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Optimally focused cw gas-laser beams were used to make an accurate absolute measurement of optical
second-harmonic generation (SHG) in ammonium dihydrogen phosphate (ADP) and accurate relative
measurements of the higher order quadrupole-type SHG and electric-field-induced SHG in calcite. The
result of the first set of experiments was die(ADP) =1.38X10~ esu&16%, in excellent agreement with the
value determined by Francois using unfocused beams. This agreement demonstrates that focused laser beams
can be used to make accurate measurements of crystal nonlinearities, and it provides further evidence that
the value of d&e in potassium dihydrogen phosphate (KDP), normally taken as the standard nonlinearity,
is considerably smaller than the value usually quoted. The nonlinearity describing quadrupole-type SHG
in calcite was found to be 2.8&(10 i dec(ADP) +14%, and that for electric-field-induced SHG was 2.1&&10 e

d36(ADP) &24 j&. The second-harmonic power from calcite could not have been measured without the
enhancements available from focusing. A displacement of the parabolic curve of second-harmonic power as
a function of the applied electric field was noted, and it was shown that this shift was not caused by in-
homogeneous applied electric fields. The very small induced birefringence in calcite which depends quad-
ratically upon the applied electric Geld was also measured.

I. INTRODUCTION
' 'HE most accurate absolute measurements of non-

linear optical effects have been made using the
light beams from cw gas lasers. The reason for this
accuracy is that the mode structure of a gas laser can
be accurately controlled; knowledge of the mode struc-
ture makes it possible to carry out detailed calculations.
There is a major disadvantage, however. The optical
powers available from gas lasers are orders of magnitude
smaller than the powers obtained from pulsed solid-
state lasers and hence the nonlinear effects are much
weaker and more difficult to observe. Thus, the tech-
nique of index matching' ' is usually employed in order
to measure optical second-harmonic generation on a cw
basis. In order to further improve the conversion
eS.ciencies, the laser beam can be focused inside the
nonlinear medium. The case of optical second-harmonic
generation (SHG) by a focused Gaussian laser beam in
double-refractive, index-matching crystals has been
analyzed in a previous paper by one of the authors. '
It was shown that for a given nonlinear crystal there is
an optiInum degree of focusing which yields a maximum
amount of second-harmonic power for fixed laser beam
power. This maximum second-harmonic power can be
several orders of magnitude larger than the power
generated by a collimated or unfocused beam. The
purpose of this paper is to report accurate measure-
ments of several nonlinearities associated with SHG in
crystals of ammonium dihydrogen phosphate (ADP)
and calcite. The experiments were carried out with

*This research was supported by the U. S. Air Force OKce of
Scientific Research Contract No. AF 49(638)-1525.

t Present address: Bell Telephone Laboratories, Murray Hill,
New Jersey.' J. A. Giordmaine, Phys. Rev. Letters 8, 19 (1962).

~ P. D. Mak. er, R. W. Terhune, M. NisenoB, and C. M. Savage,
Phys. Rev. Letters 8, 21 (1962).' J. E. Bjorkholm, "Phys. Rev. 142, 126 (1966).

optimally focused beams from a He-Ne laser operating
at 6328 A in the lowest order transverse (Gaussian)
rn.ode.

In the first section of this paper we report the accu-
rate absolute measurement of the nonlinear suscepti-
bility tensor element d36 in ADP. In spite of the fact
that there have been several previous absolute measure-
ments of d36 in ADP and in potassium dihydrogen
phosphate (KDP) made with unfocused laser beams, ' '
there were good reasons to repeat these measurements
using optimally focused beams. First of all, the experi-
ments reported in Ref. 3 only confirmed that the de-
pendence of the second-harmonic power P~„upon the
degree of focusing of the laser beam was as predicted
by the calculations. In order to complete the verification
of the theory, it is also necessary to show that the
absolute value of P2„was in agreement with the
calculations. Our measured value for d36 was found to
be in excellent agreement with the accurate value deter-
mined by Francois' in detailed experiments using
unfocused beams. This agreement is the required further

. confirmation that the calculations carried out in Ref. 3
do accurately describe SHG in the focus of a Gaussian
laser beam. In addition, the agreement of our measure-
ments with those of Francois provides further evidence
that the value for d36 in KDP is considerably smaller
than the value usually quoted in the literature. These
more accurate absolute values for d36 in ADP and their
implications for d36 in KDP are important because
these elements are often taken as standard nonlinearities
against which other nonlinearities are compared in
relative measurements. '
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The remainder of this paper is concerned with accu-
rate cw measurements of the very weak SHG which
occurs in crystals of calcite. Calcite has a center of
inversion, and dipolar SHG (like that which occurs in
ADP) cannot occur. Thus SHG in calcite is due to
higher order nonlinearities and these effects are much
weaker. They are so small, in fact, that we could not
have measured them on a cw basis without the use of
focused laser beams. In our experiments we measured
quadrupole-type SHG and electric-6eld-induced SHG
relative to the SHG obtained in crystals of ADP. These
effects in calcite were 6rst measured by Terhune,
Maker, and Savage (TMS) using a pulsed ruby laser. '
Our experiments yield xnore accurate measurements of
the two nonlinearities. The displacement of the para-
bolic curve of second-harmonic power as a function of
the applied electric field mentioned by TMS was also
noted in our experiments. Although the exact origin
of the curve shift could not be determined from our
measurements, it vras ascertained that it was not due to
inhoxnogeneous applied electric fields. ' Several other
possible explanations for the curve shift are discussed.
A measurement of the very small induced birefringence
depending quadratically upon the applied electric field
was also carried out.

II. MEASUREMENTS IN ADP

The basic experimental setup used in our measure-
ments is shown in the schematic diagram of I'ig. i.
The He-Ne laser was operated at 6328 A in the lowest
order transverse mode. A narrow-band interference
6lter, not shown in the diagram, was used to eliminate
the Quorescence of the laser tube. Discussion of the
experimental setup and the techniques used in the
measurements will not be given here since they are the
same as those described in Ref. 3. The discussion given
here will concern itself with a description of the method
used to xneasure the generated second-harmonic power
on an absolute basis.

It is very dificult to calibrate a low level photo-
multiplier accurately in terms of absolute light power.
In order to avoid this problem, the following technique
was used to absolutely measure the second-harmonic
power. The signal evoked in the detection system by
the unknown amount of second-harmonic radiation was
directly compared with the signal due to a knovrn
amount of light at the fundamental frequency im-

pinging on the same photomultiplier, with all electronic
adjustments remaining unchanged. Thus, the gains of
the electronic apparatus and of the electron multiplica-
tion drop out of this comparison, leaving only the ratio
of the sensitivities of the photoxnultiplier's photocathode
at the two wavelengths. If this ratio (i.e., ratio of the

' R. W. Yerhune, P, D. Maker, and C. M. Savage, Phys. Rev.
Letters 8, 404 (1962).

'N. Sloembergen and P. S. Pershan, Phys. Rev. 128, 606
(1962l.
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FIG. 1. Schematic diagram of the experimental setup.

sensitivities in arnperesiwatt at the two wavelengths)
can be determined, the amount of second-harmonic
power that had been measured can be calculated. The
laser itself, of course, is the ideal source of fundamental
radiation against which the second harmonic can be
compared. Its relatively high-level output can be ac-
curately measured using a thermopile and then highly
attenuated using precisely calibrated attenuators so
that the two signals are comparable in strength. Thus,
the problem of measuring the second-harmonic power
is in eBect reduced to a measurement of the ratio of the
photomultiplier sensitivity at the second-harmonic
wavelength to that at the fundamental, plus an accurate
calibration of attenuators at the laser frequency.

The ratio of the sensitivities, which will be denoted

by R, was determined using a stable, high-pressure
xenon arc lamp, a quartz prism monochromator, and
a sensitive thermopile having a relatively fast response
tixne. The basic procedure followed in measuring R is
straightforward. The high-intensity xenon lamp, in
conjunction with the monochromator, was used as a
source of radiation in the regions of 6328 and 3164 A.
Because the arc lamp was intense enough, the sensitive
thermopile could be used to make a relative xneasure-
ment of the powers in the two regions. The signal-to-
noise ratio of these measurements was improved by
chopping the light at about 40 cps and processing the
resulting ac signal from the thermopile with a lock-in

amplifier. Next the radiation from the monochromator
was strongly attenuated in such a fashion that the
intensities in both regions were equally d.iminished, and
the ratio of the responses of the photomultiplier to
radiation in the two regions was xneasured under condi-
tions as similar as possible to those actually encountered
in the measurement of the second-harmonic power. The
strong neutral attenuation was achieved by defocusing
the light source from the entrance slit of the mono-
chromator and by stopping down both the entrance
and exit slits. The monochromator slits could be used
as neutral attenuators because the power spectrum of
the xenon lamp vras a smooth curve vrhen viewed
through the lovr-resolution monochromator. This asser-
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tion was verified by using the thermopile to measure
the ratio of the power transmitted at 6328 A to that
transmitted at 3164 A for five different total mechanical
slit widths. Knowledge of the relative powers in the
regions of 3164 and 6328 A and the relative responses
of the photomultiplier to these powers yields the result
for R.

In the actual measurement of d36, the RCA—6903
photomultiplier was calibrated both immediately pre-
ceding and just after the second-harmonic power gen-
erated in the crystal of ADP had been compared with
a known amount of fundamental radiation. The result
for the ratio of the sensitivities of this particular
tube was

sensitivity at 3164 A
R= =9.5&0.9,

sensitivity at 6328 A

where the sensitivities were in units of amperes/watt.
In both cases, the response ratio of the photomultiplier
was measured with the monochromator slits smaller
than the limits of resolution. A glance at the typical
spectral sensitivity characteristics for the RCA—6903 is
enough to convince one that the corresponding resolu-
tion of 2.5 A at 3164 A and 50 A at 6328 A is adequate
to determine an accurate value for R.

The various filters used in the measurement of d36

were calibrated in the following ways. The attenuators
used to compare the known amount of laser light with
the second harmonic were directly calibrated using a
therrnopile for attenuations of less than 10 dB and a
photomultiplier in conjunction with the phase-sensitive
detector for larger values. It was also necessary to
measure the absorption of second-harmonic radiation
by the four CS 7—54 6lters which were used to block
the laser light from the photomultiplier. This was done

by first measuring SHG with four filters in the beam and
then with only three.

The second-harmonic power P2„generated in a crys-
tal is related to the crystal nonlinearity by Eq. (31)
of Ref. 3,

Es /P„'=AX'g.

The parameter X is the generalized nonlinear suscepti-
bility, P„ is the laser power, g is the geometrical factor
defined in Eq. (35) of Ref. 3, and the coefficient A is
the numerical factor appearing in Eq. (31) of Ref. 3.
For crystals of ADP the value of A is 88.5 and in
calcite it is 32.2.

The actual measurement of d36 was carried out using
a crystal of ADP 1.52 cm long. The radius of the colli-
mated laser beam, S", was 0.185 cm. Hence, optimum
SHG is obtained with a lens having a focal length of
234 mm; in our measurements a lens having a 250-mm
focal length was actually used. The corresponding value
for g can be obtained from Fig. 5 of Ref. 3 and was
2.3&(104. The measurements of the laser power were
made with an Kppley 12-junction thermopile. This

instrument was the standard upon which our absolute
measurements were made. It was compared for accuracy
with several other thermopiles; all agreed within 1%.

When the entire measurement procedure had been
carried out, it was found that for 1.04 mW of laser
light incident on the crystal (corresponding to 1.00 mW
inside), the second-harmonic power reaching the photo-
multiplier was 4.8X10 "W &30%. Taking crystal
reQections and Alter absorption into account, this cor-
responds to a total generated second-harmonic power of
'/. 8X10 "W +32%. The value of dss is calculated
from this data using Eq. (2), with dss substituted for X.
The result is

dss ——1.38X10 ' esu +16%. (3)

This value for dss contains a correction factor of 1/v2
which is needed because of the enhancement of P2
caused by the multimode nature of the laser output. 4

The magnitude of this correction has been thoroughly
investigated and found to be valid for the particular
laser used here in measurements carried out by
Francois. '

The value which we have measured for d36 is in ex-
cellent agreement with the detailed experiments carried
out by Francois using collimated laser beams. ' His re-
sult is dss ——1.36X10 ' esu +12%. It must be pointed
out that his measurements were carried out using much
of the same equipment and some similar techniques;
the actual experiments, however, were carried out inde-
pendently and separated in time by about six months.
Thus the results of our measurements are twofold.
First, we have shown that the absolute power levels pre-
dicted by the calculation of Ref. 3 are correct. Second,
we have provided another accurate value of d36 in ADP.
Except for the work of Francois, previous measurements
have yielded results a good deal larger than Eq. (3).
McMahon and Franklin' have reported the result d36
= (2.0&0.5)X10 ' esu. The result reported for dss in
KDP at 1.15 p by Ashkin, Boyd, and Dziedzic (ABD)4
was (3+1)X10 ' esu. ABD pointed out that this result
did not incorporate the correction factor for the presence
of more than one longitudinal mode in the laser beam.
Nevertheless, it is this value which is normally quoted
in the literature as the value of d36 in KDP. Our meas-
urements indicate that a smaller value mould be more
appropriate. In particular, the value of d36 in KDP at
1.15 p, is estimated to be approximately 1.3&(10 ' esu
by using our result for d36 in ADP at 6328 A in con-
junction with Miller's phenomenological theory, "Zer-
nike's refractive index data, "and the relative measure-
ments of dss (ADP) and dss (KDP) carried out by
Miller, et al.r Inasmuch as dss (ADP) and ds, (KDP)
are often taken as standards against which other non-
linearities are compared in relative measurements, these
results take on added significance.

's R. C. Miller, AppL Phys. Letters 5, 17 (1964).
"Frits Zernike, Jr., J. Opt. Soc. Am. 54, 1215 (1964).
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III. MEASUREMENTS IN CALCITE

A. Nonlinear Optical EBects in Calcite

The nonlinear optical properties of solids were con-
sidered in great detail in the paper of Pershan. "The
reader is referred to this paper for a more thorough and
rigorous discussion of nonlinear optical effects than will

be given here. In this section we shall only be concerned
with a physical understanding of the various effects
which were measured in calcite.

In order to describe the nonlinear optical eRects
which can occur in a medium, it is convenient to ex-
press the induced dipole and quadrupole moments per
unit volume as a power series in the electric Q.elds, their
gradients, and the magnetic Gelds present in the
medium. Thus, in a qualitative fashion we can write

P,=X;, (') 8,+X;;k(')8,8k

+X'lk")&,8k+X*,7")83('k+X;,ki")8,8k8) (4)
+X*"ll(') 8 8k 8)+X'Jki") 8 8ksel+

Q'' )l'jk 8k+rl'jkl 8k8l+ ' ' '.
It is stressed that Eq. (4) is far from rigorous; for in-

stance, the X's and p's are actually functions of the
frequencies of the various fields with which they are
associated. The equation is useful, however, in helping
to understand the origin of various nonlinear optical
eRects and the relationships between them. For instance,
the nonlinear susceptibility element X;,&(2) is responsible
for SHG and for the linear electro-optic effect in crystals
such as ADP, KDP, and quartz. In order to display
the frequency dependence of X(2&, the coefficients de-
scribing SHG will be written as X„.k(s) (2o),o),o)) and these
are not the same as the coefficients X;;k(')(o),o),0) de-

scribing the linear electro-optic effect. In a similar
fashion, X„kl(')(3o),o),o),(d) gives rise to optical third-
harmonic generation, x@k,("(2o),0,o),o)) to electric-field-
induced SHG, and x;,kl(')(o), o),0,0) to the quadratic
electro-optic effect.

Calcite belongs to the crystal class 3m; it is a trigonal
crystal having a center of inversion. Because of its
inversion symmetry the coefficients X&'), X&'), X( ), and
))(') in Eq. (4) are all required to be zero. Thus, the
largest nonlinear effects in calcite are of one higher
order nonlinearity than are the effects in noncentro-
symmetric crystals. In calcite, Eq. (4) takes the form

P,.—X, ( )8.+X, ( )8,3(k+X,, ( )8,8„8
+X;;ki")Qk8i+ . , (5)

Q;;=rl;; (')8 8+ . ..
There are two separate types of SHG in calcite on

which we will focus our attention. The 6rst can be
referred to as quadrupole-type SHG(QSHG). Pershan"
has shown that for the case of SHG the effects arising
from X&'&, X& ~, and g('~ can be combined and can be
represented as occurring because of the presence of an

"P.S. Pershan, Phys. Rev. 130, 919 (1963).

TABLE I. The general form of )(;;kl (or p;;kl) for
the crystal class 3m.

yy ss ys xy

Xll X12
X12 Xll
X31 X31
X41 X41

X51 —X51
xs
sx

X13 X14 X15
X13 X14 X15
X33

X44 X45

X54 X55

X44 X45

X54 X55

X14 X15

X41 X41
X51 X51

Xll X12 Xll X12

yx X14 X15

X11 X12 Xl1 X12

2 2

B. Calculation of the Second-Harmonic Power

In carrying out this calculation the same techniques
employed in Ref. 3 will be used. The equation for the
second-harmonic electric field can be written as"

4'
vx vxm(2 )— (1+4 x) E(2 )

C2

167l
(P(2(0)—& (f(2o))) . (8)

Q2

effective quadrupole moment at the second-harmonic
frequency. Thus QSHG can be described by an equa-
tion of the form

q,, (2o)) =));,kl (2o),o),(d) 8k(o)) 8) (o)) . (6)

The subscripts refer to the crystallographic axes, and

q;, (2(0) and 8k(o)) are the space-dependent amplitudes
of the quadrupole moment and the optical electric held
having a time dependence of e—""' and e '"', respec-
tively. Additional SHG can be induced in calcite by
applying a dc electric Geld to the crystal. It can be said
that the application of the biasing electric 6eld upsets
the center-of-symmetry of the crystal and allows normal
dipolar SHG to occur. This eRect is referred to as
electric-field-induced SHG (or ESHG). The space-
dependent amplitude of the dipole moment per unit
volume induced at the second-harmonic frequency is

p;(2(d) =x;,kl (2~,0,o),(d) 8, (0)8k (o)) 8l (o)) . (7)

The general form for a fourth-rank tensor X;,kl (or
r);,kl) describing an effect in a crystal having the sym-
metry 3m is shown in Table I. The tensors in which we
are interested reQect the symmetry of the effects which

they describe as well as the syinmetry of calcite. Thus
the tenSOr X,,k, (2(0,0,o),(d) in Eq. p) iS SymmetriC in
its last two indices and the tensor ri,,ki(2o), o),o)) in Eq.
(6) is symmetric in both its first and last pair of indices.
Using Eqs. (6) and (7) and the correct forms for the
relevant tensors, the second-harmonic power obtained
will be calculated for the particular experimental situa-
tion which we used.
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The importance of this equation is that it shows that
the source driving E(2~) is p(2&a) —V g(2&v). The calcu-
lations of Ref. 3 were carried out for a polarization
driving source and hence the results of those calcula-
tions must be slightly modified when applied to calcite.

In our experiments the focused laser beam passed
through the crystal as an ordinary wave linearly po-
larized along the crystal F axis (the axis lying in a
mirror plane" ).When measuring ESHG, the dc electric
Geld Eq, was applied along the same axis. The s axis of
our coordinate system is chosen as the axis of the laser
beam, and the y axis is the same as the I' axis of the
crystal. Since index matching was used, only the com-
ponent of the driving source along U, the unit vector
specifying the polarization of the free extraordinary
wave at 2~, is eRective in SHG. In calculating the
driving source, the transverse spatial derivatives are
neglected with respect to the longitudinal derivatives
because BE (&o)/Bx=BE'(&u)/By((2/k1wo)BE (~)/Bz and
2/k1wo((1. The parameter k1 is the magnitude of the
propagation vector of the ordinary light at co, and mo

is the radius of the laser-beam focal spot. In the same
approximation we have BE2(~)/Bz=2ik2E2(cv). The re-
sulting driving source is

0Lp(2 )—V q(2 )3
= —(X51Ea +2ik22Ie«) sin'(8~+n)E'(~), (9)

where

2Ie« '$12 cos8m 2j&2 s1118N, cot(8~++) . (10)

The index-matching angle is 8 and o. is the double
refraction angle. The analysis of Ref. 3 can be used to
find E(2~) with X replaced by —(X2&Ea,+2ik1g,«).
Thus E(2') is given by Eq. (2/) of that reference when
the correct substitution is made for X.

In proceeding further, however, caution must be
exercised. The reason for this is that in order to calcu-
late the second-harmonic power generated in calcite the
correct form of the Poynting's vector must be used to
include the presence of the quadrupole moment at 2'.
Pershan" has shown that the correct Poynting's vector
is given as

C 8s=—EXH—E —Q,
4m 8$

(sin2'Akz') —' 4k', gp 1(sin'2Akz') '

E —'Akz' ] sin(8 +a) z'E —Akz' )

where

1—cosh ks'
X

aks'

22roP sin'(8 +n) (sin22Akz') 2

222'c cos'u k —2,Akz'

(12)

n~' is the index of refraction for the laser beam, and
s' is the distance from the entrance face of the crys-
tal. The last two terms of Eq. (12) occur because of
the quadrupole correction to the Poynting's vector,
and their importance increases as hk increases. Using
the experimentally measured relation 2kjg ff j.40X5g,
estimate shows that for propagation at the beam di-
vergence angle to the index-matching direction (under
conditions of optimum focusing) the correction terms
are smaller than the normal terms, but not necessarily
small enough that they are negligible. Thus, for an
actual laser beam, which is composed of many plane-
wave components, one might expect to see some eRects
due to the quadrupole correction. Also, these eRects
should increase as the beam is more strongly focused.

It is expected, however, that the Grst two terms of
Eq. (12) will describe the dominant behavior of SHG
in calcite. The correction terms may or may not be
evident as slight modiGcations to this behavior. Thus
Eq. (2) will be used to d.escribe SHG in calcite unless
experiments should indicate otherwise. Of course, X'
must be replaced by XX~ and the correct substitution
made for X.

the eRects of the correction term can be obtained by
considering the simple plane-wave problem.

Consider a plane-wave laser beam propagating
through calcite with the slight mismatch lB. The solu-
tion for E(2~) is obtained from Eq. (19) of Ref. 3; the
result is substituted into Eq. (11) which is then aver-
aged over time. One obtains

2geffX51~de ~
8 8=A 4k2'2I «'+&51'Ea'—

sin(8 +n) z'

where the various Gelds are now time variables, not
space-dependent amplitudes. The correction terms in-
volving the quadrupole moment can be understood by
realizing that electrical currents are associated with a
quadrupole moment which is changing with time, and
the interaction of these currents with the electric Gelds
represent a Qow of energy through the medium. The
presence of this correction term greatly complicates the
exact evaluation of I'2„. Qualitative understanding of

'3 Standards on Piezoelectric Crystals, Proc. IRK 37, 1378
(1949).

C. Equiyment

Because the second-harmonic power generated in
calcite is on the order of 10 ' of that generated by a
comparable crystal of ADP, much of the equipment used
in these measurements was diRerent from that previ-
ously described. The laser was a Spectra-Physics model
125 He-Ne laser operating at 6328 4 and having a
usable output of approximately 50 mW. The output
beam of the laser was collimated by the output mirror.
Even with the more powerful laser the SHG in calcite
was still several orders of magnitude smaller than that
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z
(OPTIC AXIS)
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FxG. 2. Orientation and dimensions of the calcite crystal
used in the measurements.

previously detected from ADP. For this reason an
RCA—1J'28 photomultiplier cooled to liquid nitrogen
temperature, —195.8'C, was used as the detector.
When the cathode was well shielded from light, its
dark current, as viewed with an oscilloscope, was on the
order of tens of electrons per second; this response cor-
responds to an incident second-harmonic power of
about 2X10 '~ W.

The crystal used in these experiments was of highest
optical quality and was cut vvith the orientation and
dimensions shown in Fig. 2; it was polished on all six
sides. All faces were Rat to within two wavelengths and
opposite faces were parallel to better than 5 min. , the
entrance and exit faces to better than 30 sec. The F
axis was within 1' of being perpendicular to the large
faces. The optic axis was oriented so that at index-
matching the laser beam would be nearly normal to the
entrance and exit faces.

The large electric fields required to measure ESHG
were applied along the I' axis of the crystal. In order to
make the applied Geld as homogeneous as possible Qat
copper electrodes 3.2 cm square, larger than the largest
faces of the crystal, were used. They were incorporated
into a plexiglas crystal holder and were applied directly
to the crystal which was held in place with a small
amount of pressure. In order to prevent breakdown
around the crystal when measuring ESHG it was im-
mersed in G.E. SF-97(100) silicone dielectric Quid
which is nearly transparent to the second-harmonic
radiation. The crystal was mounted so that it could be
rotated around its I" axis, and its angular position
could be controlled to better than 0.05 deg.

The measurements in calcite were carried out in a
relative fashion; that is, the SHG from calcite was
compared with SHG from ADP and the value of the
nonlinearity in calcite was computed relative to d36.
This approach was more accurate than a direct absolute
measurement.

D. Measurement of Q&HG

Measurements of quadrupole-type SHG were carried
out with the crystal mounted in air. The actual experi-
mental procedure was straightforward. First QSHG was
measured under conditions of optimum focusing. Then,
after several measurements were taken, the procedure
was repeated with the laser beam attenuated and un-
focused in a crystal of ADP. Direct comparison of the
detected second-harmonic powers yielded the value of
the quadrupole-type nonlinearity in terms of d36.

An actual experimental curve of the variation of the
quadrupole-type second-harmonic power as the calcite
crystal was rotated through the index-matching direc-
tion is shown in Fig. 3. The width of the curve corre-
sponds very nearly to the divergence angle of the fo-
cused light. The curve was made using a chart recorder
driven by the lock-in ampliGer as the crystal was
slowly rotated by a synchronous motor. The zero line
corresponding to zero QSHG does not correspond to
zero signal, for there was a background signal associated
with the laser beam. As shown, when the laser beam was
blocked the signal disappeared. There are several pos-
sible explanations for the background radiation. It
could be due to SHG at the crystal surfaces, SHG at any
of the other surfaces through which the laser beam
passed, or to a slight amount of laser tube fluorescence
in the region of 3164 A transmitted by the 6328 A

interference Glter which was used at the laser output.
The signal was not due to radiation at 6328 A, as the
addition of extra CS7—54 Qlters did not change its level.
The exact origin of the background signal was not

P~= 48.5 +
OPTIMUM FOCUSING

3SCCy INTEGRATION TIME

Cfl

I ~

l4

3
~Al

—ZERO QUADRUPOLE -TYPE SHG

ZERO SIGNAL

R BEAM BLOCKED

I"n. 3. The variation of the quadrupole-type SHG as the calcite
crystal was rotated through the index-matching direction.
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determined and in measuring QSHG it was simply
subtracted from the total signal.

The correction terms due to the modified Poynting's
vector displayed in Eq. (12) were neglected. It will be
shown later that the neglect of these corrections adds
an uncertainty of only several percent. Inasmuch as the
estimated probable error in the measurements was quite
a bit larger, this uncertainty makes little difference.

The major experimental difhculty was in achieving
optimum focusing when measuring SHG in calcite. The
reason for this was that a 3-sec integration time was
used on the lock-in amplifier. Consequently there was a
relatively long delay between the time an adjustment
was made and the time that the results of the change
became apparent. The problem was compounded by
the fact that some adjustments could not be made inde-
pendently of one another. Using experience as our guide,
it was felt that the lens position could be adjusted to
give within 5% of the maximum second-harmonic
power. The other major probable errors occurred in
accounting for the reQection losses introduced by the
lens and the crystal faces.

Two experimental runs were made using a 250-mm
lens to focus the laser beam which had a radius 8'
=0.142 cm into the calcite crystal. The result was
optimum focusing, mo ——3.5)(10 ' cm and g=8)&10'.
For the measurements in the 1.52-cm ADP crystal we
had mo ——W and g=115. The SHG from calcite was
observed using about 50 mW of laser power, and it was
about 0.01 of that observed from ADP using at most a
5-mW laser beam. The results were in excellent agree-
ment and the average of them is

or
2k17Jeff/d86= (2.8+0.4) X10 ', (13)

'g ff/d36 —(0.85+0.12)X10—'. (14)

Using ruby lasers, the best estimate of TMS' for a non-
linearity similar to the one given by Eq. (14) was about
3X10 '. lt is interesting to note that since QSHG is
one higher order nonlinearity than normal SHG, one
would expect that its nonlinearity coeKcient would be
on the order of kiao smaller, where ao is a typical atomic
dimension. Since a0=1 A, we have kia0=10 ' which is
in good order-of-magnitude agreement with Eq. (13).

AD. A. Kleinman, A. Ashkin, and G. D. Boyd, Phys. Rev.
145, 338 (1966).

E. Measurement of 8

An accurate measurement of the index-matching
angle 8 was carried out by observing QSHG with the
crystal mounted in air. The measurements were carried
out under conditions of optimum focusing. For this
case there was no need to differentiate between the
"nominal" and "optimum" index-matching directions
defined by Kleinman, Ashkin, and Boyd.' For instance,
the parameter P defined in Ref. 14 was approximately

33 and the calculated difference between the two direc-
tions is only 4 sec for an infinitely long crystal. For our
crystal the difference would be even smaller.

The measurements were carried out in two steps.
First, the index-matching direction was located with
respect to the normal to the incident face by observing
the position at which maximum QSHG was obtained.
Then, the optic axis was located with respect to the
same normal by observing the interference figure of the
calcite crystal when placed in converging laser light
between crossed polarizers. These measurements made
it a simple matter to calculate 8 . Experimental ac-
curacy was determined by the degree to which the
crystal could be positioned, namely to &0.05 deg. The
measured value was

e.=29'3t 'a9'. (15)

This value agrees very well with the value 8 =29'35'
&10' which was calculated using values for the indices
of refraction obtained from curves which were care-
fully plotted using data available from standard sources.

F. Measurement of ESHG

The measurements of the nonlinearity for ESHG
were also carried out in a relative fashion. By measuring
the total SHG as a function of the applied electric field
and using the power generated with zero field as a
reference, the value of X5~ was calculated in terms of
2k'.ff. This method for determining X5i was adopted
because it was the most direct measurement and also
the most accurate.

The major experimental de.culty encountered in
these measurements was an apparent slow build-up of
charge at the crystal surfaces which tended to neu-
tralize the applied dc electric field. It is conjectured that
this build-up occurred because of charge migration in
the crystal and non-Ohmic contact between the crystal
and the electrodes. No attempts were made at making
the contact Ohmic; in fact, a slight amount of dielectric
Quid was inserted between the crystal face and the
electrode. This was done in order to eliminate pitting
of the calcite faces which had been observed in earlier
measurements carried out with another crystal and
which probably was due to nonuniformities between
the two surfaces. There were two reasons for suspecting
the presence of charge build-up. They were a non-
repeatability of SHG obtained with zero applied voltage
and a departure of the dependence of P2„upon E~, from
quadratic. In the first case, it was found that the
second-harmonic power generated with zero applied
voltage depended upon when the measurement was
made. If it had been a long time since voltage had last
been applied to the crystal, then the power readings
were consistent with other readings made under similar
conditions. On the other hand, if a measurement were
made just after a voltage which had been applied for a
long time was'removed, the power would be consider-
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experimental points. Inasmuch as the voltage applied
to the electrodes could not be reversed, the points in

Fig. 7 were obtained by rotating the crystal between the
electrodes by 180' using the laser beam as the axis of
rotation. It can be shown that the sects of this change
are the same as would be obtained by applying a nega-
tive voltage to the crystal; namely, the phase of the
second-harmonic dectric Geld radiated by the electric-
field-induced eGect relative to the phase of the field
radiated by the quadrupole effect is changed by 180'.
In each of the three figures the minimum of the para-
bolic curve occurs for nonzero values of the applied
fields. This phenomenon was seen directly in Fig. 4
where the second-harmonic powers obtained with 5 kV
and 10 kV applied to the crystal were less than that
obtained with no applied voltage. The curves of P2„as
a function of the applied voltage V are parabolas dis-

placed from the V=O axis; they can be written as

Pp„=Pp'+P (V Vp)'—
Fxo. 4. Measurement of SHG in calcite for various applied

voltages. The crystal is rotated through the index-matching direc-
tion for each voltage.

ably greater. In other words, it appeared as if an inter-
nal electric field had been induced in the crystal. In the
second case, it was found that the second-harmonic
power varied less rapidly than E&,'. Both of these
phenomena can be explained by the electric fields de-
veloped by the build-up of charge at the surfaces. In
addition, if voltages were held constant over extended
periods of time, the build-up of charge could be ob-
served by recording the slow decrease in second-
harmonic power. An estimate of the associated decay
time would be on the order of 10 min.

Inasmuch as the eGects of charge build-up could not
adequately be described, the experiments were carried
out in such a way that they were minimal. In particular,
measurements of P2„as a function of the applied voltage
were always made with either monotonically increasing
or decreasing voltages, usually starting with zero volt-
age. An example of an actual experimental chart is
shown in Fig. 4. These curves were recorded by rotating
the crystal through the index-matching angle for each
value of the applied voltage. The advantage of this
method is that the true zero-SHG level can be accu-
rately determined for each curve. The background signal
can thus be eliminated. The dips between the curves
occurred when the laser beam was blocked during
measurement of its power and they correspond to zero
signal. In an alternative method of measurement the
crystal orientation mas fixed and only the voltage was
changed. The results obtained using either method were
equally good.

The results of the measurements are shown in Figs.
5, 6, and 7 where the parabolic curves of P'2„as a func-
tion of the applied voltage are plotted. The parameters

= (Pp'+PVp')+PV' 2PVpV, — (17)
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where Vo is the amount by which the curve is shifted
and P'rJ' is the minimum P2„.The difference between the
power obtained with no applied field and Po' is DP2„
=pVp2. The displacement of the curves is not due to
the build-up of charge at the crystal surfaces.

Terhune, Maker, and Savage' were the first to ob-
serve the displacement of the parabolic curves. They
explained the shift as occurring because of SHG at the
surfaces of the crystal coherent with the ESHG in the
bulk of the crystal. A more detailed analysis of the
problem was carried out by Bloembergen and Pershan
(BP).p They showed that the boundary second-har-
monic wave caused by the presence of the electric-field-
induced eGect could interfere with the bulk quadrupole
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Geld and bring about a displacement of the parabolic
curves. This interference is explicitly displayed by their
Eq. (4.19). However, BP point out that such effects
only occur when a homogeneous held is applied only
over a part of the laser beam's path through the crystal
or, in a more generalized sense, when the applied electric
Gelds are inhomogeneous. These conditions are com-
patible with the geometry used in the experiments of
TMS where the applied electric field was highly non-
uniform and did not occupy the entire crystal. For our
experiments, however, care was taken to produce a
nearly homogeneous field throughout the entire crystal.
Nevertheless, the magnitudes of the curve shifts meas-
ured in our experiments were approximately the same
as those measured by TMS."This result is a strong
argument against attributing the shift of the parabolic
curves to inhomogeneous fields.

There are several other possible explanations for the
curve shift which we will brieQy discuss:

(1) Suppose that the background signal which we
detected in our experiments was second-harmonic-power
generated externally to the calcite crystal. This could
occur, for instance, in filters, windows, or the dielectric
Quid. If a portion of this field was in phase with the
bulk ESHG field created in the calcite crystal, then the
two fields could interfere and the total second-harmonic
power could be written in the form of Eq. (16). Also,
~P2„would be less than or equal to the total back-
ground power. In some of our measurements, however,
AP2„was considerably greater than the background
signal.

(2) The curve shifts could also be explained by as-
suming that X5~ or g,gg, or both of them, are complex and
not purely real quantities. In this case the quadrupole
and the electric-Geld-induced second-harmonic fields
would not necessarily be 90' out of phase (in time) and
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Unfortunately it was not possible to determine in our
experiments which of these explanations, if any, was
responsible for the curve shifts which we measured.
With higher power cw lasers it should be possible to
investigate the dependence of the curve shift upon
various factors and, hopefu11y, to determine its cause.

In Sec. IIID the parameter 2k~a, ig was calculated
from the second-harmonic power measured with no Geld

applied to the crystal. However, the preceding discus-
sion has shown that the zero-Geld power may not
correspond to pure QSHG. In the same fashion, the

they could interfere with each other. The second-
harmonic power could be written in the form of Eq. (17).

Note added i' proof Lee, .Chang, and Bloembergen,
Phys. Rev. Letters 18, 167 (1967) recently have meas-

ured a similar curve shift in nonlinear electroreQectance
which also might be explained by complex nonlinear
susceptibilities.

(3) The shift of the parabolic curves could also be
due to the quadrupole correction to the Poynting's
vector discussed in Sec. IIIB.The consequences of this
correction for a plane-wave laser beam were displayed
in Eq. (1Z) which is of the form of Eq. (17).It is clear
that the values of AI'2„and Vo are determined by Ak

and s'. For an actual focused laser beam the complete
solution must account for all the plane-wave com-

ponents which make up the real beam. Thus, one wouM.

expect the parameters ~I'2 and Vo to be determined

by 6, the divergence angle of the focused beam. As a
result, the shift of the parabola would depend upon the
degree to which the beam was focused and, in particular,
the curve shift would increase as the beam was focused

harder. Experimental evidence for this dependence of
V(I upon focusing was inconsistent. Such inconsistency
is not entirely unexpected, how'ever, as optimum posi-

tioning of the lens was rather difficult due to the low

powers being measured. The consequent variations in
lens positioning would undoubtedly a1so have an eGect
on the shift of the curves.
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parabola minimum may not be pure QSHG either. Thus,
there is an uncertainty of approximately ~P2„ in our
measurement of the quadrupole second-harmonic power.
Fortunately APs„was always less than 8% of the power
obtained with no applied Geld. Thus, in neglecting the
appropriate corrections, less than 4% error was intro-
duced into the measured value for 2k' ff.

The measured value of X» is easily determined from
the curves in Figs. 5, 6, and 7. This is done by finding
that value of 6V=—V—Vo for which the ESHG is equal
to the QSHG, taken to be the SHG measured with no
Geld applied to the crystal. The average of these values
is (A V), = 27 kV+10%.This corresponds to an applied
electric field (AE), =42 kV/em&10%. The measured
value for X5~ is

Xsr/2i'srrl. rr
——0.23X10 '+10%, (18)

or

Xsr/dss=2 1X10 s~24%. (19)

This result is in excellent agreement with the results
given by TMSS and by Maker and Terhune. "Their
estimate for a different nonlinearity element was
3X&0 'd36.

G. Measurement of the Electric-Field-Induced
Sirefringence

Experiments were also carried out to make a measure-
ment of the birefringence induced in calcite by the
application of an electric Geld. Circularly polarized
light was passed through the crystal along its optic
axis and the change in its ellipticity due to the applied
field was measured. The ac electric field was applied
along the Y axis of the crystal, an analyzer prism was
oriented at 45' to the X and Y axes, and the changes in
ellipticity were detected as an amplitude modulation
of the light.

The induced birefringence in calcite depends quad-
ratically upon the applied electric field but in our
measurements it cannot be attributed solely to the
quadratic-electric-optic effect. A similar induced bi-
refringence can also be produced by the combined effect
of photoelasticity and stresses induced in the crystal
which are proportional to the square of the electric

Geld. Such stresses arise due to electrostriction and due
to the force exerted on the electrodes, and hence the
crystal, by the electric field. Stresses which depend
linearly upon the electric field do not occur because of
calcite's inversion symmetry. In our experiments it was
not possible to distinguish between the various effects.
For this reason we use the coeKcient P to relate the
induced birefringence to the applied electric Geld; the
expression is

Ars= (2rr/rss)PEd, '. (20)

If the effects of photoelasticity are neglected then P is
given as the difference between the appropriate non-
linear susceptibility elements, Xir(oi, cu, 0,0) —X»(&u, rd, 0,0) .

The induced birefringence was very small, the modu-
lation of the light being only about 0.02% for an applied
electric 6eld of 60 kV/cm peak-to-peak. A lock-in
amplifier was used to detect the signal. The result of
our measurements was

~ P ~

=2.0X10 '4 esu&16%. (21)

As a comparison, the Kerr coefficient of nitrobenzene is
3X10 " esu; crystalline BaTi03 exhibits one of the
largest solid-state Kerr effects and its Kerr coefIicient
is about 3X10 "esu at room temperature. '

IV. CONCLUSION

We have made an accurate absolute measurement of
d3~ in ADP and accurate relative measurements of
quadrupole-type SHG and electric-field-induced SHG
in calcite. All measurements were made using optimally
focused cw gas-laser beams. The measurements in ADP
show that focused beams can be employed to carry out
accurate measurements of crystal nonlinearities. The
experiments in which the higher order nonlinearities in
calcite were measured demonstrate a practical applica-
tion of the power enhancements available from focusing.
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