of finite
nuclei.

Since nuclear H-F calculations could not be carried
out until recently, shell-model calculations were per-
formed by taking the S-P energies as parameters or as
given by the experimental S-P levels in neighboring
nuclei and by choosing harmonic-oscillator wave func-
tions as the S-P wave functions. These choices were as-
sumed to be good approximations for the actual S-P
energies and wave functions in finite nuclei. Actually
the S-P wave functions are better approximated by
Woods-Saxon wave functions, but they are difficult to
use in making calculations.
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Having determined the S-P energies and wave func-
tions in the above manner, physicists carried out shell-
model calculations of nuclear spectra for various forms
of the particle-particle interaction between nucleons. ""
One of the earliest shell-model calculations with realis-
tic nuclear forces was performed by Dawson, Talmi, and
Walecka (DTW),"who solved a Bethe-Goldstone equa-
tion, using the free nucleon-nucleon potential of
Brueckner, Gammel, and Thaler (BGT),' to determine
the spectrum of "O. A similar calculation for nuclei
with 2=6 was done by Dawson and Walecka. "Re-
cently Kuo et al."carried out a shell-model calculation
of the low-lying states of the tin isotopes using the
Tabakin potential. Their results were in very good
agreement with a similar calculation for the tin isotopes
performed by Kuo and Brown" using the Hamada-
Johnston potential. "

In order to include the collective nature of nuclear
states, physicists have used the theory of particle-hole
states to calculate nuclear spectra. The theory of
particle-hole states in closed-shell nuclei was discussed
by Thouless" in an extensive article on the applications
of Green's functions in low-energy nuclear physics. The
theory can also be developed in terms of the "lineariza-
tion method, "as described by Lane. '0 One would like to
relate the particle-hole interactions in finite nuclei to
the particle-particle interactions in a manner similar to
that used by Galitskii" in the nonideal Fermi gas and
then to treat the particle-particle interaction in terms
of a Bethe-Salpeter equation. Such a calculation is very
dificult and so far has not been performed. We plan
to work on this problem in the future, but restrict our-
selves at the present time to the theory of particle-hole
interactions in lowest order, which is equivalent to the
Tannn-Dancoff (TD) or the random-phase approxima-
tion (RPA), depending upon which states are kept in
the calculation. ' Employing the separation method of
Scott and Moszkowski" to get around the problem of
the ininite hard core, Kallio and Kolltveit23 and Green
et al. '4 have calculated the spectrum of the odd-parity
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excited states of "O using a realistic two-nucleon force
in both the TD and RPA.

Within the last few months de-Shalit and Walecka
(SW)" have formulated the particle-hole theory of the
n particle in the TD approximation and solved the re-
sulting equations for the seven negative-parity excited
states of 'He. To simplify calculations they assumed a
Serber force for the particle-particle interaction. Since
they had ruled out p-state interactions by their choice
of the nuclear force, they had to include the spin-orbit
splitting as an empirical parameter in their calculation,
which, in turn, led to the Lande interval rule for the
ordering of the J, T=O states. After making these as-
sumptions, their calculated spectrum was in excellent
agreement with the Ave odd-parity states which have so
far been observed for nuclei with A =4. However, their
calculated value for the ratio of the E1 transition proba-
bility of the upper 1, T= l state to the ground state
with respect to that of the lower |,T=1 state was
much larger than the observed ratio.

In this paper we plan to repeat the calculation of SW
but this time using realistic nucleon-nucleon potentials.
We want to see how close we can get to the experimental
spectrum for a no adjustab-le parasite-r calculation and
to observe what new physical predictions can be made
from the use of realistic forces in this calculation. First
we shall perform the calculation in erst and second order
using the separable potential of Tabakin, which elimi-
nates the problem of the singular hard core. Then for
comparison we shall repeat the calculation in 6rst order
for several other realistic nuclear potentials, includ-
ing the singular, hard-core potentials of BGT4 and
Harnada" and the separable potential of Mitra ef at."

The 0. particle deserves further study for several
reasons:

(i) Among the light nuclei 'He has the highest sym-
metry and is a simple system with which to Inake cal-
culations. As SW have alerady pointed out, the nega-
tive-parity excited states of the a particle make up a
]5-dimensional SU(4) supermultiplet and the splittings
within the supermultiplet are caused by the spin-
dependent parts of the nucleon-nucleon interaction.
Thus, by performing our calculations with realistic
nuclear potentials, which contain tensor and spin-orbit
parts as well as triplet and singlet parts, we shall be
able to determine to what extent the supermultiplet is
split by the different spin-dependent forces. In turn,
the magnitude of these splittings will give us a check on
the validity of the supermultiplet theory which assumes
that the intrinsic splittings are small relative to the ex-
citation of the center of gravity of the supermultiplet
caused by the spin-independent forces.

~5 A. de-Shalit and J. D. Walecka, Phys. Rev. 14?, 763 (1966).
'6 T. Hamada, -Progr. Theoret. Phys. (Kyoto) 24, 1033 (1960);

25, 247 (1960).
"A. N. Mitra and J. H. Naqvi, Nucl. Phys. 25, 307 (1961).

See this paper for other references.
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(ii) In the future we plan to carry out similar calcu-
lations for bigger nuclei, such as "C and '60. Thus, by
performing a calculation for a very light nucleus, like
'He, we get sorn. e idea of the kind of results we can expect
from a calculation such as ours. In turn, future calcula-
tions with heavier nuclei should give even better results,
since our calculative assumptions, such as using har-
monic-oscillator, bound-state wave functions for the
excited states, should improve for bigger systems.

(iii) The a particle contains some very interesting
physics which has not yet been explained:

As we stated earlier, SW obtained a value for the
ratio of the E1 transition probability of the upper 1,
T=1 state with respect to that of the lower 1, T=1
state that was much larger than the experimental ratio.
In fact, their result predicted that most of the E1
strength was in the upper 1, T= 1 state, implying L-S
coupling for the 1 states, while the experimental result
indicates that the lower 1, T=1 state has more E1
strength than the upper state, implying j-j coupling for
the 1 states.

There are also unanswered questions regarding muon
capture in 4He. According to the work of Foldy and
Walecka (FW), ' the dominant terms for muon capture
in the 0, particle come from the T=1 states of the
supermultiplet. Their calculations are based on the
supermultiplet theory, which predicts that the squared
matrix elements for muon capture are equal, i.e.,

Afar'=M~2

——3fI~, and give a value of the total muon
capture rate which is smaller than and in poor agree-
ment with the observed capture rate.

From our calculation of the 4He spectrum with realis-
tic forces, we shall be able to determine both the ratio
of the E1 transition probabilities and the total muon
capture rate and at the same time check the validity
of the supermultiplet theory regarding the equality of
the squared matrix elements.

In Sec. II we formulate our calculation, which is
carried out in Sec. III. Our numerical results are also
given in III, and these results are discussed and conclu-
sions are drawn in Sec. IV.

angular momentum J and isospin T, and V;; J~ is the
particle-hole interaction, deaned by

V '~r= —Q (2J'+1)(2T'+1)
Jl Pl

Xp(ppsx pJ'T'[ V
( p; si(2J'T') 0

—(—1)'~'+~~'

X (—1)'~'+'~'+r'(ppgggg J'T'
J
V

( gg(2p; J'T') p j. (2)

The subscript 0 indicates that the expectation value is
to be taken with respect to eigenstates of the unper-
turbed Hamiltonian,

Bo Q;[T——(i)+,'M(op'x-;2 j. (3)

2 2 12
+Z(2~'+I) . ~~ (~'T) (&)

J/ J' J j

In Eq. (3) cop is the oscillator strength for 4He deter-
mined from the Coulomb energy or the electron-scat-
tering form factor. In our calculations we use ~p deter-
mined by the latter method, so that

Atop= 21.8 MeV,

in which case the oscillator parameter bp is given by

ho= (A/Mo)0)'I'=1. 38 F. (5)

Similarly to SW, we now include the H-F energy of
the p; particle, i.e.,

(2J'+ 1)(2T'+ 1)
V" '(p~)= 2

(2j+1)2

[(p;spy J'T'[ V [ p;sap J'T') 0
—(—1)'+'I'—~'

X (—1)'"+'~' '(p;s&(2J'T'
(
V

) s&1&p;J' 'T) ]0, (6)

in the interaction matrix V;;.J~ instead of in the con-
6guration energy, and obtain the particle-hole energies

II. FORMULATION OF THE CALCULATION

We use the particle-hole formalism of SW for making
calculations with regard to 4He in this paper, except that
we compute the Talmi integrals with realistic potentials,
as DTW did. We work in the shell model, using har-
monic-oscillator wave functions for doing calculations,
and derive the TD equations for 4He using particle-hole
creation operators. In the j-j coupling scheme these
equations are given by"

Z~'(L( n
—.,g)

—"'3& '+V '")~'"=o, (1)

where e„,. and e„„are the S-P and single-hole energies,
respectively, eJ~ is the energy of the excited state with

' L. L. Foldy and J. D. Walecka, Nuovo Cimento 34, 1026
(1964).

—(2J'+1)

and

1 1

(-') (2T'+1)
2

1 1

(2J'+1) J' J j
are tabulated in SW.

where e;;(J'T') is the particle-particle matrix element
enclosed within the square brackets in Eq. (2). It is
apparent that the off-diagonal matrix elements, V;; J~

(jW j'), are unaffected. The coeKcients
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3
0
1

1
1

0,1,2
0,1,2

We can express the particle-particle matrix elements
in terms of matrix elements of the relative two-body
interaction by 6rst using a 9-j symbol to go from j-j
to I-S coupling. We then use the transformation
brackets of Brody and Moshinsky" to go to relative and
center-of-mass coordinates. Next we couple the relative
angular momentum I to the total spin S, to obtain states
of angular momentum, 3, where Q is the total angular

TABLE I. Contributing values of Q in Eq. (9). Also shown is
the relation of 3 to j (the total angular momentum), where
3=1+Sand J=Q+Q.

momentum of the two particles in the center-of-mass
system. Doing this gives us two 6-j symbols and a sum
over allowed values of ~~. Thus we have the following
relationships:

3=1+S,
L=Q+l=l, +I„
J=3+Q= L+ S,

where J is the total angular momentum of the state,
I„and I, are the S-P angular momenta, and ~ is the
center-of-mass angular momentum. This procedure is
similar to the one used by Kuo et ut. ' to express their
particle-particle matrix elements, except that we are
applying it to the particular combination of particle-
particle matrix elements which is summed to give the
particle-hole energies. Proceeding in the manner de-
scribed above, we obtain"

n/I'(I' T') =—(PI'»/pI'T'I VI est/pI'T'&o (—1)—""'"'(—1)""""'(P/'sr/p I'T'I VI sr/zP;I'T'&o

1 S ~ ~ S1 1 1 1

=6[(2j+1)(2j'+1)]'I'5 (2S+1) 1 0 1 1 0 1 P I(e=OBT=091I01001)I'
S=O j -', J' j' —,

' J' i, p=o

XE (2~+1)3
3

1 2

[1—(—1) +r'+']((e=0lS)~T'I VI(e=OlSQT'&o, (9)J/

where (01081I01001) is the appropriate transformation
bracket for each value of l and P, and n, and 1V are the
radial quantum numbers for the relative and center-of-
mass states, respectively.

We de6ne

((Ols)~~T'I VI (Ols)~~T')p—= eI((~). (10)

For the alpha particle, only one value of ~ occurs in
each sum over ~~ in Eq. (9), as indicated in Table I.
From Eq. (9) we Gnd that the part~cle particle matrix-
elements are (in this notation S=3 denotes the triplet
spin state and S=1 denotes the singlet spin state)

er/p, /p(~0) ='Io(1),
»»»p(0 1)='It(0)

I I (1 0)=l'I (1)+l'Io(1),
I I (1 1)=l'Io(o)+l'I (1)

'p/»/p(1 0) =-', 'Io(1)+I 'Ir(1),
»/»/p(1 1)=o 'Ir(1)+p 'Io(0)

~

'p/»/p(2 0) ='Io(1),
p/o p/o(2

—
1)='It(2),

n, /, ,I,(1—0) = n3/Q t/Q(1 0) = ——,'K2['Io(1)—'Il(1)] y

vr/p p/p(1 1)=op/2 1/2(1 1)= —'pv2['Io(0) —'Ir(1)]. (11)

Using the coeKcients in Table IV of SW, we easily ob-

tain the particle-hole energies:

Et/2(0 0) =—,['It(1)+2 'Io(1)+3 'It(0)],
Er/p(1 0) =-,'[7 'Ip(1)+2 'Ir(1)+6 'Ir(1)+3 'Io(0)],
Et/p(0 1)= —,'['Io(1)+2 'It(0)+'Ip(0)+2 'It(1)])
Er/p(1 1)= p['I,(1)+2 'Io(1)

+3 'Ir(0)+4 'Ip(0)+8 'Ir(1)],
Ep/o(1 0) = —,'['It(1)+8 'Ip(1)+6 'Ip(0)+3 'It(1)],
Ep/2(2 0)= or['It(1)+2 'Io(1)+3 'It(2)],
Ep/p(1 1)=to[4 It(1)+2 Ip(1)+10 Io(0)

+5 'It(1)+15 'Ir(2)],
Ep/p(2 1)= 4[2 'Ip(1)+2 'Ip(0)+'It(1)+7 'It(2)],

Vt/Q p/Q(1 0) —Vp/p 1/2(1 0)
=-'oV2['Ip(1) —'Ir(1)+3 'Ip(0) —3 'It(1)],

Vr/p p/Q(1 1) Vp/p r/p(1 1)
= re~2['Ir(1) —'Ip(1)+'Io(0) —'Ir(1)]. (12)

SW correctly treated the center-of-mass motion and
showed that the state 'P1, T=O corresponded to the
spurious center-of-mass excitation. Therefore, the only
T=0 states of 4He are 'P0, 1,2, and we can pick out the
correct combination for the 1—,T=0 state by using

I'»&=(o)'"I pt/osl/, 1-&—(p)"
I pp/, s»,1-&. (13)

' The notation for the coupling of angular momentum is;hat
2'T. A. Brody and M. Moshinsky, Tables of Transformation of A. R. Edmonds, Angular Momentum in Quantum Mechanics

Brackets (Monografias Del Instituto De Fisica, Mexico, 1960). (Princeton University Press, Princeton, New Jersey, 1957).
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=-,'[6 'Ir(0)+9 'It(1)—15 'Ir(2)). (15)

From Eqs. (12) and (14) we note that the splitting
among the 'Po, ~,~, '1=0 levels depends only on the dif-
ference between the values of 'It(~~):

E(0-0)—E(1-0)=-;L'I (0)—'It(1)7,
E(1 0)—E(2—0)=-,'[«It(1)—'Ir(2)],
E(o o)—E(2 o) =l['I (0)—'I (2)) (16)

The splitting between the 0 and 2 states for T=1
also depends only on the values of 'It(~~):

E(0 1)—E(2 1)=-', [4 'It(0)+3 'It(1)—7 'Ir(2)]. (17)

The splitting between the isospin multiplets is given
by

E(2—1)—E(2—
0) = -,'[tIo(0) —'It(1)—'Io(1)7

+4[«It(1)+'Ir(2)). (18)

To 6nd the 1, T=1 states, we must diagonalize
the interaction among the states

I pt/»t/s1 ) and

I ps/»t/91 ). The matrix to be diagonalized is

(Et/s(1 1) X(1 1) Vt/Q 3/Q(1
—

1)

Vs/s r/s(1 1) Eo/o(1 1)—7(1 1))

(nt/s(1 1)
X I

=0. (19)
kns/s(1 1)

Thus, the new eigenvalues, X+(1 1), are

g~(1—1)=—', [Et/, (1 I)+Eo/s(1 1)&{[Et/o(1 1)
—E,/, (1

—I))'+4[V//Q 3/Q(1 1)]'}'').
The new eigenstates are given by

(20)

(nt/s/ns/s)+=—
Vt/s o/s(1 1)

Et/s(1 1)—Q(1 1)

Es/s(1
—1)—X+(1 1)

Vt/s s/s(1 1)
= —(ns/s/nr/s)-, (21)

where + and —denote the upper and lower 1, T= 1
states, respectively.

The E1 transitions to the ground state occur only
from the 'E'~, T=1 components of the above states,
where

I
'I'r&= (v's) I pr/»t/s1 &+(V's) I ps/»r/s1 & (22)

We find that

Esp, (1 0)= -', ['Ir(1)+2 'Io(1)+3 'It(1)). (14)

Since the spin-orbit splitting between the pt/s and
ps/s S-P levels of the shell model is given by the differ-
ence of the H-F energies for the p, particle, we can use
Eqs. (6) and (11) to determine the size of this splitting:

(nt/s/no/s)++~~

1 &2—(n t /s/ns/s) „ (23)

For a better estimate, we can include the correct energy
weighting for E1 transitions, which goes as the energy
difference cubed.

Using the de6nition of the center of gravity of the
supermultiplet as given in SW, we find that

«, = «„—«,——[Io(0)+ Io(1)]
—(1/20) ['It(1)+'Ir(0)+3 'It(1)+5 'I,(2)]

="—"—l['Io(o)+'Io(1))
—4r {'It(1)+-',[«It(0)+ 'It(1)+ 'I t(2))}

+s {'Ir(1)+s [«It(0)—2 'It(1)—5 'It(2)) }
= «,—«,+e„,„,~"&+s'{'I,(1)

+ o [«It(0)—2 'It(1)—5 'It(2))}, (24)

where e„—e, is the difference in the particle-hole en-
ergies, which we take from experiment to be the oscil-
lator spacing, Aooo ——21.8 MeV."In Eq. (24)

o";"""= —(Ip»L
I Vl»»L&o

= —
~ {'Io(0)+'Io(1)+ 'It(1)

+-:['I«)+'I (1)+'I.(2))} (25)

is the repulsive, spin-independent interaction of SW
which moves the center of gravity of the supermultiplet
upwards. The third term in Eq. (24) is caused by the
spin-dependent forces and gives rise to an additional
shift in the position of the center of gravity besides that
predicted by the supermultiplet theory.

To determine the muon-capture matrix elements and
the total capture rate in 'He, we use the formulas of
deForest, " except that we couple (sl)j, instead of
(ls)j.Thus the total capture rate is given by

As. = I ps'(l 0 o I
'). /2~@'c)[Gv'~v'+3G~'~g'

+(Gp' 2GpG/t) iVp')+A—'„„(26)
where the G's are effective coupling constants. the 3I's
are the nuclear matrix elements, A„,' contains nucleon
recoil correcti. ons and v„=—m„c/A.

For 'He the dipole nuclear matrix elements, i.e.,

"One can also take the S-P energies from neighboring nuclei in
which case e„—e,=22.6 MeV. Thus, all of our results for the
center of gravity would be 0.8 MeV larger if we used this value of

"T. de Forest, Jr., Phys. Rev. 139, 31217 (1965).

As an estimate of the ratio of the E1 transition proba-
bilities for the two 1,T= 1 states, we can calculate the
ratio of the probabilities of ending the above states in
the 'P'~ configuration:

I
('I'tl ++& I

'
I (nt/s)++v2(ns/s)+ I

'

1(nt/s)-+v2(n / )-I '
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(Mrs)2&, where I= V,P,A, are given by TABLE II. Parameters of the Tabakin separable potential.

(Mv')2& g 1('&=,
I f(2/) J—1('&I'(yj—1('&/y )

(01 1/2) (00 1/2) —1+~2n . (01 2/2) (00 1/2) —1I 2

(Mv )D,x=0= 2 lf()/)z=ol (ye=0/y„)=3(MA )D,z=o,

(MP ) r&,&=2 2 I f(r/b=2 I '(yJ'=2/y. ) =6/3 (M~') 1&,z=2,

(M")n,~=1= l I
f(~)~=1"'I'(y"=1'/y. )

)('~2ln(, (01 1/2) (00 1/2) —1 n, (01 2/2) (00 1/2) —
1I 2 (27)

where

1$
'Si
Di

lp
'Po
3p2
3P

115.9
164.7
189.3
44.3

267.7
103.7
107.6

V~
State (MeV)

Vp
(MeV)

235.6
10.3

488.9
1506.0
1067.0
394.5
531.2

1/0 (F)

0.834
0.763
0.833
0.741
0.714
0.625
0.800

1/b (F) 1/c (F)

0 801
0.990
0.909 2.00
0.741 ~ ~ ~

0.714
0.625
0 800 J ~ ~

1/d (F)

0.694
0.590

f(n) = (46) &01J1(v,sr)Roorsdr =
&/ exp( —2/2/4),

2/= v~sho—=
I p,~)bs/A, v~q=p„/A is the neutrino wave

number, y("—= (—'v 0(')b0)' y =—(—'v b0)' and b0 is the
oscillator parameter.

We also calculate the unretarded dipole matrix ele-
ments (Mrs)(/» and the elastic form factor F,i(v„,)
evaluated at the resonant neutrino momentum Av„, so
that we can check the assumption of FW that

where Ak is the relative momentum, n stands for the
quantum numbers 3, T, and S, as defined earlier, and
m is the s component of 3. 'JJ i (k) is defined by

J 1 ()()= 2 (~miSmsI lS3'm)Vi i((()xs sPr, (31)

where I'~~, is a spherical harmonic, Xq 8 is the spin
wave function, P& is the isotopic spin projection oper-
ator, and (lmiSmsl lS3m) is the Clebsch-Gordan coeK-
cient for coupling t and S to give 3. The functions

g i(k) are as follows:

(M") =(M"). IF.(-.)I' (28)

In our calculation the unretarded dipole matrix ele-
ments are obtained from the retarded ones by replacing
f(r/) by 2/=v, ebs in Eq. (27). The elastic form factor,
which we want for comparison, is the one uncorrected
for center-of-mass motion" and given by"

'Sp.

'S1.'

n= (0,1,0),
g-o(k) =v(k'+a') ',
h.o(k) =Pk'P(k d)'+b'—7 'P(k+d-)'+b'j-'

n= (1,0,1),
g ()(k) =y(ks+a') —',

(k) pk2L(k d)2+$2)—1L(k+d) 2+$2)—1

where 'g= p bp.

F.i(v„,)= exp( —2/2/4), (29) 3D1. n= (1,0,1),
g-2(k) =~k'I:(k—c)'+a') 'L(k+c)'+a'g ',
h 2(k)=Pk2(ks+h2) '.

III. CALCULATIONS AND NUMERICAL RESULTS

A. The Tabakin Separable Potential

Since the Tabakin potential is nonsingular and separ-
able and has been determined for relative s , p-, and-
d-state interactions, it is a convenient realistic nucfeon-
nucleon potential with which to make a consistent cal-
culation of the spectrum of the 0. particle. For conven-
ience in doing integrals we calculate matrix elements of
the separable potential in momentum space. The
Tabakin potential in momentum space is given by

V(klk')=(2h2/2rM) Q 21' '[ g.i(k)g p(k')—
0.ml/'

+h-(k)h- (k')3V--()e- "*("), (30)

"If we evaluated (MP)n for the true wave functions for the
J~, T=1 states, then (Mrs)"~'=(Mz')QD~F 1'»e~' where F,&2~e

is the elastic form factor corrected for center-of-mass motion as
described in L. J, Tassie and F. C. Barker, Phys. Rev. 111, 940
(1958).However, we evaluate (MI )~ for harmonic-oscillator shell-
model wave functions. Thus (Mrs)osM=(Mz')Un~Feis ~2, where
Il,PM is the elastic form factor uncorrected for center-of-mass mo-
tion, since for shell-model wave functions the same center-of-mass
contribution factors out of (Mrs)o and

~
F,i )' and cancels. In both

cases (Mq')rii& is una/fected by the center-of-mass motion, since it
is evaluated for v q~ 0.

3Pp'. n= (0,1,1),
g 1(k) =7k(k'+a') '/',
h 1(k) =Pk'(k'+b2) —'/'.

Gris(3T) = ( 2h2/2rM)' /2
g i(k)Pni(k)ksdk, (33)

II„is(~~T)= (2hs/2rM)'/' h~i(k)P„((k)k'dk. (34)

The functions g ~ and h ~ for 'P~, 'P2 and 'P» are of
the same form as those for 'Pp, except that for 'P1 and
'P1 the terms involving both g ~ and h ~ are taken to be
positive, while for 3P2 both are taken to be negative.
Otherwise, the signs are as indicated in Eq. (30). The
parameters for the Tabakin potential are given in Table
II, where V, =A2y2/Ma and Vs O'P'/Mb- —

For the Tabakin potential we And that"

((I'/"S)3T
I
V

I
(22lS)32')0= pG vs(3T)G is(32')

+l II;i s(8'P)II.is(3I')
= sIi(~~), for l= l' and I=22'=0, (32)

where p and i are the correct relative signs for the in-
teractions as explained earlier and
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ALE III. Matrix elements for 4He using the Tabakin separable potential.

State
I S
0 0 0
0 0 0
0 1 1
0 1 1
2 1 1
1 0 1
1 0 1

1 0
1 1 0
1 1 1
1 1 1
1 1 2
1 1 2

Gnis(QT) (MeV)'"

3.116
2.436
3.403
2.806
1.916
1.075
1.020
2.498
2.430
1.874
1.681
1.256
1.327

Huis(QT) (MeV)"'

0.530
1.365
0.110
0.319
3.684
2.090
3.365
1.599
2.641
1.501
2.286
0.676
1.216

((&S)gT I
V

I (&S)3T)o
(MeV)

—9.428—4.068—11.569—7.772
+9.903
+5.524

+12.366—3.684
+1.070
+5.763
+8.051—2.033—3.242

Second-order
correction

(%%uo)

+115

+25.4

—27.4

+2.1
—17.0

+10.1

P„i(k) is the same as E„i(r), the radial part of the har-
monic-oscillator wave function, except that r is replaced
by k and there is an extra factor of (—1)".The notation
for E.„& and P„& is that of Brody and Moshinsky, '9 and
rl, starts at zero instead of one.

From the work of Tabakin in nuclear matter" we
know that the second-order contributions to the 3

matrix can be relatively large, particularly for the
'St+'Dt interaction. Since we are interested in even-
tually solving for nuclear spectra using the t matrix, it
is worthwhile to look at second-order effects, especially
for the Tabakin potential which makes the calculations
straightforward. To second order the t matrix for the
particle-particle interaction is given by

((islS)3T[ &
i (islS)3T)o = ((iilS)3T

i
U [ (rilS)3T)o

order

i
((ri'l'S)3T

i
V

i (NlS)3T)o ['
(33)

E(nl) -E(n l )

where P' means m'Qri arid l'Wl.
In order to conserve parity, we must sum over states

of an even number of excitations. Thus, since E and
9 for the center of mass must remain the same, the
smallest energy denominator in the sum is —2Acoo
= —43.6 MeV. Since this is a large number and since
the next smallest denominator is —4A~o ———87.2 MeV,
we neglect all higher order excitations and keep only
double excitations in the sum. Hence, Eq. (35) for the
Tabakin potential takes the form

((rilS)3T
~
f

~
(elS)3T)o = pg~. is(3T)$'

order

1
+fLII-is(3T)j'

43.6 MeV

X 2 EpG is(3T)G is(3&)

+fII i s(3T)II is(3T)$' (36)

Since x=0 and L= 0 or 1 for the alpha particle, the pos-

sible values of e' and 1' are I'=0, l'=3 or rI,'= 1, I'= 1
for /=1, and e'=0, l'=2 or n'= j, l'=0 for I,=O. The
values of G„is(3T) and II„is(QT) for the alpha particle
are given in Table III along with the percentage correc-
tion in second order for the appropriate terms. '4 Our
results for sIi(3) using the Tabakin potential in first
and second order are given in Table VII.

1—P» )
V(r) = (t Vp'P+ s V+sp)

2

p 3E

+(1V 1P+3V' 3P)i
2 j'

'V= 'V'(r),

'V='V (r)+ Vi(r)S»+sv' (r)l S

V(r)= Voe ""/yr, r)D
r&D, (3&)

where P» is the Majorana exchange operator, S»
=3(et.r)(os. r) —(oq os) is the tensor operator, and
'P, 'P are the singlet and triplet projection operators,
respectively. The parameters p and Vo are listed in
Table IV.

o4 Since Tabaldn does not give a potential for relative f states,
we estimated its e6'ect on the triplet p, /=2 state, the only state
it inQuences, by the average value of the overestimated and
underestimated values of

((031)21I'V
I (011)21)o=((031)21I'V~SqqI (011)21),—6(6/35)1/2 31st

calculated for the BGT potential. Its contribution was found to
be small as expected, about 3'po of 'Il' in erst order, and is included
in the result in Table III.

B. Other Realistic Nucleon-Nucleon Potentials

For the purpose of comparison we also carry out our
calculation with two singular, hard-core potentials.

1. The Brueckner-Gammel-Thaler (BGT) potential
with a hard core has the form4
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Ter,z IV. Parameters for the Brueckner-
Gammel-Thaler potential. ' Tmr, E V. Parameters for the Hamada potential.

State

1U c

3V c

3U t

'V zs
1U c

3V c

3V t

3V ZS

Vp (MeV)

—434.0—877.39—159.40—5000
+130.0—14.0
+22.0—7315

' The hard-core radius D =0.4 F.

s (F ')

1.45
2.0908
1.0494
3.70
1.00
1.00
0.80
3.70

State

1V c

lV Q

3U c

'U @

3U t

'U z

1V c

'V
3U c

3U t

3V ZS

—0.08—0.00155—0.08—0.007445—0.08
0.05956
0.24
0
0.0267
0.00045
0.0267
0.1541.

10.0
8.0—8.0

12.0—0.4
4.0
3.0
0—9.0

10.0—1.14—8.09

8.0
6.0
4. 0
2.0
0.1

~ ~ ~

—1.0
0
4.6
6.0
0.2

Dp (core)

0.337
0.337

0.275+0.00144 [E (MeV)g"P
0.275+0.00144 jE (MeV) j"P

0.275+0.00144 PF (MeV) jiis
0.275+0.00144 $E (MeV) j'"

0.30
0.30
0.320
0.320
0.320
0.320

((oos)sTI 'vI (oos)sT)o—= 'Io(s) = 'Io

where Io is the Talmi integral,

2
sz, — —*' V(b ) i+'dx

r(l+-') p

for Z=o, and bp V2bo 1.95——F for——PHe. Also

((01S)~~TI VI (01sg'T)p=—szig) = Ii'
J 1 1

+~(S=1)b(3=I) (-1)'+'»
2

(39)

(40)

2. The Hamada potential" with a hard core has the
same form as the BGT potential, except that 'V and 'V
each have an extra term and the radial dependence is
different, as indicated below:

iV= 1Vp(r)+1V&(r)Qls,

sV= 'V'(r)+'V'(r)Sis+'V's(r)l S+sV@(r)Qis, (38)

where Qis
——(pri 1)(prs 1) is the quadratic spin-orbit

operator. For the central and Q potentials

V(r) =G~Y( r) &1+A Y(i r)+&I:Y(~r)]'),
where Y(x)=s '/x and 1s is the pion mass. The tensor
potentials are given by

V'()=8 Y( )( +(/~)+L /(1 )'])
X (1+A Y(pr)+BLY(1ir)]'}

and the spin-orbit potentials by

V' (r) =GpLY(1sr)]sL1+A Y(pr)].

All of these potentials are for r) D; for r& D they are all
in6nite, where D is the core radius. The parameters for
the Hamada potential are given in Table V.

For both of these potentials we immediately observe
that the tensor and spin-orbit forces act oe/y in the l= 1,
S=1 state, since both of these interactions are zero if
either / or S is zero. Hence, for these potentials

where the superscripts refer to the appropriate compo-
nents of the interaction. The Q term, of course, appears
only for the Hamada potential. In particular we note
that

'Ii(0) = 'I; O'I, '——2 'I,is+4 szio

'Z, (1)= sZ p+ 2 sI P—sZ is sZ, o

szi(2) —sZip s sZ i+sZiis+sz o (42)

E(0 P)—E(2 P)= —P sZiis —(27/5)sZii+P sZ o

E(0-0)—E(1 0) = —
s 'Ii"—9 Zi'+(15/2)sZio,

E(1 0)—E(2 P) =—3 szi's+(13/5)szii —3 sZiQ

E(0 1)—E(2—1)= —sp szi's —(9/5)sz p+»I o (44)

Equation (44) clearly indicates how these four splittings
depend upon the different components of the two-body
interaction.

We also observe that

'Ii(0)+3 'Ii(1)+5 'Ii(2) = 9 'Ii'+6 szio, (45)

so that the center of gravity of the supermultiplet, as
given by Eq. (24), is independent of the tensor and spin-
orbit interactions.

In making calculations with the singular hard-core
potentials, we must determine how to treat the core.
DTW showed that the contribution of the hard-core
part of the potential to the two-body matrix element for

TA&~ VI. Parameters for the nonsingular potentials.

so that upon substitution into Eq. (15), we find that

e= —(9/2) 'I, 's. (43)

Therefore, in erst order the spin-orbit splitting of the
shell model is caused by the relative spin-orbit inter-
action of the nucleon-nucleon potential.

Substituting Eq. (42) into Eqs. (16) and (17), we find
that

J 1 1
+(—1)~6 t8

1 1

2 J 1 1
+ —+ (—1)~10 sIio, (41)

3 2 1 1

tA'ell shape

Yukawe: Ups &"/pp'

Exponential: Vpe ~"

Singlet
Triplet
Singlet
Triplet

—46.87—52.13—108.0—192.7

0.8547
0.7261
1.409
1.506
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TABLE VII. jt(Q) for all potentials discussed in this paper. Also Talmi integrals for components of the
potential where applicable. All I's are in MeV. Note: 'I~@=0.

Potentials
~jo(P) 3jo~ ajo~ ~j~~»jo(]) ~j,(1) oJ,~ oj, ~ 3j,« lj,o sj, (P) oj, (1) Sj,{2)
T=1 T=O T=0 T=O T=O T=O T=1 T=1 T=1 T=1 T=1

A. Tabakin:
1. First order —9.43
2. Second order —10.51

—11.57—14.50
—11.57 + 5.52 +0.38 +1.85 —1.67—14.50 + 4.01 —0.076 +1.67 —1.49

—3.68 +5.76 —2.03—3.76 +4.77 —2.24

B. Others:
1. BGT
2. BGTb
3. BGTe
4. Hamadad
5. Hamada'
6. Hamada'
7. Yukawa well
8. Exponential

well
9. Mitra et al.

+ 5.51
+ 2.97
+ 4.24
+ 5.93
+ 2.97
+ 4.45—9.34—9.81

—14.29—15,33
—14.29—15.33

9.68 —12,56 —12.56 +24.04

—17.30 —11.40 —12.93 —9.20 —11.40—4.72 —0.67 —4.14 +2.00 —0.67—11.01 —6.04 —8.58 —3.60 —6.04

—0.59—0.32—0.46—0.29—0.016—0.15

+1.71
+1.01
+1,36
+127
+0.75
+1.01

2.23—0.37—1.30—2.43 +0.032—0.20 +0.010—1.31 +0.021

—2.97—3.62—3.30—0.38—2.60—1.49

+5.06
+2.07
+3.56
+4.65
+1.68
+3.16

—3.50—1.09—2.30—3.20—0.50—1.85

+5.40 +2.70 —2.70

' BGT potential with Moshinsky hard core for l =0. Overestimate.
b BGT potential with Moshinsky hard core for l =0. Underestimate.
e BGT potential with Moshinsky hard core for l =0. Average of overestimated and underestimated values.
d Hamada potential for l =1 only. Integrals cut off at core radius. Overestimate.
e Hamada potential for l =1 only. Underestimate.
& Hamada potential for l =1 only. Average of overestimated and underestimated values.

l&0 should be small relative to the noncore contribu-
tion. Therefore, they neglected the effect of the core on
Il for l& 0 and calculated these Talmi integrals by using
ordinary perturbation theory for the attractive part of
the potential and cutting oR the integrals at the core
radius. We calculate our Talmi integrals for l&0 in the
same manner.

However, for l= 0 we cannot neglect the eRect of the
hard core. DTW handled the hard core in s states in
several ways. They first identified the s-state Talmi
integrals with the energy shifts from the harmonic-
oscillator energy eigenvalues for l=0 .They then cal-
culated the energy shifts by solving the relative
Schrodinger equation by both a variational method and
numerical integration on a computer. They also com-
puted Io directly by using perturbation theory for the
attractive well and the Moshinsky potential" for the
hard core. In first order the Moshinsky potential con-
sists of replacing the hard core by a delta-function
pseudopotential

Vc ~ 2s'&~(D/5o) 5[(rr—rs)/bo j .

We use this latter method in computing our s-state
Tabni integrals for the BGT potential. We do not cal-
culate Io for the Hamada potential.

For both l=0 and 1 we calculate what we call an
overestimate and an underestimate of the Talmi inte-
gral. The overestimate is obtained by cutting oR the
integral at the core radius, while the underestimate is
determined by shifting the potential well to the origin
and then integrating from zero to infinite.

We also calculate Io for the usual nonsingular Yukawa
and exponential nucleon-nucleon potentials, since Daw-

» M. Moshinsky, Rev. Mex. Fis. 6, 185 (1957); M. Bauer and
M. Moshinsky, Nucl. Phys. 4, 615 (1957).

son and Walecka showed that these potentials give
essentia/Ly the same results as the more sophisticated
BGT and Hamada potentials. The parameters for these
nonsingular potentials are given in Table VI."

Our results for sI~(g) computed with the two singu-
lar and the two nonsingular potentials are recorded
in Table VII. We note that the values of 'I1', 'I~', and
'I1' for the Tabakin potential come from setting
'Ito=0 in Eq. (42) and solving these three equations
for the Talmi integrals, using the calculated values of
'It(0), 'It(1) and 'I (2).

We also perform our calculation with the separable
potential of Mitra et al. '~ However, the results for the
relative p states are obviously too large. Thus, we do
not use these results in plotting the spectrum of 4He,
although we do include the values of sIt(Q) we obtain
in Table VII.37

We plot the spectrum of the alpha particle for four
cases:

(1) The Tabakin potential in second order.
(2) The Tabakin potential in first order.
(3) A Yukawa well in s states (as justified by the

results of Dawson and Walecka), since the s state con-
tributions are doubtful for the singular potentials, and
all sIt(~~)'s determined from an average of the under-
estimated and overestimated values calculated for the
Harnada potential.

36 I.. Hulthcn and M. Sugawara, in Bandblch der Physjk, edited
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39, pp. 52, 62."The form of the Mitra et al. separable potential and its param-
eters are given in Ref. (27) and in other references given therein.
We agree with the statement of V. L. Narasimham, S. K. Shah,
and S. P. Pandya, )NucL Phys. 33, 529 (1962)j that the p-state
potentials are in doubt and need to be checked. In a recent article
on the trineutron, A. N. Mitra and V. S. Bhasin LPhys. Rev.
Letters 16, 523 {1966)g propose a new form for the triplet p
potential.
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Ey 8s

A. Ta"abakin potential
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TABLE XI. Energies and wave functions for J,T= 1 states in 4He.

(MeV)

26.6
27.3
31.5
22.9

Tabakin potential
(second order),

calculated energies

Pl/2(S1/2) P3/2($1/2)

1.000 0.000
0.183 —0.983
0.983 0.183
0.000 1.000

E
(MeV)

27.7
25.9
29.6
24.5

Tabakin potential
(second order),

experimental energies

Pl/2(S1/2) P3/2(S1/2)

1.000 0.000
0.183 —0.983
0.983 0.183
0.000 1.000

8
(MeV)

27.7
25.9
29.6
24.5

Serber force (Ref. 25),
Yukawa well,

experimental energies

Pl /2 (Sl/2) P3/2 (Sl /2)

1.000 0.000
0.378 —0.926
0.926 0.378
0.000 1.000

TABLE XII. Squared matrix elements for muon capture to individual states for 'He.

(MeV)

26.6
27.3
31.5
22.9

Tabakin potential
(second order),

calculated energies
(3IV')D&'& (MA')D&'& (MP')D&'&

0.017 0.052
0.073 0.026
0.064 0.020

0.102 0.123

jv
(MeV)

27.7
25.9
29.6
24.5

0.016 0.049
0.078 0.028
0.070 0.022

0.095 0.114

Tabakin potential
(second order),

experimental energies
(2/IV')D" (/)fA')D ' (/tf P')D "& (MeV)

27.7
25.9
29.6
24.5

Serber force (Ref. 25),
Yukawa well,

experimental energies
(/tf'v')D ' (2/rA')D ' (ilIP')D'

0.016 0.049
0.047 0.038
0.096 0.013

0.095 0.114

This table also includes our estimates for the ratio of the
E1 transition probability of the upper 1, T=1 state
to the ground state with respect to that of the lower 1,
T=1 state, with and without the energy weighting
factor.

We now use our results on the spectrum to compute
the dipole components of the squared matrix elements
and the total capture rate for muon capture in the n
particle. We carry out this calculation for all of the po-
tentials which we used in obtaining the T= 1 levels in
Fig. 2. Since our levels are obviously split too much, we
also perform a calculation using the experimental en-

ergies of the T=1 states, as found in 'Li, in conjunction
with the configuration mixing of the 1, T=1 states, as
predicted by our second-order calculation with the
Tabakin potential. For comparison we repeat the same

calculation using the configuration mixing determined
in SW for a Serber force and a Yukawa well. Since our
most consistent calculation for the spectrum of 'He was
performed with the Tabakin potential in second order,
we list only our muon-capture results for this particular
spectrum and for the experimental energies. However,
a comparison of our results for all potentials used in
calculating spectra in this paper will be given in the dis-
cussion of results.

Table XI lists the energies and coefFicients of the
particle-hole states for J, T= 1, used in our muon-cap-
ture calculation. Using Eq. (27) we compute the
squared matrix elements for muon capture to individual
states, which are given in Table XII. Table XIII lists
the squared matrix elements for the total muon-capture
rate plus the results of FW for comparison, while Table

TABLE XIII. Squared matrix elements for the total muon-capture rate for He.
The primed results are those of Foldy and Walecka (Ref. 28).

Potential (/tf V )D (flIA )D (fVIP )D (2fV )UD (fVIA )UD (f//IP )UD (flfV )D (/VV )UD

Tabakin (2nd order),
calculated energies

Tabakin (2nd order), '
experimental energies

Serber force (Ref. 25),
experimental energies

0.137

0.148

0.143

0.165

0.16j.

0.162

0.175

0.163

0.163

0.159

0.173

0.167

0.195

0.188

0.191

0.207

0.193

0.193

0.094

0.094

0.094

0.108

0.108

0.108

ss (Myg) g): (jggg) g): (M~&) gp =1:1.09' 1.10.
b (My&)~ (~g2)~: (Mp2)g) =1'1,13'1,14.

TABLE XIV. Square of the elastic form factor uncorrected for center-of-mass motion and ratios
of the retarded to unretarded squared matrix elements for He.

Potential

Tabakin (2nd order), calculated energies
Tabakin (2nd order), experimental energies
Serber force (Ref. 25), experimental energies

(2/Iv )D/(f/fv )UD (2/fA )D/(frfA )UD (f//IP )Dl(f3IP ) UD

0.862 0.846 0.845
0.855 0.856 0.845
0.856 0.848 0.845

I &e/(Vres)
~

'
0.858
0.858
0.858
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TABLE XV. Total muon capture rate in 'He.

Theory

Tabakin (2nd order), calculated energies
Tabakin (2nd order), experimental energies
Serber force with Ynkawa well (Ref. 25)
Calculation of Foldy and Walecka (Ref. 28)

Experiment
Bloch (Ref. 44)
Bizzarri et al. (Ref. 47)

A„,, (sec ')

278
262
272
249

W„c (sec ')
375a46
333+75

XIV compares the ratio of (Mrs)n to (Mr')rtn with the
elastic form factor squared, ~F,t(v„,) ~'. Finally, in
Table XV, we give the total muon capture rate deter-
mined by using the computed ratios of (Mt ')~ and
(Mg')& to (M&')& in the equations of FW.

32.0— 3I.5

30.0-29 6
I

28.0 -27.7

~~ 2P0 25.9

24.5
24.0-

22.0-

27.3
I

0
26.6

22.9
2

29.0

——26.7

25.7

24.l

20.0-

EXPERIMENT
4Le

I.908 2.0 2.I

1 t I I

2.2 2.3 2.4 2.5
b2 (F2)

FIG. 6. T= 1 spectrum of 'He, determined from the Tabakin
potential in second order, for increasing values of bo'. The arrow
has the same meaning as in Fig. 3.

IV. DISCUSSION OF RESULTS AND
CONCLUSIONS

The purpose of this paper was to determine what kind
of results we could obtain for a particle-hole calculation
of nuclear spectra using realistic nuclear forces. We 6nd
that our results agree fairly well with experiment, even
though the p-state contributions are overestimated, and
obtain several new results and predictions from the in-
clusion of the p-state interaction. There have been only
a few other particle-hole calculations of spectra with
realistic forces, and they also give encouraging results.
Green et al. obtained good agreement with the spectrum
of "0 for a RPA calculation with a singular hard-core
potential, while the results of Kallio and Kolltveit for
the same nucleus were not as good, since they used a
realistic potential that acted only in s states.

From Table VII and Figs. 3. and 2, we conclude that
for making shell-mode1 calculations with realistic nu-
cleon-nucleon potentials, the separable Tabakin poten-
tial and the singular, hard-core potentials of BGT and

Hamada are essentially equivaletst potentiaLs ".In par-
ticular, the results for the Tabakin potential in second
order and the averaged BGT potential are extremely
similar. Consequently, in performing shell-model cal-
culations we can choose whichever potential is most
convenient for taking matrix elements. In our case we
found that the Tabakin potential, being separable,
greatly simplified calculations and also allowed us to
treat the s-state interactions consistently with respect to
the p-state and higher state interactions. As stated in
the introduction, Kuo et a/. performed a calculation of
nuclear spectra with the Tabakin potential and also
found that it is a convenient potential with which to
make calculations and that it gives matrix elements con-
sistent with those determined for a singular, hard-core
potential.

Again from Figs. 1 and 2 we observe that the effect
of the tensor force is quite large, particularly in the
T=O states. Since 'I~'~ and 'I~' have almost the same
absolute magnitude and since slto is quite small (Table
VII), the difference in the T=O splittings from the
spin-orbit form, as predicted by the Lande interval rule
in SW, is caused by the large angular-momentum cou-
pling factors which multiply the tensor term for ~=0
and 1 I see Eqs. (42) and (44)].

From our calculation we obtain the signi6cant pre-
diction for the J, T=0 states that the 0 state lies close
to the 2 state and that the 1 state lies far above the
0 and 2 states. We are encouraged that our calcula-
tion of the ordering of the above states is basically
correct by the fact that a 0, T=O state in the close
neighborhood of the 2, T=0 state is consistent with the
experimental observations of Meyerhof" on the excited
states of the u particle. In fact, such a state will proba-
bly explain what earlier appeared to be an inconsistency
in the experimental results regarding the ratio of the
expansion coefficients 82 and B~. We would encouarge
any interested experimentalists to look for the 0 and
]. , T= 0 states of 4He, particularly the 0 state.

Since we have performed only a one-particle —one-hole
calculation, it is impossible for us to make any predic-
tions about the observed 0+, T=O state. Szydlik" has
carried out a two-particle —two-hole calculation with a
Serber force and obtains a 0+, T=O state as the lowest
excited state of the n particle.

Our results for the J, T= 1 states need to be im-
proved, since the splittings among the levels are too
large and since the 0 and the lower 1 states are in-
verted in three of our four calculations and arebarely

"Since we have calculated the spectrum with three entirely
different potentials fit to the same experimental data, the above
result indicates that the calculated spectrum would not change
appreciably for variations of the potential parameters allowed by
the experimental limits on the observed scattering data.

40 W. E. Meyerhof, Bull. Am. Phys. Soc. 10, 698 (1965). Also
B.R. Barrett, W. E. Meyerhof, and J. D. Walecka, Phys. Letters
22, 450 (1966);and C. Werntz and W. E. Meyerhof, Bull. Am.
Phys. Soc. 12, 12 (1967).

' P. P. Szydlik and R. J. Philpott, Bull. Am. Phys, ~Sec, 12, 47
(1967).
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in the correct order in the fourth. From Figs. 5 and 6
we see that increasing bp, i.e., decreasing the overlap of
the wave functions in the matrix elements, does not
change the ordering of any of the levels. So in this re-
spect our calculation is independent of bp. At Grst this
result might appear to be quite surprising, since as bp

increases, the p-state matrix elements approach zero
faster than the s-matrix elements, and our results should
approach those in SW. Hovrever, this statement is in-
correct, since SW empirically included the spin-orbit
splitting as a constant in their calculation. But the spin-
orbit splitting comes only from the triplet p interaction
and, thus, decreases with increasing bp. We note that if
we include a constant splitting between the 0 and 2,
T=1 states that the lower 1 and 0, T=1 states will
cross for increasing bp.

We also note that the calculated splitting for the two
2 states is never more than 0.7 MeV, which is much
smaller than the experimental splitting. This result
follows from the fact that the quantity 'Ip(0) —'I&(1)
—'Ip(1) in Eq. (18) is small and remains essentially
coestamt for increasing bp. Thus, it is apparent from both
of the above results that our calculation must be im-
proved by more than increasing bp in order to get the
correct spectrum.

Returning to Eqs. (12), (18), (20), (42), and (44), we
observe that we can express our seven theoretical equa-
tions Li.e., six equations for the energy splittings and one
equation for V~tp ptp(1 1), which causes the configura-
tion mixing of the two 1, T=1 states) in terms of
only four quantities, 'Iq', 'Iq'e, —'Ip(1)+'Ir(1), and
—'I~'+'I~(1). Consequently, we are able to obtain two
important results.

First, we can eliminate these four quantities from our
seven equations to obtain three relationships vrhich de-
pend only upon the experimental energy splittings 4p In. .
particular we obtain two relationships vrhich give the
two experimentally unobserved splittings LE(2 0)—E(0 0) and E(1 0)—E(0 0)j in terms of observed
splittings. Substituting in the experimental splittings,
we 6nd that

E(2 0)—E(0 0)=0.0+0.5 MeV,

E(1 0)—E(0 0) =6.4&1.2 MeV, (49)

vrhere vre have arbitrarily assigned an error of ~250
keV to the experimental splittings to get an idea of the
sensitivity of our answers. Equation (48) is in excellent
agreement with the prediction of Meyerhof from the
experimental data that the 0, T=O state in 'He lies
vrithin ~ MeV of the2, T=O state.

The third equation gives V~~p p~p(1
—1) which in turn

gives the ratio of the E1 transition probabilities in terms
of the observed splittings. Again substituting in the
experimental split tings, vre obtain

(aE+/aE ) I('I', le+)I /I('I', le )I =0.43&0.09.
(5o)

—'Ig'+'Ix(1) = —1.2 MeV, (51)

which are reasonable results, except for the last one,
since 'V ' is fairly strong and repulsive and 'V ' is weak
and attractive.

But we know from experiment that all the observed
levels have widths of ~ MeV or more. Hence, let us try
to determine four reasonable values of the above quanti-
ties which fit alt the levels of the observed spectrum within
a few tenths of a MeV. Doing this, we obtain

'I~'=0.8 MeV, 'I~'s= —1.1 MeV,
—'Ip(1)+ 'Ip(0) =3.1 MeV,

and
—'Ig'+'Ig(1) =0.8 MeV. (52)

The results of Eq. (52) still predict that the 0, T=O
state lies within -,'MeV of the 2—,T= 0 state. They also
predict a small value of U&, »t&(1 1), so that the energy
weighted ratio of the E1 transition probabilities is 1.07.
Thus, reasonable values of the I's can be found vrhich
reproduce the experimental data.

We note that the results of Eq. (52) are exactly what
vre would expect from a more accurate calculation, i.e.,
a decrease in the p-state contributions with little change
in the s-state contributions. We already know that our
p-state matrix elements are too big and that their con-
tributions are very sensitive to changes in the method
of calculation, as our results for 'I~' and 3I~' in Table
VII for the underestimated and overestimated values
clearly show. For the Tabakin potential we found that
the second-order corrections to the potential were often
quite large, particularly for the triplet s and singlet p
interactions. Kerman et al. also found that second-order
corrections were needed and improved their H-F cal-
culation for the Tabakin potential. Consequently, we
would expect higher order corrections to these matrix
elements to be important. It is possible that 'I~(1)
may be greatly reduced in a higher order calculation,
if the exact wave function is pushed out far enough, so

Hence, our theory, independent of the radial dependence
of the potentia/, plus the four observed energy splittings
for nuclei with A =4 makes three predictions, of vrhich
two are in excellent agreement vrith experiment. The
third result cannot be checked, since the splitting be-
tvreen the 1 and 0, T=O states has not yet been
observed.

Secondly, we can use the four observed splittings to
determine the four quantities 'Iq', 'Iq's, —'Ip(1)+ 'Iq(1),
and —'I~'+'Iq(1) and, thereby, obtain some idea of
how and where we need to improve our calculation of
the tvro-body matrix elements in order to achieve agree-
ment with experiment. Using the experimental split-
tings, we find that

'I~'= 0.9 MeV, 'Iz's= —1.1 MeV,
—'Ip(1)+'Ip(0) =2.1 MeV,
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that it has only a small overlap with the repulsive singlet

p potential.
If the splittings among the T=O states were really

12 to 14 MeV, as we calculate them to be, then some
doubt would be cast upon the basic assumption of the
supermultiplet theory. But, we know that these split-
tings will decrease for a more accurate calculation, since
the p-state contributions will decrease, as we found in
our calculation for increasing bo and decreasing overlap.
For example, from Figs. 5 and 6 we find that the T=O
states are split by about 9 MeV, when the T=1 levels
are of the same order of magnitude as the experimental
T= 1 levels in 'Li. Also our empirical results in Eq. (52)
imply that the over-all splitting for the T=O states is
only 6 MeV. Thus, it appears that the supermultiplet
theory is theoretically valid for the n particle.

One of the most important resglts of our present calclla
tion is that the spin orbit sp-litting of the shell model can be

explained in first order in terms of the relatiM two body-
spin orbit fo-rce The. agreement between the experi-
mental value ' of e„„,—e»„and our calculated values
for the Tabakin potential and for the average values of
the BGT and Hamada potentials is rather good, consid-
ering the fact that the calculated value depends only on
the spin-orbit force multiplied by a large factor and that
the spin-orbit force has the shortest range of all the
components of the nuclear force and is, thus, the hardest
force to determine from the experimental data. Our re-
sults for the Pl~s —Pszs spin-orbit splitting are consistent
with the H-F calculation of Kerman et a/. for "0 and
"Ca. In both of their calculations they obtained spin-
orbit splittings that are larger than the experimental
splittings. Since they were unable to separate the e6ect
of their potential into components, as we did in Eq. (42),
they suggested that significant differences in the Pits and

psis wave functions indicated that the tensor force was
causing the spin-orbit splitting to be too large. However,
any tensor-force contributions must be in second order,
since only the relative spin-orbit interaction contributes
to the Plzs —Pszs spin-orbit splitting in first order. Since
the spin-orbit force occurs only in relative p states for
4He and since SW used a Serber force in their calcula-
tion, they found no splitting between the pris and pszs
S-P levels.

The calculated values of the center of gravity of the
supermultiplet agree with the experimental values to
~3 MeV out of 26 MeV, and the agreement becomes even
better for increasing bo.

While the ratios of the E1 transition probabilities
determined for the BGT and Hamada potentials are of
the same order as those found by SW, those obtained
for the Tabakin potential are much smaller and are in
closer agreement with the observed ratio, which is
These smaller ratios come from the fact that the off-
diagonal matrix element calculated for the Tabakin po-
tential is smaller than the one calculated for the hard-

"P. Fessenden and D. R. Maxson, Phys. Rev. 133, 871 (1964).

core potentials. The energy weighted ratios are, of
course, larger. However, the experimental ratio is prob-
ably somewhat larger than 2, because of uncertainties
in the widths of the levels. "

Our calculation for muon capture in 4He shows that
the results determined using a potential without a tensor
force, as in SW, are not much different from those de-
termined using a tensor force.

From the 1, T= 1 states calculated in SW,

(Mr')D ——(M~') D ——(Mz ') D, to within 14%;

and

(Mz')D/(Mz')vD= ~F,l~', to within 1.5%.
For the Tabakin potential in second order, which in-
cluded the tensor interaction, we found that

(Mr')D=(M~')D=(Mzs)D, to within 10%;
and

(Mz')D/(Mz')UD= ~Fel~, to wl'tlllll 1.5%,.

when we assumed capture to the experimental energy
levels but used the configuration mixing predicted by
our calculation.

When we assumed capture to the calculated energy
levels, we found that the squared matrix elements were
equal to only 28%, while the ratio of the retarded to
the unretarded matrix elements remained equal to

~
F,l

~

to within 1.5%. For similar calculations with the
hard-core potentials for capture to the calculated en-
ergies, we again found that the squared matrix elements
were equal to about 30% and that the retarded-unre-
tarded ratio was equal to ~F,l~

' to about 2.0%
It is not surprising that the results for capture to the

calculated levels are so poor, since the levels are split
too far apart. The calculation for capture to the experi-
mental levels using the calculated configuration mixing
makes sense, since we have already shown that it is
possible to decrease the splittings without appreciably
changing the configuration mixing. The equality of the
squared matrix elements to within 10% for a shell-
model calculation is consistent with the results of similar
calculations for other nuclei. "Since the supermultiplet
theory predicts that 3E&'=Sf''=MI' for spin-inde-
pendent forces, the fact that they are still equal to
within 10% for spin-dependent forces again indicates
that the supermultiplet theory is theoretically valid for
the T=1 states in 4He. 4'

In all of our calculations we found that (Mr') vD was
about twice the value obtained by FW. This result is
again consistent with the muon-capture calculations of
de Forest in other nuclei. Since (Mzs)D/(Mz') vD =

~
F.i

~

s

to within 1.5%,we conclude that this assumption. by
FW is also correct for 4He.

'3If we use the empirically determined configuration mixing
discussed earlier (also Ref. 40), we 6nd that the agreement is much
better with If''= My'=3E~' to within 5%. This result is true for
any nucleon-nucleon force which gives rise to the observed split-
tings within the [15j supermultiplet in 'He.
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The total muon-capture rates are found to be slightly
larger than the one found by FW. If we include the eRect
of the d-state admixture, which is (38&20) sec ', 44 and
take the maximum admixture and the minimum capture
rate predicted by experiment, " ' then the calculated
and experimental capture rates are approximately equal.
But the agreement is obviously not good, since we are
taking the extreme limits in our favor. The total capture
rates are larger for the hard-core potentials, since the
matrix elements are equal to only 30% in these cases.
One cannot have agreement on both of the above re-
sults. If the squared matrix elements are almost equal,
then the total capture is about the same as that found
by FW and, hence, too small. On the other hand, if the
matrix elements are not equal by a large percent, then
the total capture rate is considerably larger.

In general, our results agree fairly well with experi-
ment, which is somewhat surprising, since we have per-
formed our calculations with harmonic-oscillator wave
functions for bound states, when we really should have
used plane wave functions. Not only have we performed
a 6rst-order calculation in this manner but also a second-
order calculation for the Tabakin potential. How can we

justify such a calculation and why should our results be
as good as they are?

The answer to these questions appears to come from
the fact that the first excited states of 'He are p states.
Hence, there is an angular-momentum barrier, given
by A'/(1+1)/23Ir' 4r For /=1 and r equal to the root-
mean-squared radius of the a particle, i.e., r, ,('He)
= 1.46 F "we find that the angular-momentum barrier
has a height of 19.5 MeV above the zero of the potential.
But from the neutron and proton separation energies
for 4He, we know that the ground state is about 20 MeV
below the zero of the potential. Therefore, nucleons in
excited states at 20 to 30 MeV above the ground state
are held in by the angular-momentum barrier, causing

'4 C. A. Caine and P. S. H. Jones, Nucl. Phys. 44, 177 (1963).
4' M. Bloch Q)rivate communication to Foldy and Walecka,

Ref. (28)g.
"R.Bizzarri, E. D. Capua, U. Dore, G. Gialanella, P. Guidoni,

and I. Laakso, Nuovo Cimento BB, 1497 (1964).
We thank Professor R. J. Oakes for a valuable discussion on

this point. Also R. J.Oakes and C. N. Yang, Phys. Rev. Letters 11,
174 (1963).

them to make several reflections inside the eRective po-
tential well before escaping. Because of this barrier, the
approximation of the excited-state wave functions by
bound-state wave functions is greatly strengthened.

We also note that Tabakin" has done a second-order
calculation with his separable potential in nuclear mat-
ter, i.e., for plane-wave states, and that his second-order
corrections, percentagewise, are of the same order as
ours obtained for harmonic-oscillator wave functions in
4He. Thus, it would appear that we have not introduced
any large errors in our calculation by using harmonic-
oscillator wave functions instead of plane-wave virtual
states.

To summarize we find that a particle-hole calculation
of the spectrum of the o. particle with realistic nuclear
forces gives fairly good agreement with experiment, es-

pecially for a no adjustab-le paramete-r calculation, and
allows us to draw three new and significant conclusions,
which SW were not able to obtain, since they used a
Serber force:

1. The spin-orbit splitting of the S-P shell-model
states pi~s and ps/s is caused in first order only by the
relative two-body spin-orbit interaction in p states.

2. The 0, T=O state is depressed by the strong
tensor force and is found to lie close to the 2, T=O
state. This predicted 0, T=O state is consistent with
present experimental data.

3. The squared matrix elements for muon capture
are equal to within 10%, implying that the supermulti-
plet theory is valid for the T= 1 states of the n particle.
We also find that (Mr')n/(Mr')UD ~Fel~

1.5%. The total muon capture rate in 'He is still found
to be too small.

ACKNOWLEDGMENTS

The author wishes to thank Professor J. D. Walecka
for suggesting this problem and for many helpful and
stimulating discussions while work was in progress.
The author is also grateful to Professor W. K. Meyerhof
for discussions regarding his experimental results on the
excited states of the n particle and to D. J. Silverman
for his assistance in setting up the computer programs
for calculating the matrix elements.


