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Raman Scattering by Color Centers*
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(Received 15 August 1966)

It is pointed out that the Raman spectrum of a color center gives significant information on the vibration
spectrum associated with an electronic transition of the center itself. The formal theory of the first-order
Raman scattering by substitutional defects in alkali halides is developed in detail. The coupling coefficients
according to which the irreducible representations of the perturbed normal modes enter the total Raman
spectrum are shown to be simply related to the stress coefficients of the absorption band. Calculations on
the first-order Raman spectra of Ii centers in NaCl and KC1 are found to be in fairly good agreement with
experimental data recently obtained. An application of the present method to the theory of local-mode side-
bands is also outlined.

I. INTRODUCTION

'HE energy levels of an electron bound at a defect
in a crystal lattice are usually quite dependent on

the position of the neighbor atoms. Thus the electronic
transitions induced by an external radiation field can
be accompanied by excitation or absorption of phonons
of the lattice. As we are concerned with an imperfect
lattice, perturbed phonons are involved. The perturbed
phonons can be suitably classihed according to the
irreducible representations of the point group per-
taining to the local perturbation due to the defect. The
irreducible representations according to which the lattice
is allowed to vibrate depend on the particular kind of
the perturbation. The phonon irreducible representa-
tions which couple with an electron transition (say a
dipole transition) are selected on simple symmetry
considerations, i.e., by means of group theory; but the
theoretical evaluation of the coupling coeKcient for each
allowed irreducible representation, describing the in-
tensity and details of the vibronic spectra, requires
knowledge of the electron wave functions for each
given lattice configuration, in the framework of the
Born-Oppenheimer approximation. As at present this
kind of problem appears to be very hard, the phe-
nomenological approach seems to be more advantage-
ous for investigating the coupling between the bound
electrons and the lattice vibrations. From this point of
view the study of the effects that an applied stress has
on the optical absorption of color centers' ' seems likely
to give signidcant information on such coupling co-
eKcients, because the internal strains produced by an
elastic deformation and the local vibrating strains sup-
ported by the perturbed phonons assisting an electronic
dipole transition usually have the same symmetries.

One of the most direct methods of investigating the
phonon spectrum associated with an electronic transi-
tion seems to be the study of the Raman spectrum of an

*This research has been sponsored by ROAR under Grant
No. 65-05 with the European Once of Aerospace Research, U. S.
Air Force. A preliminary account of this work has been presented
at the Conference on Localized Kxcitations in Solids, Milan, 1966.

f Italian National Council for Research, Gruppo Nazionale di
Strut tura della Materia.' W. Gebhardt and K. Meier, Phys. Status Solidi 8, 303 (1965).' S. E. Schnatterly, Phys. Rev. 140, A1364 (1965).

imperfect lattice, particularly when the perfect host
lattice does not allow 6rst-order Raman scattering (as
in alkali halides). Indeed, when the frequency res of the
incident light is far enough from an electron dipole tran-
sition frequency &„all that the electron can do is to
polarize itself and to induce a dipole moment M which
radiates scattered light of frequency co. Since the elec-
tron polarization consists in a mixing of the ground state
with the optic-active excited states, the vibrational
modes and the coupling coeKcients involved in this
process are the same as those assisting the absorption
process. In this paper we outline briefly the theory of
Raman scattering in crystals, with particular reference
to the phenomenology of Q.rst-order processes induced

by defects in alkali halides. This restriction would not in
principle forbid us to investigate the case of strong
electron-phonon coupling, since we are dealing with a
virtual electron transition. Indeed the comparison be-
tween the theoretical and experimentap Raman spectra
of the F-center turns out to be satisfactory, so that the
quantitative investigation of the electron-phonon inter-
action near imperfections through the analysis of first-
order Raman spectra seems to be feasible.

II. FORMAL THEORY

The relation between the intensities of the incident
and scattered electromagnetic 6elds is fully exhibited by
the fourth-order frequency-dependent tensor. 4 '

Ct e '"'(Pp), (t)P r*(0)), (I)

where 0=toe—
&o, Ppq(t) is the time-dependent operator

for the electronic polarizability tensor of the crystal, and

( ) denotes a thermal average at the absolute
temperature T.

The fact that we are concerned with a fourth-order
tensor is clarified by the analogy between the classical
Raman response and the theory of elasticity. The Max-

3 J. M. Worlock and S. P. S. Porto, Phys. Rev. Letters 15, 697
(1965).

A, A. Maradudin, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1966), Vol. 19.
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Paris, 1966 (unpublished).
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well tensors of the incident and diGused light can be
put in correspondence with the stress and strain tensors,
respectively; then i ypi, (Q) plays the same role as the
elastic tensor. However, the polarizability Ppi, (t), which
is in general a complex function of the incident-light
frequency coo, as well as of the nuclear displacements
u(l, tt) (l being a Bravais vector and tc a cell index), can
be split into Hermitian and anti-Hermitian parts; the
anti-Hermitian part derives from the existence of the
transition frequency or„which introduces absorption
damping. When ~0 is not too close to co„ the tensor
I'p~ can be considered to a good approximation to be
a real, i.e., symmetric, tensor; and so can. i,p&, (Q)
with respect to the first and second couples of indices,
just like the elastic tensor. The symmetry of the
scattering center by itself defines the number of non-
zero independent components of i 7ps(Q). For cubic
symmetry we have only three independent components,

1
namely, z „,=z11, z„yy ——z1g, and z,y,„——z44.

With regard to the dependence on the nuclear dis-
placements, we can expand the polarizability I' „ in
powers of n(l, tt): the zero-order term [independent of
u(I, tt), i.e., no phonons involvedj accounts for the
Rayleigh scattering (Q=O), while the first- and higher
order terms account for the first- and higher order
Raman scattering, respectively. The first-order pro-
cess is characterized by the coefFicient

P pt„(l, tt) =aP.p/r)N„(l, tt) . — (2)

At a given lattice site (l, tt), the polarizability P pt„(l,tt)
transforms like a third-order tensor; its nonzero inde-
pendent components depend on the point group at
(l,tc).'r At a point with inversion symmetry all com-
ponents vanish: indeed no first-order Raman scat-

TABLE I. Nonzero displacement derivatives of
the polarizability tensor.

{i,e}

defect(000)
1st nearest(100)
2nd nearest (011)
3rd nearest(111)

Group 1V(l,e) Nonzero components P el~.

oa
C4, 3
C2„5
C3~ 4

~zg/z j ~yy/x =~zz/x j Ixy/y= I sz/z

~xz/a j ~yy/s j +zz/z j +ay/y j ~cz/z

+11/1 2+11/2 +21/2 j +33/3 j
+31/1 ~32/2 j ~11/3 =+22/3 ~

The indices 1, 2, 3 refer to the orthogonal Cartesian axes (1,1,1),
(1, —1, 0), ( —1, —1, 2).

+Im(lttv ) )I+(I-s—s) &(Q)g (I o «) )
&'tt'ts) ~ (3)

Here z=Q'+2iQO+, Le is the dynamical matrix of the
host lattice, A. (Q) is the frequency-dependent perturba-
tion due to the change of mass and of both central and
non-central force constants, ' Im denotes imaginary part,

tering occurs in pure alkali halides. For the neighbor
atoms of a substitutional defect in a NaC1-type lattice,
P pt„(l, tt) has a number $(l, tt) of independent compon-
ents as shown in Table I.

We make now the assumption that the electron
wave function in the excited states extends not too far
from the defect; thus the contributions coming from
second and higher orders of neighbors are neglected, and
only three parameters enter the first-order part of
i „pq(Q), Eq. (1).As shown in Ref. 4, when a concentra-
tion p of defects is present, the first-order part can be
written out explicitly as

i.,pgt'& (Q) = (pI'tm(Q)/~My) Q Pp) t„(ltr)P.,t„(1'tt')

' R. Fieschi and F. G. Fumi, Nuovo Cimento 10, 865 (1953).' J. F. Nye, in Physical Properties of Crystals (Clarendon Press,
Oxford, England, 1957), p. 110.

s G. Senedek and G. F. Nardelli, in Proceedings of the Confer-
ence on Calculations of the Properties of Vacancies and Inter-
stitials, Skiland, Virginia, 1966 (to be published).
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and K(Q) represents the following expressions:

LI—exp( —AQ/k11T) j ', Q) 0 (Stokes process),
Lexp(AQ/k11T) —1j ', Q(0 (anti-Stokes process),

(4)

where k~ is the Boltzmann constant. Mp is the mass
of the nearest neighbor. In our cise it is convenient
to work in the representation of the normalized sym-
metry coordinates (I'j~l/1/1) which pertain to the per-
turbation h.(Q). Here I' is each one of the irreducible
representations contained in A(Q), and j refers to the
jth partner function of I'. Equation (3) can be written as

'.„„'(Q)=(PhX(Q)/2 M Q)P P, , /P. „./ .(Q), (5)

where
P„„/r;=g P, /(1~)(I'j~ l~/1) (6)

represents the change in polarizability induced by a
strain of (I',j) type and pr(Q) is the frequency density

for the perturbed F type of phonons. ' ' For a perturba-
tion A(Q) extending only to the erst neighbors of the
defect, the F~5, F~, F~2, F25', F~5', and F25 symmetry
modes are allowed to occur in a NaCl-type lattice. s

The F~5 modes, the ones which involve the defect
mass, are symmetrical with respect to the defect; then
I' V~r, »—=0. All the other modes keep the impurity at
rest and are antisymmetrical with respect to the defect.
F~ and F~2 modes are induced by the local change in the
central-force constant ), while F25', Fj5', and F25 modes
are induced by the local change in the noncentral-force
constant X'. Figure 5 shows these symmetry coordinates
(or correspondent strains). If P v is isotropic, only I'1
contributes a nonzero strain derivative, as given by
Eq. (6); if P „ is symmetrical, I'12 and I'25' also con-
tribute. As said before, for coo near m„ the tensor I' ~
can have an antisymmetrical part which transforms
according to F~5'. The symmetry F25 is never involved.

For the modes we are concerned with, the densities
of the one-phonon states read

—1

pr, (Q) = (4M'~/X) Im 1+— (g4+(Q)+2g, +(Q))
23fp

—I

pr„(Q)= (4Q3E~/X) Im 1+- (g4+(Q) —g,+(Q))
23Eg

(7b)

pr„(Q) = (4'„/Y) Im 1+- (g,+(Q)+.2g,+(Q))
23fg

(7c)

p „(Q)=(4M' /A') I 1+ (g +(Q)—2g+(Q))
2M'

where b„+(Q) are the following complex-valued integrals on the Brillouin zone:

g4"(Q) = 2v, p dq e,'(W
~ qs) sin'2s. ag./(1e '—s)

S

(7d)

(Sa)

g~+(Q) =21'.p dq e (W
~
qs)e„(W

~
qs) sin21raq, sin21rag„/(re~. 2—s), (Sb)

ge+(Q) =2e, p dq e,'(+
~ qs) sin'2saq„/(n1„' —s). (8c)

e1~, and e(W ~qs) denote eigenfrequency and polariza-
tion vectors of the host-lattice mode with wave vector
q and branch index s; 2u is the lattice constant, and
p, =2u' the cell volume. It is now interesting to follow
an alternative way of reducing the tensor P ~/„(+x)
(where +x refers to the two nearest neighbors which are
in the x direction). The strain tensor at the defect site
for a given antisymmetrical displacement of the neigh-
bors is

e,„=I„(+x)/a;
since the defect nearest neighbors lie just on the (posi-

tive or negative) coordinate axes, P p/„(&x) can be re-
placed by the fourth-order tensor

Pap/av= a ~Pap/~epv

which is symmetric in np (for
~

nate
—co, ~&&0) and /1v, and

is to be ascribed to the defect site, which has full cubic
symmetry. Thus the three independent nonzero corn-
ponents (see also Table I) are

Paa/aa~ ip11 v Paa/wv= iP12 v Pay/ay= iP44 ~ (11)

' T. Timnsk and M. V. Klein, Phys. Rev. 141, 662 (1966).
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FIG. 2. Theoretical and experimen-
tal F-center-induced Raman spectra
(Stokes side). NaC1: theoretical Grst-
order (a) and experimental (b) parallel-
polarized spectra; theoretical hrst-
order (c) and experimental (d)
perpendicular-polarized spectra; theo-
retical (second-order added) (e) and
experimental (f) unpolarized spectra.
KC1: theoretical (g) and experimental
(h) unpolarized spectra.
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In the symmetry coordinate representation, the
strains are given by the unitary transformation

er, = (e, +e»+e„)/v3, er», i——e,„
er„,i ——(2e„e» e„)—/6'fs—, er„,s= e„, (12)

er„,p
——(e„—e»)/V2, erg'', 3= ezra

and the nonzero symmetry strain derivatives are

&gg)r, =&»)r& =&*4~r, =~& '(&Pit+2&Pip)

~ex/r12, 1 2~yy jr12,1 zz/r12, 1

=(2/6"')(6' -&P ) (13)

&~y]r», 1=~yzi r», 2= ~z*(r»,3= 6'44

The components of the first-order Raman tensor for
cubic crystals read finally

iii &» = (pkm(Q)/64r MpQ) {(&Pit+ 2&Pip) 'pr, (Q)

+2(6 -6 )'p.„(Q)),
its &'& = (pkX(Q)/6rr MwQ) {(&Pit+ 2&Pip) 'pr, (Q)

-(6 -&P )'p...(Q)}, (14)
i44&» = (pkm(Q)/64rM+Q) {3&P44'pr „(Q)},
where i»('), i»('), and i44('& have been delned already.

III. THE COUPLIN'6 COEFFICIE5'TS

At this point the formal theory is fully developed:
every quantity in Eqs. (14) can be numerically evalu-
ated, except for the coeKcients O';;. We try now to ex-
press these coefficients in terms of quantities which can
be measured experimentally, namely, the oscillator
strength f, and the hydrostatic, axial, and trigonal
coeKcients A, 8, and C, respectively, ' ' which describe
the shift and splitting of the absorption peak under ex-
ternal stresses. Assume for our electron only one three-
fold degenerate excited state of configuration 2p (I'is in
cubic crystals), while the ground state is 1s (1'i). For a
suitable set of displacements {u(lx)), here denoted for
brevity by X, the degeneracy of the 2p state is fully
resolved and there are three transition frequencies or„;
(i= 1, 2, 3) which depend on X.Notice that X is just the

I'„ir, V3AZ(ppp), ——
+gg/r44, 1=—2E»)rip, l——(2+6)8E(&pp) )

E,„ir„,i CE(&pp), ——
(18)

while, in agreement with the symmetry predictions, all
the other noncyclic derivatives are found to be zero.
We have put

K(&p) = (fe'/um) L2ot,/(&p, s &p')'j. —(1,9)
Thus,

and

&Pit ——E(&pp) (A+48),
&Pip

——E(&pp) (A —28),
&P44 ——E(ppp) C,

(2o)

i„&»= (pkat(Q)/6x M~Q) K'(&pp)

&& (9A 'pr, (Q)+728'pr„(Q) },
sip&'& = (pkBY, (Q)/6x MpQ)E (&pp)

X{9A'pr, (Q)—368'pr„(Q)), (21)

i4, &» = (pkZ(Q)/67rM+Q) K'(&pp) (3C'pr„(Q) ) .
44 D. A. Kleinman, Phys. Rev. 134, A423 (1964).

usual configurational coordinate. For
~

&op pp, , ~))—Q, the
polarizability tensor can be written as'

1 3 2(dz, qI' p(X) = Q—M, *&'(X)M, e&'&(X). (15)
3Q i~1 Q) .2 02

The index i=1, 2, 3 labels the principal axes of the
strain dyadic, and

M„&'&(X)—=e(2p, i~x ~1s) (16)

is the dipole moment of the transition, e and x being the
charge and the position vector of the electron. For the
equilibrium configuration X=X1, of the ground state,

)M,(Xi,) ~'=3fke'/2m~„(17)
fts is the electron mass; here the superscript (i) is ir-
relevant. In a first-order approximation, i.e., when we
keep the electronic functions unchanged, it is found that
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Tmr, E II. Values of the parameters used in the calculation of the F-center Raman spectra and vibrational resonant frequencies.

Crystal

NaC1(F center)
KC1(t center)

1.52
1.26

Stress coefIIcients
(eV)

0.28
0.54

1.14
1.30

Change in nn
force constant

~/fef f

—0.8—0.6

Resonance frequencies
(10"sec ')

~l I'12

1.50 2.40 2.31

A, 8, and C are the hydrostatic, axial, and trigonal
coeKcients, respectively.

IV. NUMERICAL RESULTS AND CONCLUSIONS

As we have a reliable experimental knowledge of the
coeScients A, 8, C, ' ' and of the Raman spectra' for
F-center-doped NaCl and KCl at T= 77'K (see Table
II), the calculated functions itr &'&, i44&'&, and itt&'&+i44&"

should allow for a direct comparison with the experi-
mental "parallel-polarized, " "perpendicular-polarized, "
and unpolarized spectra, respectively (Fig. 2), in these
crystals. ' The experimental data here reported do not
permit us to make a comparison between intensities.
Our information on both experimental and theoretical
second-order Raman spectra of the pure host crystal" "
allows us to correct the theoretical first-order spectra for
the bulk second-order contribution. The densities of
states pr(Q) for each representation involved in Eqs.
(7) have been calculated by using Hardy's deformation-
dipole model' for the host lattice dynamics with
T=O'K input data and a grid of 4096 points in the
Brillouin zone; different values of 3 were employed,
while }t' (which is of order —0.2X) was taken to be zero
(notice that Eqs. (7c) and (7d) retain their meaning).

In the case of the Ii center in NaC1 and KC1 crystals,
the best 6t to the experimental spectra is obtained for
X= —0.8f,«and X= 0.6f,«, respe—ctively, f,«being
the nearest-neighbor effective force constant for the
host lattice': These values of X are found to be consistent
with the values estimated a priori by assuming a Born-
Mayer potential for the second-neighbor repulsive inter-
action between the positive ions around the P center
and using reasonable values for the local defect of ionic
charge and nearest-neighbor inward relaxation for the
E center in the ground state (=—

10%%uo). The present
value of P for KCl accounts also for the F-center-
induced low-frequency resonant mode deduced from
thermoconductivity measurements. " In Table II the
resonance frequencies corresponding to the chosen X

"H.L. Welsh, M. F. Crawford, and W. J. Staple, Nature 164,
737 (1949).

"A. C. Menzies and J. Skinner, J. Phys. Radium 9, 93 (1948);
9, 60 (1948).

's A. M. Karo and J. H. Hardy, Phys. Rev. 141, 696 (1966).
'4 J. R. Hardy, Phil. Mag. 7, 315 (1961)."C.T. Walker, Phys. Rev. 132, 1963 (1963).

values are reported. For realistic values of X', no reso-
nance occurs for "noncentral" representations.

It should be noted that, when the resonant mode falls
into s, region of high density of frequencies, only a broad
peak is expected in the shape of pr(Q): this occurs for the
Ii center, as shown in Fig. 2. The agreement between
calculated and experimental spectra (Fig. 2) seems to be
satisfactory, provided that the second-order Raman
spectrum of the host lattice, occurring in the high-
frequency region, is added to i;,&'&. The discrepancies
could be ascribed to the anharmonicity effects on vibra-
tions (particularly the third-order one due to the asym-
metrical potential well of the neighbor atoms) are
expected to be important at T=77'K. The following
test of the validity of our calculations is obtained from
the Raman data on KCl: I . After deducing the value
of X (X=0.3f,«) from fitting the I'ts-resonance frequency
on that observed in thermoconductivity measurements"
and by using reasonable values for the coupling coeK-
cients, the Raman spectrum is found to exhibit a strong
structure centered at co=1.20)&10" sec—', which agrees
with that observed by Stekanov and Eliashberg. "We
conclude that:

(i) The observed Raman spectra of the F center are
to be ascribed to impurity-induced first-order Raman
scattering, even if they do not present sharp reso-
nance peaks;

(ii) The accurate analysis of the Raman spectra
combined with a good knowledge of the vibrational
states is able to give deep insight into the electron-
phonon interaction at color centers;

(iii) The method used in Sec. III for determining the
coupling coefBcients can be easily applied to the case
in which odd-parity perturbed normal modes are in-
volved in the excitation of the optic-active V~5 local mode
(sidebands of U center in alkali halides). Stress experi-
ments on the infrared U-band would enable us to ob-
tain the coupling coefficients which weight the irreduci-
ble representations occurring in the sidebands. Details
on this topic are given elsewhere. "

"C.T. Walker and R. D. Pohl, Phys. Rev. 131, 1433 (1963).
'VA. J. Stekanov and M. B. Eliashberg, Fiz. Tverd. Tela 5,

2985 (1963) t English transl. : Soviet Phys. —Solid State 5, 2185
(1964)j.' G. Benedek and G. F. Nardelli, Phys. Rev. Letters, 17, 1137
(1966).


