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Statistical Description of the Complex-Boundary-Value Problem
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The statistical properties of the parameters of the statistical collision matrix de6ned in terms of the eigen-
states of a complex-boundary-value problem is studied starting from the Hamiltonian of the system. It is
shown that the random-matrix hypothesis can be used to calculate the statistical distribution of quantities
such as the complex amplitude. An explicit calculation is carried out for the special case of two dimensions.
As a check on the theoretical calculation, it is shown that the results of the real-boundary-value problem
follow by suitably choosing a parameter.

where H is the complete Hamiltonian of the system and
X„,S"„areits eigenstates and eigenvalues, respectively.
The eigenvalue equation (1) is solved by specifying
certain complex-boundary conditions at the dividing
surface. It is assumed that the Hamiltonian II is invari-
ant under rotations and under time reversal and that
we are working with a submatrix of the total Hamilton-
ian matrix belonging to a particular symmetry type. As
in the case of real-boundary conditions, ' we expand the
eigenfunctions in terms of a convenient orthonormal
basis set

X„=Pa„„c„, (2)

I. INTRODUCTION

ECENTLY Moldauer' has developed a formalism
to study the energy averages and the fluctuations

of the nuclear collision cross sections. A statistical col-
lision matrix is de6ned in terms of the eigenstates of
a complex-boundary-value problem to calculate these
averages and the fluctuations. No attempt has been
made to study the statistical properties of the statistical
collision matrix starting from the Hamiltonian of the
system.

The random-matrix hypothesis' has been used in the
past to study the joint probability distribution of the
Hamiltonian matrix elements, expectation-value Auctu-
ations, etc. We shall show that the random-matrix
hypothesis can also be used to study the statistical
properties of the eigenstates of a complex-boundary-
value problem.

The starting point is the eigenvalue equation in the
interior region of the configuration space'

chosen that
(3)

where E is the time-reversal operator.
We now show that the matrix formed from the co-

efficients a„„is a complex orthogonal matrix. To show
this, we substitute the expansion of X„given by Eq.
(2) in the relation'

interior

X„*X„d7.= 8„„,

which proves the assertion.
The random-matrix hypothesis2 used in the present

case will imply that the matrix formed from the compo-
nents a„„will be a random complex orthogonal matrix.
Therefore, to 6nd the statistical distribution of any
quantity which is a function of u„„,we need to know the
volume element of the complex orthogonal matrix
space. The quantity which is of particular interest in
connection with the statistical collision matrix is the
complex amplitude de6ned by'

its 1/2

P,*X„dS,
(2t)f,a, surface

where c denotes the channel, M, the reduced lnass, a,
the channel radius, and p, the channel wave function.

Putting the expansion given by the relation (2) into
Eq. (6), we get

O„.=P a„„J...

where the wave function X„is obtained from X„using
the time-reversal operator. ' This together with relation
(3) gives

2 aeaaav= ~p|,

where J„is given by
$2 1/2

J-= g,*c„dS.
2~c~c surface' P. A. Moldauer, Phys. Rev. 135, 8642 (1964).' C. E. Porter, Statistica/ Theories of Spectra, Ii/uctuations

(Academic Press Inc. , New Vork, 1965);N. Rosenzweig, Brandeis
University Summer Institute Lectures in Theoretical Physics,
I96Z Lectures (%vV. A. Benjamin, Inc. , New York, 1963), Vol. 3,
p. 91.' N. Ullah, Nucl. Phys. 64, 349 (1965).

From the fact that'

~~ *=~u.

it is easy to see that J„is real.
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where a„„(1~&p&~Ã) are the components of the eigen-
vector belonging to eigenvalue O'„. It has been shown'
that if the Hamiltonian is invariant under rotations
as well as time reversal, then the basis set C„can be so
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Ke remark here that another way to study the statis-
tical distribution of the parameters of the statistical
collision matrix is to connect its parameters with the
parameters of the real-boundary-value problem, the
statistical properties of which have been studied in the
past. Such an attempt has been made by Moldauer, '
by introducing a transformation matrix T. The expres-
sion obtained by him for the complex amplitude 0„,
involving the T matrix looks similar to Eq. (7). How-
ever, the statistical properties of the T matrix have not
been studied. It seems to be much simpler to study the
statistical properties of the complex orthogonal matrix
a which we have introduced.

II. CALCULATION OF THE PARAMETERS
USING THE RANDOM COMPLEX

ORTHOGONAL MATRIX

In this section we shall study the statistical properties
of certain parameters of the statistical collision matrix.
To illustrate the main points of the calculation we shall
restrict outselves to a special case of a 2)&2 random
complex orthogonal matrix. This can be conveniently
parametrized as

t' cos&u sin&u

=k —sic coc )'
where

Using Eqs. (7), (10), and (14) we 6nd for case (b)
—

zz~
-'

(le"I'"&.=(oJ )"exp( —p ') 2.=o si

Xexpl (zz —2s+1)sP ') (16)

where ( )„denotes the ensemble average,

J.=-', (Jt.'+Js,s), and
t'zz)

s

is the binominal coefficient.
For case (a), if I=2m, then we have

(I g„cl' )„=(-'J )'~Lexp(2q) —exp( —2q)) '

&m 2m)
XP I

X(2m —2s+1) '.=o s i
[exp L2q(2m —2s+ 1))

—expl —2q(2m —2s+1))], (17a)

and if 0=2m+1, then

(I 0"I
'-+') =-'(lJ.)'"+'Lexp(2q) —exp( —2q)) '

$~m+& (2m+ 1
XI P I

(m-s+1)-t
&.=o I s

The line element dS' is by definition'

dS'= Tr dadat. (12)
X[expl 4q(m —s+1))—expl —4q(m —s+1))] +8

Using Eq. (10), it can be expressed as

dS'= Lexp(2ooz)+exp( —2&os))(dtots+dcos') . (13)

Therefore the volume element 0, can be written as

a= Lexp(2(os)+exp( —2a z))dootdooo,

where
—zr&~at&~zr; —oo ~&coo~& ~. (15)

From the relations (14) and (15) we see that the total
volume of the complex orthogonal space is not bounded
and therefore the normalization integral will diverge.
This means that we cannot simply take the probability
density I'(a) proportional to d throughout the range
given in (15).To get any meaningful results out of this
theoretical formulation we should therefore introduce
some kind of weight factor which ensures the conver-
gence of the normalization integral. At this stage we
do not want to go into the question of choosing a proper
form of the weight function, which will be taken up when
the formulation is generalized to E dimensions. For
the sake of the present calculation we consider two
kinds of weight factors: (a) unit step function in the
range —q~&&oz~&q, and (b) the Gaussian weight factor
exp( —poos'). The parameter p or q will be obtained by
comparing some theoretically predicted quantity with
its experimental value.

X I q I, (17b)
m+1 i'

where a prime on the summation over s indicates that
the term s= m+1 has to be excluded.

As a check on our formulation we show that the
limit p ~ oo and Eq. (16) or the limit q-+ 0 and Eqs.
(17a) and (17b) give the same width distribution as
is obtained using the real-boundary conditions in the
special case of two dimensions. 4 It is easy to see that
both Eqs. (15) and (17)yield the same value of (I 8„,I

'")„
if this limiting process is carried out. It is given by

(18)

Using the method of moments, ' the width distribution
is given by

P(x)dx=(7r'x(2 —x)) ' 'dx 0&x~&2, (19)

where x= 1'„,/(1'„,)„is the ratio of the width to the aver-
age width. This is the exact relation for the real-bound-
ary conditions in the special case of two dimensions. 4

' N. Uiiah, J. Math. Phys. (to be published).
'M. G. Kendall, The Advanced Theory of Statistics (Charles

GriSn and Company, Ltd. , London, 1945), Vol. I, Chap. 4.
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An application of this theoretical formulation enables
us to express the two parameters B„A, de6ned by
Moldauer' in terms of a single parameter p or q. They
are given by

width in two dimensions, given by Eq. (19), for the
case of real-boundary condition.

As a further application, we consider the average
value of the normalization constant'

(20)

interior

x„l'd. . (24)

A, =—
L& I 0"I

').3'

Using Eqs. (17a) and (17b), we get for case (a)

8,=16/exp(2q) —exp( —2q)$'
&()exp(4q) —exp( —4q)+Bqf ', (22a)

A, =—s')exp(2q) —exp( —2q) j'
XLexp(4q) —exp( —4q)+Sqj '

&& )exp(4q)+exp( —4q)+16j. (22b)

For case (b), using Eq. (16), we get

8,=4 exp(2p ')Lexp(4p ')+1j ', (23a)

A, =exp(2p '))exp(4p ')+1] ')exp(8p ')+5). (23b)

It is interesting to note from Eqs. (22b) and (23b)
that if we carry out the limiting process indicated earlier,
then A,=1.5, which is in agreement with the value of
A. which results from the exact distribution of the

~ith the help of Eqs. (2), (10), and (14) we see that
(fq'„)„ for case (a) is given by

(&,&.= ebxp(4q) —exp( —4q)+8q&
&&I exp(2q) —exp( —2q)j '. (25)

For case (b), it is given by

(&.).= sEexp(4p ')+1je~(—p ') (26)

Using Eqs. (25) and (26) and the limit p ~oo, q-+ 0,
we get (X„)„=1,which checks with the result of the
real-boundary condition.

An extension of this formulation to X dimensions
is presented in the following paper, and detailed
application to the Quctuations of cross sections will be
presented in a later article.
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A detailed statistical study is made of the parameters of the statistical collision matrix using the N-dimen-
sional random complex orthogonal matrix. It is shown that, even without a complete knowledge of weight
function which has to be introduced for the convergence of the normalization integral, certain relations be-
tween the average values of the parameters of the statistical collision matrix can be obtained and a statement
can be made that the channel correlations of the parameters are always positive. A suitable form of the
weight function is guessed, and the distributions of the parameters are also given. It is shown that under
certain conditions the distribution of the parameters is close to the Porter-Thomas distribution except for
small values. The resonance correlations of the parameters are also studied. Excellent agreement has been
obtained between the values predicted by the present theoretical formulation and those obtained by a
numerical calculation using the parameters of the real-boundary-value problem and a certain transformation
matrix.

I. INTRODUCTION
' N an earlier paper' we showed that the random-
' - matrix hypothesis can be used to study the statistical
properties of the statistical collision matrix introduced
by Moldauer. ' The earlier work' was intended to give

r N. Ullah, preceding paper, Phys. Rev. 154, 897 (196/).' P. A. Moldauer, Phys. Rev. 135, B642 (1964).

the basic idea and its application to a simple two-dimen-
sional case. In the applications of the statistical collision
matrix to the study of the energy averages, Quctuations,
and the correlations of the nuclear collision cross
sections, we need the X-dimensional generalization of
the simple case discussed earlier. In this paper we shall
study the distribution of the parameters of the statistical
collision matrix. The results will be compared with the


