
COM PLEX —BOUN DARY —VALUE PROBLEM 893

An application of this theoretical formulation enables
us to express the two parameters B„A, de6ned by
Moldauer' in terms of a single parameter p or q. They
are given by

width in two dimensions, given by Eq. (19), for the
case of real-boundary condition.

As a further application, we consider the average
value of the normalization constant'

(20)

interior

x„l'd. . (24)

A, =—
L& I 0"I

').3'

Using Eqs. (17a) and (17b), we get for case (a)

8,=16/exp(2q) —exp( —2q)$'
&()exp(4q) —exp( —4q)+Bqf ', (22a)

A, =—s')exp(2q) —exp( —2q) j'
XLexp(4q) —exp( —4q)+Sqj '

&& )exp(4q)+exp( —4q)+16j. (22b)

For case (b), using Eq. (16), we get

8,=4 exp(2p ')Lexp(4p ')+1j ', (23a)

A, =exp(2p '))exp(4p ')+1] ')exp(8p ')+5). (23b)

It is interesting to note from Eqs. (22b) and (23b)
that if we carry out the limiting process indicated earlier,
then A,=1.5, which is in agreement with the value of
A. which results from the exact distribution of the

~ith the help of Eqs. (2), (10), and (14) we see that
(fq'„)„ for case (a) is given by

(&,&.= ebxp(4q) —exp( —4q)+8q&
&&I exp(2q) —exp( —2q)j '. (25)

For case (b), it is given by

(&.).= sEexp(4p ')+1je~(—p ') (26)

Using Eqs. (25) and (26) and the limit p ~oo, q-+ 0,
we get (X„)„=1,which checks with the result of the
real-boundary condition.

An extension of this formulation to X dimensions
is presented in the following paper, and detailed
application to the Quctuations of cross sections will be
presented in a later article.
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A detailed statistical study is made of the parameters of the statistical collision matrix using the N-dimen-
sional random complex orthogonal matrix. It is shown that, even without a complete knowledge of weight
function which has to be introduced for the convergence of the normalization integral, certain relations be-
tween the average values of the parameters of the statistical collision matrix can be obtained and a statement
can be made that the channel correlations of the parameters are always positive. A suitable form of the
weight function is guessed, and the distributions of the parameters are also given. It is shown that under
certain conditions the distribution of the parameters is close to the Porter-Thomas distribution except for
small values. The resonance correlations of the parameters are also studied. Excellent agreement has been
obtained between the values predicted by the present theoretical formulation and those obtained by a
numerical calculation using the parameters of the real-boundary-value problem and a certain transformation
matrix.

I. INTRODUCTION
' N an earlier paper' we showed that the random-
' - matrix hypothesis can be used to study the statistical
properties of the statistical collision matrix introduced
by Moldauer. ' The earlier work' was intended to give

r N. Ullah, preceding paper, Phys. Rev. 154, 897 (196/).' P. A. Moldauer, Phys. Rev. 135, B642 (1964).

the basic idea and its application to a simple two-dimen-
sional case. In the applications of the statistical collision
matrix to the study of the energy averages, Quctuations,
and the correlations of the nuclear collision cross
sections, we need the X-dimensional generalization of
the simple case discussed earlier. In this paper we shall
study the distribution of the parameters of the statistical
collision matrix. The results will be compared with the
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numerical calculations carried out by Moldauer. ' In
these calculations' the parameters of the real-boundary-
value problem are used, and by numerically diagonaliz-
ing a complex symmetric level matrix the elements of a
certain transformation Inatrix are obtained. The trans-
formation matrix connects the parameters of the statisti-
cal collision matrix with those of the real-boundary-
value problem. This connection is used to get the
numerical values of the parameters of the statistical
collision matrix. These numerical calculations can indi-
cate certain trends in the behavior of the parameters
but cannot be used to make definite statements. The
advantage of using the random complex orthogonal
matrix in studying the statistical properties of the
parameters of the statistical collision matrix lies in the
fact that certain relations between the parameters of the
collision matrix can be obtained and definite statements
about the nature of correlations can be made even with-
out a complete knowledge of the weight functions which
have to be introduced to make the normalization
integral converge. In Sec. II we generalize the earlier
results to E dimensions and study the distribution of the
parameters of the collision matrix. We also try to guess
a suitable form of the weight function and use it to
calculate the average values of the parameters in Sec.
III. Section IV is devoted to a discussion of both the
channel correlations and the resonance correlations.

is a function of a„'s is expressed as'

&&8(Q a "a ') g da "da ', (1)

where ( ) denotes the ensemble average and K is the
normalization integral, the same integral as in Eq. (1)
but without the quantity Q in it.

As was the case in two dimensions, the normalization
integral E diverges. To ensure its convergence we have
to introduce a weight function p~((a ",a '}).We now
make the simplifying assumption that the weight
function p is of the form p(P =P(a ')'). This assump-
tion will be justified when we calculate the ensemble
averages of the physical quantities and compare them
with their numerically calculated values. Introducing
this weight fun. ction in Eq. (1) and malong a simple
transformation, we can rewrite Eq. (1) as

4

)&8(g I

s„)ding

du dv . (2)

II. GENERAL FORMULATION

A straightforward procedure to generalize the results
to E dimensions would have been to suitably param-
etrize the E-dimensional complex orthogonal matrix a,
as was done earlier for the case of two dimensions, and to
calculate the volume element and the ensemble averages.
But it turns out that the actual calculation of the en-
semble averages becomes too complicated. The same

difhculty arises in the case of the ensembles of real
orthogonal, unitary, and symplectic matrices if the en-
semble averages are calculated, using a suitable para-
metrization. 4 A technique has been developed to over-
come this diKculty for the calculation of ensemble
averages. ' We shall use this technique to calculate the
ensemble averages for the complex orthogonal case.

To illustrate the method of calculating the ensemble
averages we shall first consider a single column vector
of the E-dimensional random complex orthogonal
matrix. Since we are considering a single column vector,
we shall suppress the column index P from the compo-
nent u p. I,et us denote the real and imaginary parts of
the component u by a "and a ', respectively. Then the
ensemble average of some quantity Q((a ",a '}),which

It can be shown that the earlier results for the case of
two dimensions can be obtained by a proper choice of
the weight function ps(X).

The theoretical formulation which we have described
enables us to obtain relations between the parameters
of the collision matrix without any knowledge of the
weight function p~(X). We recall that the complex
amplitude 0„, is given by'

(3)

where J„, is an overlap integral defined in the earlier
paper. ' We introduce the quantity g„, given by'

g„,=0,(2I',) '~'0„„

where I', is the penetrability and 0, is defined in Ref. 2.
The normalization constant E„is given by'

1v„=p la„„l'.

The parameters B„A,are defined in terms of the mo-
ments of the complex amplitude 0„,as'

' P. A. Moldauer, Phys. Rev. 136, 8947 (1964).
4 C. E. Porter, Statistical Theories of Spectra, Fluctuations

(Academic Press, Inc. , New York, 1965l, p. 64.'
¹ Ullah, Nucl. Phys. 58, 65 (1964).
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TABLE I. Comparison of the values of B„(r„,), and S( I g„.I
') with their numerically calculated values,

assuming the values of iN„&, S(E„),and (I g„,I') to be given.

No. of
channels

20
100
300

1.18
1.52
1.69

S(E„)
0.01
0.066
0.07

(Ig" I'&

0.144
0.108
0.081

0.53
0.39
033

Numerical calculation

(r"& S(l g" I
')

0.097 1.67
0.064 1.48
0.047 1.40

0.72
0.43
0.35

Present calculation

(r") S(lg" I')

0.122 1.63
0.071 1.46
0.048 1.39

The quantities r„„O&„,are deftned bys

r"= la" I'/N. (8)

It will be convenient to deine a quantity

x= le„, l /s„ (18)
(9) where0„,= (2rr/D)N„l g„,l

',
1

J,=—p J,s,
a

where D is the mean spacing. ' Using Eqs. (2)—(6), and

(8) it can be easily shown that

~.= I:(N.)]-',

Assuming the values of (N„) and (l g„, l
') to ge given, we

calculate the values of B.and (r„,), using Eqs. (10) and

(11), and compare them with Moldauer's' numerically
calculated values in Table I. An inspection of Table I
shows that the agreement is quite good. Other relations
of this type are

A, =N(N+2) 'Ll+2(N s)]L(N )] ', (12)

I'(x)dx

dL(1+) )(2 .&-)'+) (Z .~..)'-.~.]
Xd(P u.'—1)d(Pv. s—1)d(Q u...)P (1+))]f&&-»

Xp ()I,)d& g d d J.d*, (19)(13)(Q„,)= (2 /D)(r„, )(N„'

and find its distribution.

(11) Using Eqs. (1), (2), (17), and (18), we can write the
distribution of the quantity x as

We can also calculate the normalized mean square
deviations deined by

s(*„)= ((*„')—(*„)')/(*„)'.

where 1. is the normalization integral. Let us make a
real orthogonal transformation on the variables u, v:

up =Q uggC(gp ~ (20a)A simple calculation will show that

s(lg" l')
= (N+2) 'LN —2+2NS(N„)+N((N ))

—'] (13)
"p =E vacnp p (20b)

and choose
Again assuming the value of S(N„) to be given, we calcu-
late the value of S(l g„, l

'). Table I shows that it is in
excellent agreement with its numerically calculated
value. The calculation of the other mean square devia-
tions S(r„,), S(8„.) will involve a knowledge of the
weight function and will be taken up later.

As a check on our calculation we note that for the
real-boundary-value problem, Eq. (12) gives

A, =3N/(N+ 2),

(20c)

then since C is an orthogonal matrix,

pu' s=Qu', Qv' '=gv', pu'v'=pu v,

g du'. dv '=g du. dv .

Equation (19) now becomes
16

which for large values of E becomes 3, in agreement
with the value obtained with the Porter-Thomas dis-
tribution of the partial width. '

We shall next consider the distribution of the parame-
ters. We shall work out in detail the distribution of

lg„,l'. The distribution of the other parameters can
be worked out in similar fashion but will not be given
here.

Using Eq. (3), we get

I()..l'=(2 ~-"~-)'+(2 ~-'~-)'

dL(1+X)u "+&v "—x/N]d(p .'s —1)

X(g .."—1)d(P u.'..')L) (1+) )]-:& —
&

Xpx(&i)d)tgdu 'dv ' dx. (21)

(17)
Integrating over all I "s and ~ "sexcept Ny' and eq', an
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calling the latter u and e, we can write (21) as

P~(h)dx=(NI) ' -3$(1+)t)u'+)es —x/Nj

XL1—u' —esj&t'v 4&P.(1+)~)j&t~ s&

Xpe(X)dhdud, d. , (22a)

where now the normalization integral I is given by

L= (1—u' —e')l&~—4lP(1+)t)$&i~—@

Xp~(X)dhdude. (22b)

The u, v integration is inside the circle (u'+e') ~&1, and
E&~3. In general, the I, e integration is dBBcult to
carry out, but for large values of E, which is the
situation in practice, we can approximately replace
the factor (1—u' —e'$'*i" 4l with expL —-',N(u'+e')j
and take the limits of integration on I, v from —~ to ~.
Using the Fourier transform of the 8 function and carry-
ing out the integration over the variables I and e, we

get for large values of E

PN(h)dx= L' dX p—~(X)p,(1+X)7'i

A suitable choice for p~() ) turns out to be

p&(&) =P(1+X)3 &' "exp( —a)t), (25)

P~(x)dh=-,'as(a+2) ' d)t P,(1+)t)jr~'

x 2)~+1
Xexp —

~

~)t+- Iol dx. (27)
4 ) (1+&) ke.(1+&)

where u is a constant to be axed by comparing some
known physical quantity with its calculated value. .If
we fix the value of a by assuming the value of (N„) to
be given, then we can calculate the normalized mean-
square deviations S(N„), S(F„,), S(O~„,). These values
are given in Table II and are found to be in good agree-
ment with the values obtained using the numerical
calculation. '

The distribution P(N„), using Eqs. (24) and (25), is
given by

P(N„)d„= sras(a+2) —'(N„s—1)
XexpL ——,'a(N„—1)fdN„, 1~&N„&~ ~. (26)

This 6ts nicely the curve which has been obtained by
Moldauer. '

The distribution of the quantity x based on expres-
sions (23) and (25) turns out to be

t'x 2K+1 x The interesting result which follows from Eq. (27) is
Xexp —

I

— Ip dh, (23a) that for large values of a and for x not too small, we can
expand Io for large argument and approximately evalu-

where I. is now the integral ate the integral. This gives a distribution for x which
resembles closely the Porter-Thomas distribution, ~

d) p~()~)L)~(1 ))jest"-», except for small values of x. This distribution which we
have indicated agrees with that obtained by actual
numerical calculation. '

and Io is the modish. ed Bessel function of the erst kind. '

III. SUITABLE FORM OF THE WEIGHT
FUNCTION

The results obtained in Sec. II are all independent
of the form of the weight function. To make further
progress we need to know the weight function p~(X).
We have tried to guess its form by looking at the dis-
tribution of S„whick has been obtained numerically.
It is easy to show that the probability distribution
P(N„) is given by

P(N„)dN„=g '(N„' 1)&&~ s&—
Xp~L.",(N„—1)jdN„, 1&N„&oo, (24)

where q is the normalization integral

(N.' 1)*'~ "pNLk(N—. 1)ldN'—
6K. T. Whittaker and G. ¹ Watson, A Course of 3fodern

Amalysss (Cambridge University Press, New York, 1962), p.
372.

TABLE II. Comparison of the normalized mean-square deviations
S(N„), S(I'„.), S(e„.), assuming (N„) to be given.

No. of
channels (N„)

20 1.18
100 1.52
300 1.69

Numerical Present
calculation calculation

u S(N„) S(I"~,) S(O~.) S(N~) S(P„,) S(e„.)
23.1 0.01 1.60 1.81 0.01 1.67 1.82
8.4 0.066 1.38 1.88 0.057 1.40 1.98
6.5 0.07 1.31 1.76 0.08 1.34 2.14

r C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).

IV. CORRELATIONS

In this section we shall study the channel correlations
and the resonance correlations of the parameters of the
collision matrix. We shall show that de6nite statements
about the nature of channel correlations can be made
even without a complete knowledge of the weight
function.

Let us consider the channel correlation of (()„,('.
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The channel correlation coeKcient plgl~(' ") is given
by

& I e-l 'I 0- I
')—(I 0-I '&&

I
8-

I
')

(28)
L((10"I'&—(I~"I'&')((Ie" I')—(Ie" I'&')3"'

where we have used the notation

j'1i"L1),(1+»$l&))"—3&p~(»dpi
(x.&= J L1I.(1+»j&&~ '&p~(»dX

(30)

The calculation of the ensemble average (I 0„,I
'I 0„, I

'}
will be somewhat similar to the calculation of the dis-
tribution of the quantity x described in Sec. II, and
therefore we shall only give the final result. The en-
semble averages which are needed for the correlation
coeKcient given by Eq. (28) can be written for large
values of S as

(le..l'le. . I')=IJ"L((»+1)')
+2p'(2X'+21).+1)$, (29a)

(I 0..I
')—(I ~"I

')'= 2~.'I:2(( —(») ')
+(2&,2+2&+1&], (29b)

Za +ac~ac'

I (Z ~-')(E J-"')3"' (31)

A similar calculation shows that the channel corre-
lation coeflicients of the partial width I'„„namely
Pr ' and PQ

' ' «e given by

Using Eqs. (28) and (29) we get the channel correlation
coefficient

p'+ 2((1).—(») '}/L1+2(&),(1+»)j
p ( 2(c,c') (32)

1+2(1),—(1),})'}/I1+2(1),(1+»)j

(c,c'& pm

($(1+2»2—((1+2»')$')+2p'(1+61).+14').'+161),'+8X4)
(c,c')

S(O„.)(1V„')'

(33)

(34)

(1V„1V„+„)—(1V„&'
p+(0)

(1V.'}—(1V.&'
(35)

The resonance correlations are more diKcult to calcu-
late, as they involve two diferent columns of the
complex orthogonal matrix. Let us calculate p~('). For
this calculation we need the ensemble average (1V „1V„+i)
It can be shown after some calculation, the details of
which are not given here, that the ensemble average
(1V„1V~i&for large dimensions of the complex orthogonal

The expressions (32), (33), and (34) establish the im-

portant result that the channel correlation is always
positive. This is also indicated by the numerical
calculation. '

For the case of 100 black channels, Moldauer' has
gven the values of pu(, c')

p j (, ') and pe(, c') Using
Eq. (25), which gives the form of the weight function,
and assuming the value of p, (' ") to be given, we hand

with the help of Eqs. (32), (33), and (34) that p'= 0.087,
which gives pe (' ")=0.22 and p I (' ")=0.09. The
numerically calculated values for these quantities are

p (' " =0.020 and pi. ' " =0.02. The value of p
is in excellent agreement with our value, but the value
of p (' ") is not in such good agreement.

We now consider the resonance correlations. The
resonance correlation of E„is de6ned by

matrix can be expressed approximately as

(X„N„p ) ), 'f (24+=1)(24+Ops(4)px(4)

Xp, i(1+Xi)4(1+4))&& -'&L(1+1)i+l),2+2XiX2)

X(1)i+1)2+21)i1)2)j ')2d1) id')g, (36)

where k is the same integral as in Eq. (36) but without
the factor (2& i+1)(2X2+1). Using the form of p)))(»
given by Eq. (25), we have estimated roughly the inte-
grals in Eq. (36) and find p)))

&'& to be 0.2. The value
obtained by Moldauer' is 0.48. We feel that a better
estimate of the integrals in Eq. (36) will improve our
value and bring it closer to Moldauer's value.

The resonance correlations of the other parameters
can be calculated in a similar way.

0ur object in this paper has been the statistical study
of the parameters of the statistical collision matrix
using the random complex orthogonal matrix and
comparison of their predicted values with those ob-
tained by the numerical calculation. ' We have succeeded
in showing that the predictions of our theoretical formu-
lation are in good agreement with the results obtained
by the numerical calculation.
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