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The interaction of two longitudinal ultrasonic waves to produce sum- and difference-frequency waves has
been studied experimentally and theoretically. These interactions are closely analogous to the type of three-
phonon interactions believed to be important in low-temperature ultrasonic attenuation. We have applied
the coherent-state formalism to a description of these interactions and have discussed the similarities
between coherent and incoherent processes. Experimentally we have measured the amplitude of the gen-
erated sum- or difference-frequency wave as a function of the angle between the input waves and of the
amplitude and frequency of the input waves. The effect of crystalline anisotropy has also been observed.
The change in amplitude of one of the input waves has been measured as a function of the parameters listed
above. In all cases the experimental observations are in good agreement with theory.

I. INTRODUCTION

HE basic theory of the attenuation of ultrasonic

waves through three-phonon interactions with
thermal phonons has been worked out by Landau and
Rumer.! Their theory is valid if the radian frequency w
of the ultrasonic waves times the thermal-phonon re-
laxation time 7 is much greater than 1 since only in
that case is it meaningful to speak of energy-conserving
interactions involving discrete phonons. Furthermore,
their results were derived for the attenuation of frans-
verse waves only. They pointed out that such three-
phonon interactions were unimportant in the attenu-
ation of longitudinal ultrasonic waves because of the
requirements of energy and momentum conservation.
More precisely, they noted that in an isotropic dis-
persionless medium, a low-frequency longitudinal wave
can interact with a high-frequency (thermal) longi-
tudinal wave to produce a third longitudinal wave only
if all three waves are exactly collinear. No other three-
phonon interactions between a low-frequency longi-
tudinal wave and the thermal phonons can conserve
energy and momentum. Even these collinear processes
are ruled out if there is dispersion of the usual type
where velocity decreases with increasing frequency.
Landau and Rumer therefore predict that transverse
waves should be much more strongly attenuated than
longitudinal waves. They also predict that the trans-
verse attenuation should vary as wT* where T is the
absolute temperature.

It has recently become possible to experimentally
achieve the condition wry>>1 required by the Landau-
Rumer theory.??® The measured attenuation of trans-
verse waves in this region is in order of magnitude
agreement with the Landau-Rumer predictions and
gives approximately the expected wT* frequency and
temperature dependence. However, the longitudinal
attenuation is found to be of the same order of magni-

11, Landau and G. Rumer, Physik. Z. Sowjetunion 11, 18
1937).
( 2 H) E. Bommel and K. Dransfeld, Phys. Rev. 117, 1245 (1960) ;
Phys. Rev. Letters 2, 298 (1959).
3H. J. Maris, Nature 198, 876 (1965).
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tude as the transverse attenuation and also to vary
approximately as w7*. These results indicate that three-
phonon processes are important for longitudinal as well
as transverse wave attenuation. Simons? and Maris®
have suggested an explanation for these observations.
They note that exact energy conservation is not
necessary for interaction with the thermal phonon
because of che finite relaxation time of these phonons.
Therefore, a longitudinal ultrasonic wave can interact
with longitudinal thermal phonons which are only
approximately collinear with it. Simons has shown that
consideration of the finite relaxation time does in fact
lead to an w7* dependence for the longitudinal wave
attenuation at least over a restricted temperature range.

In order to check the theory which has been developed
for the interaction of noncollinear longitudinal phonons,
the experiments reported in this paper were performed.
Basically they involve passing a low-frequency and a
relatively high-frequency ultrasonic wave through a
solid and measuring the amplitude of the resultant sum
or difference frequency wave as a function of the angle
between the two primary waves. The high-frequency
(~200 to 1000 Mc/sec) wave is analogous to the
thermal phonons while the low-frequency wave (~7
to 50 Mc/sec) is analogous to the ultrasonic wave in an
attenuation experiment. This analogy is appropriate
since the condition wr>1 is satisfied in our experiment
if w is the radian frequency of the low-frequency wave
and 7 is the time available for the interaction.® In other
words, we have scaled frequencies down and tempera-
ture up so that our interaction experiment, although
performed at room temperature, satisfies the same
conditions as a low-temperature ultrasonic attenuation
experiment. The basic difference is that we have sub-
stituted a coherent, monochromatic and highly direc-
tional ultrasonic wave for the incoherent, random
thermal phonons.

4 8. Simons, Proc. Phys. Soc. (London) 82, 401 (1963).

5 H. J. Maris, Phil. Mag. 9, 901 (1964).

8If there is no damping, 7 is obviously the time required for
the input waves to propagate through the sample. The significance
of 7 in the presence of damping is discussed in Sec. II.
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The interaction of two ultrasonic waves has been
studied by a number of workers. In particular, Shiren’
has observed the interaction of two collinear longi-
tudinal waves at ~10' cps. However, he did not study
the angular dependence of the interaction. Rollins and
his co-workers® have studied various interactions in the
low megacycle region but they specifically excluded
the collinear interaction. Considerable attention has
also been given to ultrasonic harmonic generation,* !
which is a special case of the collinear interaction. How-
ever, this paper represents the first direct observation

of an “almost-collinear” acoustic-wave interaction in a
solid.

II. THEORY

The classical theory of the nonlinear interaction of
two elastic waves has been discussed extensively. Jones
and Kobett”? have considered the interaction of two
plane waves in a homogeneous isotropic solid. They
derive the momentum conservation, or ‘“phase-match-
ing” condition [Eq. (2.9) below] as the condition
defining the direction in which the scattered wave
(k,) is strongly peaked. They do not discuss in detail
the behavior of the scattered wave in directions other
than that defined by Eq. (2.9). Childress and Ham-
brick®® have discussed the interaction of two elastic
wave packets but again they did not consider phase
mismatch.

Armstrong and his co-workers!* have given a thorough
treatment of the interaction of light waves in a non-
linear dielectric. These light-wave interactions are the
direct analog of the acoustic wave interactions con-
sidered here. They derive the nonlinear coupling
coefficients, or nonlinear polarizability, through a
quantum-mechanical approach, but the remainder of
their treatment is essentially classical. Their discussion
of phase mismatch is applicable to the experiments
reported here.

Shiren'® has modified the work of Armstrong e al.
so that it would apply to the collinear interaction of
acoustic waves. In particular, Shiren has shown how
the nonlinear coupling coefficients in the acoustic
problem are related to second- and third-order elastic
constants. He discusses phase mismatch due to dis-
persion but not due to noncollinear propagation.
However, the principles are the same.

7N. S. Shiren, Phys. Rev. Letters 11, 3 (1963).

8 F. R. Rollins, L. H. Taylor, and P. H. Todd, Phys. Rev. 136,
A597 (1964).

9 M. A. Breazeale and J. Ford, J. Appl. Phys 36, 3486 (1965).

1 p, H. Carr, Phys Reév. Letters 13, 332 (1964).

1t A, Hikata, B. B. Chick, and C. Elbaum, J. Appl. Phys. 36,
229 (1965).
(1;2 (3}) L. Jones and D. R. Kobett, J. Acoust. Soc. Am. 35, 5

63).
a 13 J'.) D. Childress and C. G. Hambrick, Phys. Rev. 136, A411

964

1 J, Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan,
Phys. Rev. 127, 1918 (1962).

BN. S. Shlren, Proc. IEEE 53, 1540 (1965).
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Although the specific interactions we are considering
can be treated quite adequately in classical terms, a
quantum-mechanical description is nonetheless useful,
since it would serve to clarify the relationsip of
acoustic-wave interactions to the phonon-phonon
interactions observed in ultrasonic attenuation or
thermal conductivity. From this viewpoint Taylor and
Rollins'® have given a quantum-mechanical treatment
of the interaction of two acoustic waves. They derive
a perturbation Hamiltonian from the anharmonic
terms in the classical density by writing the displace-
ment tensor as an appropriate combination of creation
and annihilation operators. They then apply time-
dependent “Golden rule” perturbation theory to obtain
the transition probability and hence the number of
phonons generated at the sum or difference frequency.
They relate the number of phonons to an elastic-wave
amplitude by writing the energy density of a classical
elastic wave and equating it to n#w, where 5 is the
phonon density. In this manner they are able to
reproduce the classical results obtained by Jones and
Kobett. However, the validity of their procedure is not
obvious. By using the golden rule, they implicitly
assume that the system is initially described by an
eigenstate of the unperturbed Hamiltonian. However,
for a harmonic oscillator in an energy eigenstate, the
expectation value of the displacement {x) is identically
zero regardless of the degree of excitation of the
oscillator.!® It is thus incorrect to say that the limit of
a large number of phonons is a classical wave; it is only
a classical wave if there is phase coherence, and phase
coherence is impossible in an energy eigenstate.’ More
properly, what Taylor and Rollins have calculated is
the mean-squared displacement (x?).

A question then arises as to what extent we can
expect the results of standard perturbation theory to
apply to interactions between coherent waves. This
question is particularly important to the experiments
described here since we hope to learn something about
the interaction of a coherent ultrasonic wave and an
incoherent thermal phonon by studying the interaction
of two coherent waves. In particular, the observed
dependence of the generated-wave amplitude on the
angle of intersection of the two input waves may be
described classically as an interference phenomenon.
Can we expect the same “interference pattern” if one
of the two waves is incoherent?

Barrett and Silverman® have treated this problem
by using the ‘“coherent states” of a harmonic oscillator.

16 T,, Taylor and F. R. Rollins, Phys. Rev. 136, A591 (1964).
17Tt is important to distinguish here between time averages and
quantum-mechanical expectation values. The latter are denoted

Yy

18P, Carruthers and M. M. Nieto, Am. J. Phys. 33, 537 (1965).
(1;:6?) Carruthers and M. M. Nieto, Phys. Rev. Letters 14, 387

20 H, H. Barrett and B. D. Silverman, Bull. Am. Phys. Soc. 11,
259 (1966).
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These states have been discussed in detail by Glauber
in connection with coherent photon fields. If the lattice
vibrations in a crystal are resolved into harmonic
oscillator normal modes, specified by a wave vector k
and a polarization index u, then the lattice displace-
ment x(r,t) at the point r and time # is described in the
Heisenberg picture by the operator?

x(r,t)= kZ e (k,u)[ 200 (k) 1772
X{a(k,) expilk-r—w(ku)i]
+at (ku) exp—ilk-r—w(kp)d}.  (2.1)

Here e(k,u) is a unit vector in the direction of the
polarization of the phonon, p is the mass density,
w(k,u) is the frequency of the mode, and e(k,u) and
at(k,u) are the usual boson annihilation and creation
operators. Since we will be concerned with only longi-
tudinal waves, we will drop the polarization index u.
The frequency and wave vector are related by w(k)
=9|k|, where v is the phase velocity for the mode. A
coherent state for mode k is then an eigenstate of a (k)

a(k) |p(k))=8(k)|8(K)), (2.2)

where

Bk)= |8 (k)| e?*® (2.3)

specifies the amplitude and phase ¢ (k) of the excitation.

These coherent states do not form an orthogonal set
of states, but they do form a complete (in fact, over-
complete) set. Therefore, an arbitrary state may be
expanded in terms of coherent states and the expansion
may be inverted. In particular, Glauber has given the
expansion of a coherent state in terms of energy eigen-
states |n(k))

D180 (k) Jnw
[n(k) 1]

18)= 2

n(k)

|n(k)), (2.4)

where
at(k)a (k)| n(k))=n(k)|n (k) (2:5)

and 7 (k) is the total number of phonons in the mode k.
If mode k is excited to a coherent state |8(k)) and
all other modes have only incoherent (e.g., thermal)
excitation, the term in the lattice displacement operator
associated with mode k has the expectation value

(w(le; 1,0))=x0(k) | 8(k) | cos[k-r—w(k)i+¢(k)], (2.6)
where

xo(k) =2e(k)[2pw (k)] . (2.7)
Barrett and Silverman assumed that two modes, k;

and ks, were excited to the coherent amplitudes B(ki)

21 R, J. Glauber, Phys. Rev. 131, 2766 (1963).
22 C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1963), p. 23.
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and B8(k,), respectively, at time ¢. They then took as a
perturbing Hamiltonian

Hi=g,a(ky)at (kiat (ko) +g.*at (ky)a(ki)a (k)
+g-a(k-)a(ki)at (ko) +g-*at (ko' (kna(ks),  (2.8)

where g. may be simply related to the anharmonic
properties of the medium.’® Note that g. vanishes
unless

kotki= k:i: . (2.9)

We have assumed that w(kz)>w(ky). In general Hi
should include other terms, such as harmonic generation
terms, but these are unimportant for our present
purposes.

The interaction is “turned on” at time ¢ and at a
later time ¢+ there will be an excitation in the sum-
and difference-frequency modes, ky, given to first-order
perturbation theory by

(x(ky; 1, t+7))=Xo(ky) | g2 | - |8 (ks) | - |8 (ko) |
Xsin[ky - r— (waztwr) (1) +P—3Awyr]
X (sintAw,7/3hAwy), (2.10)

where ws=w(ks) and wi=w(ky). ® depends on the
phases of 8(k1), 8(ks), and g, while Aw, is defined by

Awy=wstwi—w(ky). (2.11)

Note that w(ky)=v|k.| and is not exactly the sum or
difference frequency unless ki and k; are parallel. How-
ever, {(x(ky; 1, t+7)) oscillates at the frequency we=tw1
and not at w(k,), which is the natural frequency of the
mode ky. The process may be thought of as a driven
harmonic oscillator. The term 3Aw.7 in the argument
of the first sine function in Eq. (2.10) is simply a phase
shift arising during the interaction.
The factor

F=sintAw,.7/3Awy (2.12)

is the square root of the usual energy-conservation
factor which occurs in Golden-rule perturbation theory.
The square root appears since we are calculating
amplitude rather than energy. For exact energy con-
servation (Awy=0), F grows linearly with the inter-
action time 7; for Aw, 0, F oscillates sinusoidally
with 7.

In the Appendix, Awy is related to the angle 6
between the two input waves. It is shown that if
weDwi,

Awy= (3—b)wib?, (2.13)

where b is an anisotropy parameter defined in the
Appendix (6=0 for an isotropic medium). Then the
amplitude of the generated signal at the sum or differ-
ence frequency should have an angular dependence
given by

F=sincwifr/cunf?, (2.14)
1

where ¢=1(2—b) is a constant calculable from the
elastic constants of the material.
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Another quantity of interest, because of its close
connection with ultrasonic attenuation, is the change
in amplitude of the input wave due to the interaction.
By going to second-order perturbation theory, Barrett
and Silverman obtain the following results:

|8y, t4-7) | = [B(ks,t) (145772 [ g |* (na—n_) F?

—37172| gy [2(ne—n)F?],  (2.15)
|B8(ks, t+7)| = |B(ke,t) [[1—5772[ g |2
X (nn+-1)F2—3072| g, |?
X (mi—ny)F*], (2.16)

where |8(k;,t)| is the amplitude of the coherent excita-
tion in mode k;, F is defined by Eq. (2.12) or Eq. (2.14),
n; is the average number of quanta in mode k; at the
initial time ¢, and %, is the number in mode ki. In
general #; is defined as {af(ky)a(k;)) at time ¢ and will
include both the coherent excitation and any inco-
herent excitation which may be present.

In most cases the modes k. will be unpopulated at
time ¢ except for thermal phonons while modes k; and
ks will be driven to an occupation number much in
excess of the thermal value. Under these circum-
stances we may neglect #_ or 7y compared to %1 or 7.
Then we see that Eqgs. (2.15) and (2.16) predict that
difference-frequency interactions (terms involving
|g-|?) will lead to a gain in amplitude in mode k; and
a loss in mode k, (note that w:>w3), while sum-fre-
quency interactions lead to loss in both modes. In
general |g, | will be slightly greater than |g_| so there
will be a net loss in both modes. Note that the change
in amplitude of one of the input waves, A|B(k;)|,
should be proportional to the amplitude of that wave
and to the square of the amplitude of the other input
wave, since, neglecting thermal excitation, #;= |8 (k;)|%
(We are assuming that . is also small.) Also A|B(k,)|
should be proportional to F?, while |3(ky)| was found
to be proportional to F. Experimental verification of
these features is presented in Sec. IV.

Having discussed the coherent-state treatment of
the problem of two interacting ultrasonic waves, we
may now compare it to the Golden-rule perturbation-
theory treatment employed by Taylor and Rollins. If
we consider both the sum-frequency generation process
and its inverse, where a phonon in mode k; decays into
a phonon in mode k; and a phonon in mode ks, standard
perturbation theory tells us that the net transition
probability per unit time is proportional to

g+ [PF2Lnans (ny4-1) — (1) (et 1), ]
= l &+ I 2F2[:n1(n2—-n+) — Ny (n2+ 1)]
= l 8+ ] 2F2nans.

(2.17)

The last form of Eq. (2.17) obviously results from
assuming that 7, the initial population of mode ky, is
negligible compared to #1 and #,. In this approximation

H. H. BARRETT AND ]J.
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Eq. (2.17) is equivalent to® Eq. (2.10), which may be
rewritten

|8(k) 2= (1/72)] g+ |*F*| 8 (k) |*] 8 (ko) [ . (2.18)

However, Eq. (2.10) is more general than Eq. (2.17),
since the former equation was derived without any
assumption about the values of 73, %, or ny; the only
assumption made was that the cokerent part of the
excitation in modes k,. was zero (which does not imply
that #y. was zero). This is the real advantage of the
coherent-state theory: Coherent and incoherent ex-
citations may be included on the same basis without
any special assumptions about their relative magni-
tudes, and the contribution of each type of excitation
to the process of interest is clearly displayed. Thus, for
example, Eq. (2.15) shows that the coherence of the
ks is unimportant® in determining A|8(ky)|. However,
Eq. (2.17) correctly expresses the energy change
hwi1Any (t47). The difference between #; and |8(ky)|?
is the noise in the system, including thermal noise and
spontaneous emission. A further advantage of the
coherent-state method is that it provides the possi-
bility for the calculation of purely quantum-mechanical
effects, such as spontaneous emission or quantum noise,
and it often leads to a considerable simplification of the
algebra, especially when both coherent and incoherent
excitations are present.?

In the foregoing discussion we have assumed that
the interaction is switched on abruptly at time ¢ and
the system is observed at time #4r. We have also
assumed that the amplitudes of the input waves are
essentially constant during this period, i.e., A|8(k;)|
< |B(ks)|, (i=1, 2). However, in the experiments de-
scribed in this paper there is always some attenuation
of the input waves (other than that resulting from the
interaction between them) so the latter assumption is
not always justified. We will now investigate the
generation of sum and difference frequencies in a lossy
nonlinear medium.

From the coherent perturbation theory treatment
leading to Eq. (2.10), it can readily be shown that, in
the absence of damping, the coherent amplitude in mode

28 The reason for the success of the Golden-rule approach in this
approximation may be seen from Eq. (2.4). We could have de-
composed the coherent input waves into a Poisson distribution of
energy eigenstates. For large values of #; and ns the Poisson
distributions are relatively narrow (widths 4/z1 and +/ns, re-
spectively) so that the energy in mode k.. builds up just as if the
input waves were pure energy eigenstates. However, calculation
of the coherence properties of the generated wave by this pro-
cedure would require going to higher order perturbation theory
since, in first order, the vacuum state for mode k.. is connected
only to the one-phonon state.

24 Thus, Eq. (2.15) shows quantum mechanically the possi-
bility of an acoustic parametric amplifier with an incoherent
pump, as discussed by Shiren (Ref. 155).

26 A case where it may be particularly important to distinguish
between coherent and incoherent excitation is the phonon bottle-
neck problem in ultrasonic attenuation. See J. DeKlerk, D. I.
Bolef, and P. G. Klemens, Phys. Rev. Letters 10, 127 (1963).
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k_ at time {4-A¢ is related to its value at time ¢ by

7

t+At
X / exp(—iAw_t)dt'. (2.19)
¢

Equation (2.19) is valid only if 8*(ky,?) and B(ks,f) do
not change appreciably in a time interval A¢. To account
for a general variation of these amplitudes, we may take
At to be infinitesimally small. So, replacing At by dt,
we obtain

(k1)
d ¢ int

- _%g_*ﬁ* (ks,£)8 ks, ) exp(—éAw_z) . (2.20)

If the time dependence of §*(ky,f) and B(ks,t) is due to
damping, we may write

B* (kljt) =ﬁ* (k1,0) eXP(_"/lt) )

B (k,t) =B (k2,0) exp(—v2f)

where we assume the variation of these amplitudes due
to sum- or difference-frequency production is small
compared to the damping from other mechanisms.
Now Eq. (2.20) describes only the generation of co-

herent excitation in mode k_; we must add a term
describing the damping of this mode

ap(k_t) dB(k)
dt B dt int

(2.21)

—v-Bk0).  (2.22)

Obviously, if the interaction is switched off, (k) will
decay exponentially with a time constant (y_)~'. Pre-
sumably 1, ve, and y— may be measured independently.
Solving Eq. (2.22) subject to the boundary condition
B(k_,0)=0, we find that after interacting for a time 7,

|8(k_,m)| = (1/7)|g—| - |8(ks,0) |
X |8(ks,0)| exp[—3(vit+v2)7]
sinh?ly7-+sin?3 Aw_7172
, (2.23
[ GV (GAw)? :I (2:29)

where ot
Y=v1tya—y-. (2.24)

We may define

sinh?3y7-+sin?t Aw_71/2
[ ] , (2.25)
() (e

where N is a normalizing factor chosen to make F/=1
when Aw_=0. If y=0, F’ reduces to F as defined by
Eq. (2.12). Figure 1 is a plot of F’ as a function of
Aw_r for various values of y7. Note that F’ does not
differ appreciably from F unless y7>1. In all of the
experiments reported here, w;&ws and wi=~ws. There-
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Fic. 1. Theoretical dependence of the generated sum- or
difference-frequency amplitude on energy uncertainty. 7 is the
transit time across the specimen and v is defined as yi1+vyas—v4,
where v; is the damping constant of mode %;. The generated signal
amplitude is normalized to its value when Aw=0.

fore, v1<<v2 and y2=7.. since the acoustic attenuation
increases with frequency. Thus even if yor>1, it is still
possible that y7<<1 so that F’ will be nearly indis-
tinguishable from F. Equation (2.23) holds for sum
frequency generation also. However, v will be identically
zero for sum-frequency generation if the acoustic
attenuation is a linear function of frequency.

III. EXPERIMENTAL APPARATUS

The apparatus used in these experiments is shown
schematically in Fig. 2. The high-frequency (hf) ultra-
sonic wave is generated by a transducer attached
directly to the sample. This transducer was a CdS film
for most of the measurements reported here, but a 10
Mc/sec X-cut quartz transducer operated at a high
harmonic has also been used. The low-frequency (If)
wave is generated by a 1 in.-diam X-cut quartz plate
with a fundamental resonant frequency of about 7
Mc/sec. The lf wave travels through the water and a
portion of it is transmitted into the sample. Both
signals are pulses, and they are timed to arrive at the
water-sample interface simultaneously. The transmitted
component of the If wave and the reflected component
of the hf wave then travel down the sample together.
The angle between the two waves may be varied since
the If transducer is mounted on a goniometer. The
direction of the If wave in the water may be measured
to an accuracy of better than 5 min of arc, and its
direction in the sample may then be computed from
Snell’s law. The sample end faces are flat to {5 wave-
length of sodium light and parallel to 10 sec of arc.

As the two waves travel together through the sample,
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Fi1G. 2. Apparatus used to observed generated sum
or difference frequencies.

they interact and produce sum- and difference-fre-
quency waves. These generated waves are detected by
the same transducer that produced the hf wave. The
relative amplitude of the sum- or difference-frequency
signal is measured by means of a calibrated attenuator
in the receiver. When a quartz plate is used for the hf
transducer, the lower frequency f; is restricted to be
an even multiple of the hf transducer fundamental
frequency so that the hf transducer can both generate
frequency fs and detect fs=fi. This restriction is not
necessary with CdS film transducers since they usually
have a bandwidth of several hundred megacycles.

The If transducer is large in diameter in order to
reduce the angular beam spread due to diffraction,
which results in the interaction taking place within the
near field of the If transducer. However, all of the
measurements can be adequately explained in terms of
plane waves, probably because the rapid amplitude
variations in the near field average out over the inter-
action volume.

The diameter of the active area of the hf transducer
is quite critical. It must be large enough so that there
will be no appreciable angular spread due to diffraction
and yet small enough to have a nearly uniform response
to the generated wave as the interaction angle is varied.
That this is possible may be seen as follows: Referring
to Fig. 3, the relative response of a circular transducer
of radius ¢ to a plane wave of wave vector k incident at
an angle ¢ is given by

R=2J(ka siny)/ka siny , 3.1)

where k= |k|=w/v, w is the radian frequency of the
wave and v is its phase velocity. R will be recognized
as the far-field diffraction pattern of a circular piston.

H. H. BARRETT AND ]J.
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Now, as discussed in the last section, the interaction
must obey the wave-vector conservation condition

k=k,=kotki, (3.2)

where k. refers to the generated wave, k; and k, refer
to the If and hf input waves, respectively, and the plus
or minus signs are for sum or difference frequency
processes, respectively. Note that ks is normal to the
hf transducer. Applying the law of sines to the wave-
vector conservation triangle for sum-frequency gen-
eration (see Fig. 3), R for the generated wave may be
written as

R=27J1(k1a sinf)/k1a sinf. (3.3)

In other words, the response of the hf transducer to the
generated wave is exactly the same as it would be to
the If input wave if it were detected directly by the hf
transducer. If f. is increased, the generated frequency
is also increased, but its angle of incidence ¢ is decreased
and the transducer response is unchanged. This con-
clusion is also valid for difference-frequency generation.
Thus the radius ¢ of the hf transducer is chosen to
minimize the angular spread of the hf wave due to
diffraction and fi is kept sufficiently small so that R=1
at the largest angle of interest. In practice it has been
convenient to adjust the radius by using a small spot
of conducting paint to define the active area of the hf
transducer.

The electronics used is fairly conventional. The If
transmitter is an Arenberg pulsed oscillator. The hf
transmitter is a tuned-grid, tuned-cathode pulsed
oscillator which covers most of the range from 180 to
950 Mc/sec and which delivers several hundred watts
of rf power. The superheterodyne receiver employs a
balanced-diode mixer and has a sensitivity of about
—100 dBm.

Although the amplitude of the generated sum- or
difference-frequency wave is of considerable theoretical
interest, it is the change in amplitude of the input wave
(due to the interaction) which is most nearly analogous
to ultrasonic attenuation. The system we have used to
measure this change is shown schematically in Fig. 4.
The If transmitter is triggered at a 500-cps_rate_while
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(a) Sum frequency geometry (b) Difference frequency geometry

Fic. 3. Illustration of interaction geometry. (a) Sum-frequency
generation, (b) difference-frequency generation.



154
Sync 500cps - k:‘g W
generator Xmtr '
1000cps /.
L.F Transducer
H.FE Transducer-
High w2
500¢ps frequency
reference Xmitr
signal
Lock-in
amplifier

(500cps)

= Peak
detector

Fi16. 4. Apparatus used to observe change in
amplitude of input wave.

the hf transmitter is triggered at 1000 cps. The attenu-
ation in the sample is sufficiently large that all of the
ultrasonic energy in the sample decays within 1 msec.
Thus, only the echos resulting from every other hf
transmitter pulse are affected by the interaction. The
gate following the receiver video output serves to select
a particular hf echo, usually the first, from each se-
quence of echos. Alternate pulses out of this gate will
then be reduced in amplitude by the interaction. The
peak detector and lock-in amplifier respond linearly to
the difference in amplitude of successive pulses, and
therefore give a direct measure of the strength of the
interaction. With this system amplitude changes as
small as 0.002 dB may be detected.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The production of acoustic sum- and difference-
frequency waves by the interaction of two longitudinal
acoustic waves has been observed in a variety of ma-
terials, including ruby, rutile, strontium titanate,
silicon, fused quartz, and calcium tungstate. However,
most of the quantitative measurements have been
confined to silicon and fused quartz. With these two
materials the nonlinearities were sufficiently great that
the sum- or difference-frequency signal was typically
30-40 dB above noise (with the input waves parallel)
and of the order of 40 dB weaker than the hf input
signal. No careful measurements of the conversion
efficiency were made since it was not our purpose to
study the origin or magnitude of the nonlinearities.

Since the angular response of the hf transducer can
seriously affect the observed angular dependence in
this experiment, it is important to establish experi-
mentally the validity of the assumption that R=1
[see Eq. (3.3)]. This may be done by plotting the
observed angular width of the interaction at some
reference amplitude as a function of, 1/4/f1, where
fi=wi/2m is the lower input frequency. Referring to
Eq. (2.14), it may be seen that choosing a reference
amplitude is equivalent to setting wi6*s equal to a
constant. Therefore, a plot of the angle 6. required
to give this reference amplitude versus 1/4/f1 should
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yield a straight line. However, if the observed angular
width is determined by the transducer response rather
than by the characteristics of the bulk interaction, such
a plot will be a parabola as may be seen by setting Eq.
(3.3) equal to a constant. Any deviation from linearity
in these plots will then be an indication that R#1. A
typical 1/4/ f1 plot is shown in Fig. 5. These plots are
used routinely as a diagnostic tool to determine the
influence of the transducer response. Incidentally a
plot such as Fig. 5 is also proof that the observed
interaction is taking place in the bulk of the material.
If it was occurring on the surface of the hf transducer
or in the external circuitry, the angular dependence
would be the same as the angular response of the
transducer.

Figure 6 shows the dependence of the difference-
frequency amplitude on the angle between the two
input waves as observed in a silicon sample. This
sample was a right circular cylinder 4.35 cm long and
2.2 cm in diam. The [111] crystallographic axis was
parallel to the axis of the cylinder (and therefore
parallel to k,). The material was 6-Q cm, N-type,
Sb-doped silicon obtained from Texas Instruments
Company. The theoretical curve in Fig. 5 is simply a
plot of the factor F from Eq. (2.14), using the measured
value of the transit time 7 and using the value of ¢
calculated from expressions given by Waterman.?® It
is seen that the agreement with theory for angles less
than about 9° is quite good. For larger angles the
agreement is poorer, as at about #=11°. There are
several reasons for discrepancies at large angles. First,
as discussed in Sec. IIT, the hf transducer response
varies with angle of incidence and the approximation
that R=~1 begins to fail at large angle. Also the trans-
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F16. 5. The angle between the input waves required to give the
specified relative amplitude for the generated difference frequency
signal as a function of 1/4/f;, where f is the lower input fre-
quency. The straight lines are the theoretical dependence. The
sample was fused quartz and the higher input frequency was 250
Mc/sec.

26 P, C. Waterman, Phys. Rev. 113, 1240 (1959).
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mission coefficient at the water-sample interface may
vary somewhat with angle. Finally, at large angles the
signal level is low and noise is beginning to affect the
accuracy of the measurements. The largest effect is
undoubtedly the transducer response. However, none
of these difficulties influence appreciably the deter-
mination of the zeros of the interaction, i.e., the angles
at which the generated signal vanishes.?” Therefore,
more significance can be attached to the position of
these zeros than to other large-angle points. Note that
in Fig. 6 the three zeros which were observed on either
side of the main lobe agree quite well with theory.
Figure 7 shows similar data for a fused-quartz sample.
In this case the specimen was a cylinder 5.08 cm long
and 2.54 cm in diameter. It was obtained from the Gen-
eral Electric Company, Willoughby Quartz Plant. At
least five minima were observed on either side of the
main lobe with this sample. Their positions were quite
close to theoretical predictions. The theoretical curve in
Fig. 7 is a plot of the factor F’ [from Eq. (2.25)] rather
than F, since the losses in fused quartz are fairly large.
However, the angular resolution of the experiment was
insufficient to determine whether F or F’ fit the data
better. In all of the measurements the effect of loss on
the angular dependence was unobservable, even though
in some cases yo7 Was about 2.
In the Appendix we show that Aw. depends on the
elastic anisotropy of the medium through a factor
1+—0b) where expressions for & in terms of the elastic
constants of the material have been given by Water-
man.2® The parameter b can take on both positive and
negative values so anisotropy can act to either increase
or decrease the angular range over which the interaction
can occur. In particular if b approaches 3, this inter-

1 1 I T T T T 1 T T T
1.0~ > —
Silicon, [111] direction
0.9 -
g . 300—20.3Mc/sec
0.8~ oExperiment —
by ——Theory

1 1 1 1 |
5 2 .9 6 3 o] 3 6 9 12 15
Angle ‘between input waves (degrees)

F1c. 6. Angular dependence of difference-frequency amplitude
in [111] silicon. Input frequencies were 300 and 20.3 Mc/sec.
%\Tote agreement with theory at the zeros of the theoretical
unction.

2" However the transducer response can introduce spurious
zeros. Also both input transducers contribute a small but finite
angular spread due to diffraction so that we usually did not observe
true zeros, but .rather minima.
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Fic. 7. Angular dependence of difference-frequency amplitude
in fused quartz. Input frequencies were 300 and 20.6 Mc/sec. The
theoretical curve is a plot of the factor F’ defined by Eq. (2.25).

action can occur at very large angles and its contribution
to longitudinal ultrasonic attenuation is correspondingly
increased. This point has been discussed in detail by
Barrett,?® who used Eq. (2.13) for Aw,. as his starting
point. He showed that in some anisotropic materials
the calculated attenuation can differ by as much as a
factor of 7 from the attenuation calculated for an
isotropic but otherwise identical material. Therefore
it is of some interest to experimentally verify Eq. (2.13).
It would be particularly valuable to verify Waterman’s
expressions for b since his paper has been used as the
basis for other work®-% but has not, to the authors’s
knowledge, been submitted to a direct experimental
test.

In order to directly observe the effects of elastic
anisotropy, we have studied the almost-collinear inter-
action of two longitudinal acoustic waves propagating
close to a [1107] axis in silicon. In this case Waterman’s
results indicate that b depends on the azimuthal angle
¢ of ki in a spherical coordinate system in which k; is
parallel to the z axis (see Fig. 3); if the z axis is a [110]

axis, his results may be stated
b=—A cos’¢— B sin’p, (4.1)

where, for silicon, A and B have the values —0.236 and
0.185, respectively. Let 6y denote the angle between k;
and k; at the first zero of the function F. Then

4.2)

dr 1/2 )
00=|: :| . 4.3)
w17(1424 cos’p+2B sin?ep)

Our results for 6, as a function of ¢ are given in the
form of a polar plot in Fig. 8. The angle 6, is the radius
of the polar plot while ¢ is the polar angle in the plot.

3w 0kr=m
or

28 H, H. Barrett, Phys. Letters 21, 623 (1966).

2 E. P. Papadakis, J. Acoust. Soc. Am. 36, 414 (1964).

#® R. A. Artman, J. Acoust. Soc. Am. 39, 493 (1966).
( 81 H) J. McSkimin and W. Bond, J. Acoust. Soc. Am. 39, 499
1966).
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$=180°
[1i0]

F16. 8. Polar plot of the angular width of the interaction showing
the elastic anisotropy in silicon. The radius in this plot is the angle
between the input waves required to make the generated signal
amplitude equal zero (the first zero in a plot such as Fig. 5 or 6).
The angle ¢ is the azimuthal angle of k; in spherical coordinates
when k; is taken as the z axis. k; is parallel to the [110] axis of
the sample. For example, when ¢=270°, the plane contaming ki
and k; also contains the [001] axis.

The solid line is a plot of Eq. (4.3) using Waterman’s
values of 4 and B. There are no adjustable parameters
in this theory. Thus Fig. 8 provides quantitative con-
firmation of the theory for the [1107] direction of cubic
materials.

We have also studied the change in amplitude of the
hf input wave as a result of the interaction. It was shown
in Sec. IT that this change should be proportional to
the initial amplitude of the hf input wave and to the
square of the initial amplitude of the If input wave.
Experimental verification of these dependencies is
shown in Figs. 9 and 10. For these data the sample was
fused quartz and the input frequencies were 300 and
20 Mc/sec. Note that some saturation is evident in
Fig. 9. The highest amplitude point in Fig. 9 corre-
sponds to a change in hf amplitude of about —3 dB.
By going to 500 Mc/sec in this sample, a —7 dB change
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was observed. It is not surprising that the perturbation
theory treatment breaks down for effects this strong.
Data similar to Figs. 9 and 10 have been reported by
Shiren.” We have also verified that the angular de-
pendence of the change in amplitude of the hf input
wave is given by F? as predicted by Eq. (2.16). No
measurements of the change in amplitude of the If
input wave have been made, since the small transit
time across the water gap in our apparatus and the
occurrence of multiple reflections in the water prevent
gating out a single If echo.

We have thus experimentally confirmed most of the
major features of the theory presented in Sec. II. In
particular, the zeros of the interaction which are the
most significant experimental points, show the expected
dependence on both polar and azimuthal angles.
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V. SUMMARY AND CONCLUSIONS

In the experiments described in this paper we have
simulated the type of three-phonon interaction which is
believed to be important in the attenuation of longi-
tudinal ultrasonic waves at low temperatures by re-
placing the thermal phonons with a coherent ultrasonic
wave. In order to ensure the appropriateness of the
analogy, the ultrasonic wave which represented the
thermal phonons had a much higher frequency than the
wave which represented the ultrasonic wave in an
attenuation experiment. Also the condition wir>1 was
satisfied in our experiments in analogy to the condition
wrw>1 in an attenuation experiment.

We then inquired what special features might be
introduced by replacing an incoherent phonon with a
coherent wave. The results of a calculation based on
the quantum mechanical coherent state formalism were
presented, showing that, neglecting spontaneous emis-
sion effects, the square of the amplitude of the sum- or
difference-frequency wave in our experiment behaved
the same way as the energy in the sum- or difference-
frequency mode for incoherent interactions. In par-
ticular the angular dependence was found to be the
same as that obtained both from the incoherent
quantum-mechanical calculation and from the purely
classical formulation due to Armstrong ef al. Other
differences between the coherent and incoherent cases
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arose in considering the change in amplitude of one of
the input waves as a result of the interaction. We next
discussed the effect of damping on sum- or difference-
frequency generation. We found that the angular de-
pendence could be nearly the same as in the lossless
case even when the mean free time of the input wave
2! was less than the transit time across the sample.
This result, although intuitively surprising, was borne
out by the experimental observations.

We have presented data on the sum- or difference-
frequency amplitude as a function of the angle between
the input waves, the frequency of the If input wave and
the orientation of the plane of interaction relative to
the crystallographic axes. We have also studied the
change in amplitude of the hf input waves as a function
of the angle between the input waves and of the initial
amplitudes of the two input waves. All of these data
were in good agreement with the theoretical predictions.

An important result of this investigation is the
verification of the theory for interactions in an aniso-
tropic medium. Our technique has provided a successful
check of Waterman’s theory of elastic anisotropy, a
theory which has wide applicability.
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APPENDIX: CALCULATION OF Ao,

The calculation presented here closely parallels that
of Ciccarello and Dransfeld.® However, they considered
an isotropic medium and assumed that ws>w;. Those
restrictions are removed here. The only approximation
made in this calculation is that the angles involved are
small,

Aw, is defined by

Awp=wstwr—wy, (A1)

where w; is the lower input frequency, ws is the higher
input frequency, and w. is the generated frequency.
The ’s are related to the corresponding wave vectors

(1;262) S. Ciccarello and K. Dransfeld, Phys. Rev. 134, A1517
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(see Fig. 3) by
w1=v(0)k1 )
w2=1)ok2 5 (AZ)
wi=v(‘p)kd: ’

where k; is the magnitude of the vector k;, and v(6) is
the phase velocity of a wave at an angle 6 to a particular
pure-mode axis, It is assumed that ke lies along this
pure-mode axis but the same results can be obtained,
in the small-angle approximation, if k; lies along this
axis. 9o is the phase velocity along the pure-mode axis.
Waterman?® has shown that for many cases »(f) may
be written, to lowest order in 6, as

v(0) =vo(1—062). (A3)

The anisotropy parameter b has been calculated by
Waterman from the elastic constants of the material
for several crystal symmetries. b may contain a factor
depending on the azimuthal angle ¢ but this is unim-
portant since the three vectors ki, ks, and k. are
coplanar. Only the dependence on the polar angle 6
interests us here.

We require that wave vector be conserved since
otherwise the matrix elements of the interaction
Hamiltonian vanish:

kotki=k, (A4)
or
ki =ko?+k24=2k1ks cosl
= (kokFe1)2F kiksf?, (A5)

where we have assumed that 0 is small. Taking the
square root of Eq. (A5) and again keeping only lowest
order terms in 6, we obtain

k:’:= kzﬂ;kl:F (l/zvﬂ)Qeff:tez ) (A6)
where
wWiwe k1k2
we“iz = Vg (A7)
wokwy  ketkn
Combining Egs. (A1)-(A3) yields
Aw. =v9(kotk1— k) Fb0%ok,+ Wuky. (AS8)

Eliminating ¢ by the law of sines (replacing the sine
by its argument) and eliminating k5 by use of Eq.
(A6), we obtain, after a little algebra,

Awy= (F—b)wets6?+0(6%). (A9)

If (%2>>c01, Weti T~ weti =~ wy1. Note that we— does not
actually have a pole if w,=ws, since in that case, ¢
would be large and the small-angle approximation
would not be valid.



