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Dynamics of Disordered Harmonic Lattices. I. Normal-Mode Frequency
Spectra for Randomly Disordered Isotopic Binary Lattices*f

DANIEL N. PAYTON, III, AND CHILI, IAM M. VISSCHER

UNioersity of California, Los Alamos Scieltigc Laboratory, Los A/amos, Pew Mexico

(Received 5 August 1966)

Results of computer calculations of normal-mode frequency spectra of certain binary isotopically dis-
ordered harmonic lattices are presented. Linear chains, and square, triangular, simple-cubic, and body-cen-
tered cubic lattices are discussed. Interesting features of the results include dramatic changes in the nature of
the spectra as the mass ratio of the two components or their relative concentration is varied. Discussions
are given of the physical interpretation of the special frequencies of the linear chain and of a possible exten-
sion to higher dimensions.

INTRODUCTION

THEORETICAL understanding of the spectra of
d.isordered lattices has been much pursued in

recent years, but so far has been largely elusive. ' %ith-
out exception, the spectra which have been calculated
have either borne little resemblance to reality or have
themselves been basically results of computer experi-
ments. Much ingenuity has been displayed in setting

up schemes according to which the computer can efli-

ciently and accurately get desired numbers. Much more
is needed to achieve a deeper understanding of the
vibrations of disordered systems. It remains a chal-

lenging task to bring this subject from the domain of
the numerical analyst into the realm of the theoretical
physicist.

In the present series of papers, our aim is not to
deepen the theoretical understanding of the properties
of disordered lattices. Most of our results, too, are
generated by computer experiments. We hope to ac-
complish two things. First, we wish to present a more
complete and detailed exposition of precisely what the
properties of disordered lattices are. Some of the early
attempts at calculating disordered-lattice spectra were

not recognized to be unsuccessful simply because the
nature of the correct answer was not known. Our erst
aim is then to enrich the Geld of data and to broaden
the testing ground for future analytic attempts at
understanding disordered lattices.

Secondly, we plan to use our results, and extensions
of them, to compute certain observables directly, such
as some thermodynamic properties, transport coeK-
cients, neutron scattering, and Mossbauer factors for
disordered lattices. Although we are limited to fairly
small arrays in the three-dimensional case, we believe
the results to be nevertheless signi6cant, because other
methods are still much less accurate.

*Research performed under the auspices of the U. S. Atomic
Energy Commission.

t Part of this work is included in a thesis submitted by one of
us (D.N.P.) in partial fulfillment of the requirements for the
Ph.D. degree at the University of Missouri at Rolla.

' An up-to-date and extensive bibliography of theoretical and
experimental work on disordered lattices is contained in an article
by A. A. Maradudin, in Solid State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1966), Vol. 18,
p. 273.

Theoretical pursuit of the disordered-lattice spectrum
began in 1953, with Dyson's work on glasslike linear
chains. ' His method was subsequently elaborated and
simplified, but it proved to be unsuitable for lattices of
2 or 3 dimensions. ' Other approaches were subsequently
invented and exploited —such as the moment-trace
method, the Green's-function expansions in powers of
the concentration, and the transfer-matrix method. But
it was not until the exact numerical calculations of Dean
were done for a 6nite linear chain that the actual nature
of the spectra was appreciated. 4 For moderately low
concentration of light impurities, for example, the
spectrum is very jagged. Its irregularity explains the
extreme difhculties people had in calculating it
analytically.

The disordered lattice has, in fact, a normal-mode
frequency spectrum which is nonanalytic in the mass
defect. This is clear from the fact that the localized
modes (an example of which is the single mode of fre-
quency higher than the continuum of phonons when an
isolated light impurity is present) appear suddenly out
of the continuum as the impurity mass is reduced. It
is also nonanalytic in the frequency and in the concen-
tration. This was shown by Lifshitz, who derived by
simple probabilistic arguments what the dependence of
the spectrum on frequency and concentration should be
in the neighborhood of a band edge. In retrospect,
therefore, it is not surprising that analytic attempts to
calculate these spectra have failed.

Our plan is to present in Sec. I the model on which
most of our calculations are based. This uses nearest-
neighbor harmonic central and noncentral forces which
allow x, y, and s motions to be separated. In Sec. II
the method of calculation of the normal-mode spectra
is discussed. Like Dean, we use the method of counting
the changes in sign of a Sturm sequence to generate the
spectra. The next section is specialized to the one-
dimensional case and includes presentation of the
spectra for various cases, discussion of the special fre-

' F.J. Dyson, Phys. Rev. 92, 1331 (1953).
R. Englman, Nuovo Cimento ]Q, 615 (1958); R. lleiiman

Phys. Rev. 101, 19 (1956).'P. Dean, Proc. Phys. Soc. (London) 73, 413 (1959) Proc.
Roy. Soc. (London) A254, 507 (1960); A260, 263 (1961).' I. M. Lifshitz, Advan. Phys. 13, 483 (1964).
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tion reduces the number of coupled variables in the
e-dimensional lattice of S atoms from eS to S.

The equation of motion for an atom in the interior
of an m-dimensional simple cubic lattice is then, in the
harmonic approximation,

~ 0

il 2 "'+ 1 2 '" 7zl 2 '" 1+1 2 "'( ii+1 2 "' 1 2 ''')
...(I„ 1,„... I„„...)

/
~'Y iz i2 ";il;iz+1 (,"il iz+,1 ,"Nil iz ")'

...(I, , 1 ...—I, ; ...)

uij k-

Fn. 1. Labeling scheme for the simple-cubic case. Forces are
always along the direction of the displacement. Those exerted by
atoms located along the line of displacement are central forces,
with force constants y. The others are noncentral forces with
constants p'. Displacements in this example are in the y direction.
The x, y, and s displacements in this model are al l independent.

quencies of Borland, Hori, and M atsuda, ' and other
comments on the nature of the results. An extension
of the Sturm sequence method, again similar to Dean' s,
is used in Sec. IV to calculate the normal-mode spectra
of the separable models of the square and simple cubic
lattices. Results for certain nonseparable models—
namely the triangular and body- centered cubic 1at-
tices—are given in Sec. V. The final section consists
of a summary and discussion of the significant results.

I. DESCRIPTION OF THE MODEL

Ke use a model in which the atoms of the crystal
lattice are represented by point masses connected to
their nearest neighb ors by central and noncentral
springs. In the e-dimensional simple cubic lattice this
choice aff ords the simplification that the motions in
each cartesian direction are independent. This separa-

where m;, ,;,,... ;„is the mass of the atom, y and 7' are
the central and noncentral force constants, and I,,„;..~

is the displacement of the (il,i2, ~ ',2„)th atom from
equilibrium in a direction parallel to one of the cube
edges. Figure 1 shows an example of the indexing for
e=3 The displacements I in this case are all in the y
direction .

The set of Eqs. (1) is, in matrix notation,

t-M —a)2I gu= 0, (2)

where M„ is the dynamical matrix of the e-dimensional
(e-D) simple cubic lattice. This matrix can, from
Eq. (1), be seen to have a block tridiagonal form,

'Al B2 0
B2 A2 Bs

M„= Bs~ A2 B4

0 B;„~ A;„

where BP is the transpose of B;. These blocks are in
turn made up of bl ock matrices if e)2, etc.

Most lattices cannot be describ ed by an e-D simple
cubic model, and consequently, the problem becomes
more diKcul t. As a simple example of a n onseparab 1e
lattice consider the triangular lattice shown in Fig. 2.
The equation. of motion for the (i,j)th atom with
central and noncentral force constants between nearest
neighbors only is

t 7;,;;+tj 0 - j'*;+tj) (Xiz.
—

m;,
~

=
~ ~ ~

—
~

+other central term
ky;, 5 0 y;j.„~l ~ y;~1;& ky;j

1 ('Yij;ii+1+3 Yij;ij+1 ~3'('Yij;ij+1 'Yzj;ij+1 )l 6ij+tl (*ijl'
~X

~ ~

—
~ ~

+other noncentral terms. (4)
4 l~~(Yij;ij+1 'Yij;ij+1 )Yij;ij+1+37ij;ij+1& —&y;j+1& &yij&

The x and y coordinates in Eq. (4) are coupled; there- lattices are separable; consequently their frequency
fore, in the triangular lattice one must work with 2S spectra are Inore dif5cult to calculate than the simple
variables. Most real solids are either body-centered cubic spectrum.
cubic, face-centered cubic, or hexagonal close-packed
lattices. The equations of motion for none of these II. METHOD OF CALCULATI ON

Consider now the problem of ending the spectrum
2 R. K. Qorl@nd, Proc. Phys. Soc. (London) 83, 1027 (1964);

H M~t d P Th' t Ph (K t ) 31 161 (1964) . I' of eigenvalues of Eq. (2). It is sufhcient erst to deter-
Hprl zgzd $] 940 ('1964).

' ' ' '
mine the integrated. frequency sPectrum M (ol') which
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and by repeating the reduction on L&'& and its suc-
cessors L&'&, L&4' ~ ~, we obtain

yA

I
I

/III

n, l
flsAl X

FIG. 2. Site-labeling scheme for the triangu1ar lattice.

X; i Yt

(7)

YP Zl

where the submatrix Xt is of order unity and. Zt is of
order N 1 In other —wor. ds, Xt——hatt&'&, and Yt is a row

matrix with the column matrix YF its transpose. Now

the determinant of L"& can be written

where

detL&'& =detXt detL "&,

L&s&=Zt —Yet 'Yt, (9)

after reducing all but the erst element of the 6rst
colunm of detL&'& to zero by subtraction of appropriate
multiples of the Grst row from succeeding ones. There-
fore, we can write

r) (L&'&) = r& (Xg)+» (L&'&) (10)

gives the number of frequencies of the system less than
its argument. Thus the number of frequencies less than
some co' is just r&(M„co'I) w—here the symbol s&( )
denotes the number of negative eigenvalues of the
argument matrix and I is the unit matrix. Once the
integrated spectrum has been determined, the fre-

quency spectrum D(cos) can be obtained by differ-

entiation,
D(cos) =dM (cot)idee', (5)

and consequently, the number of normal modes which
lie between o&' and &os+ dec' is D(co') dcos.

The integrated spectrum can be determined by a
method used by Dean and Bacon, ~ based on elementary
determinant theory. Using the notation used by Dean
and. Bacon, we let

L&'&= I "&'&=M —co'I,

where M is the dynamical matrix for any lattice of E
atoms considered. The P)&X synunetric matrix L&'&

can be partitioned as follows:

~(L"')=Z ~(X'),

enabling us to Gnd the number of eigenvalues smaller
than co' by counting the number of negative terms in
the sequence ly](')j 1]] ~, ling( & ~ ~ l]g( &

The procedure for spectrum calculations is then to
compute the sequences of matrices L&'&, L"&, , L&~&

and to note the signs of the upper left elements of these
matrices. The generating relation for the sequence is
just the generalization of Eq. (9),

L's+'& =Z;—YsrY;iltt&s& (j=1, 2, , j&&&' —1) . (12)

This technique is formally identical to the reduction
process of Gaussian elimination. An error analysis has
been made by Wilkinson, ' and the method of Gaussian
elimination is accurate in all cases except where one
of the upper left elements (ltt&s&) becomes very small.
In the reduction of the dynamical matrix this never
happens.

Equation (11) has been used to calculate frequency
spectra for lattices of one, two, and three dimensions.
The calculations were executed on the IBM 7030 digital
computer, utilizing source programs written in
FORTRAÃ IV.

III. ONE-DIMENSIONAL APPLICATION

I. Calculational Results

In the linear chain many simplifications can be made
which speed the calculation. Since the dynamical matrix
is a tridiagonal matrix of simple elements, the calcu-
lation is reduced to counting the number of sign changes
in a very simple sequence. It is for this reason that very
long chains can be calculated to study convergence.
For example, the time required to calculate the spec-
trum of a chain of 100 000 atoms at 100 frequencies is
approximately 10 min on the IBM 7030 computer.

The spectrum of the monatomic chain can be calcu-
lated analytically and has the well-known U-shaped.
form given by D(v) =sr 'P4 —(v—2)') '&s for values of
0(v&4, where v=cos and D(v) is the frequency spec-
trum. Figure 3 shows a series of computed spectra,
starting with the regular monatomic chain )Fig. 3(a)j.
%hen light impurities are introduced, into the chain at
random positions, modes are shifted up out of the con-
tinuum of the host lattice spectrum. For the mass ratio
of 3:j. which is illustrated here, the spectrum at higher
frequencies is not at all smooth, and as the concen-
tration of light impurities is increased, the spectrum
near the upper band edge of the host mass continuum
becomes depleted while numerous spikes rejecting

' P. Dean and M. D. Bacon, Proc. Roy. Soc. (London) A283,
64 (1965).

J. H. Wilkinson, Rogadhlg Errors ere Algebraic Processes (Her
Majesty's Stationery Oiiice, London, 1963), Chap. 3.
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As the concentration of lighter atoms is increased,
the erosion of the monatomic host continuum, especially
near the upper end, continues; while the peaks at higher
frequencies continue to increase in size and do not
smooth out into a continuum. This increase in .the
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Fre. 3. Frequency
spectra for the 100000-
atom linear chain for a
random arrangement of
light masses of concen-
tration FA and heavy
masses 3 times as heavy.
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Fxo. 4. Frequency
spectra for the 8000-
atom linear chain for a
random arrangement
with equal proportions
of two masses whose
ratio is R.
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localized modes appear at higher frequencies. This is
shown for a light atom concentration of 0.2 in Fig.
3(b). The upper band edges assume a shape like that
predicted by Lifshitz in his work on the spectra of
disordered lattices. ' z*. I ~/~*

L
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(b) IOO 000 ATOMS

t

4
Z~ s: 8 +/g~

(a)

(a) 64 000 ATOMS

In Fig. 4 (e) we show the spectrum of the binary chain
with one of the masses very large. The mass ratio is
10 000:1 and the light atoms are dynamically isolated
from each other. The spikes occur at normal-mode
frequencies of isolated chains (islands) and their
heights are proportional to the number of islands in
the chain with that normal-mode frequency. Figure 5
shows the frequency spectra of two independent random
chains of diRerent lengths. The mass ratio used in these
chains is 2:1, and the impurity concentration is 0.5
in both. Figures 5(a) and 5(b) show the spectra for
chains of lengths 64000 and 100000 atoms, respec-
tively. It can be seen that the structures are almost
identical at the higher frequencies. One can further
study the effect of size by observing that the spectrum
of a chain of 8000 atoms as shown in Fig. 4(c) has
similar quantitative features. One can therefore be
quite sure that the major irregularities of the spectra
are not due to poor statistics or to the 6nite chain
length, but will persist substantially unchanged from
those shown in Fig. 5 in an infinite chain. Many of
the peaks, as Dean and Bacon' showed, and as we will
elaborate in a subsequent paper, can be identified with
modes of islands of light impurities.

4

7. ~ 8 ~/co~

(b)

FIG. 5. Frequency spectra of two independent, randomly dis-
ordered linear chains with mass ratio 2:1.It is clear that little of
the structure at high frequencies is due to a statistical error which
would disappear for an infinite chain. Below the heavy-mass
continuum cutoff, though, most of the unevenness is of statistical
orlglll,

peaked structure is apparent from Figs. 3(c) and 3(d).
In Fig. 3(e) the concentration of the light atoms has
been increased to 0.9, and it is apparent that the spec-
trum is approaching the spectrum of the monatomic
light chain. The chains shown in' Fig. 3 each consisted
of 100 000 atoms.

The eHect of varying the mass ratio is shown in Fig.
4. The concentration of both atomic species in these
chains is 0.5 and their lengths are 8000 atoms. Figures
4(a) and 4(b) show the spectra for mass ratios of 5:4
and 3:2. They are qualitatively different from the
spectra for higher mass ratios,

M 'r—)1+cot—tan
m 2l

(l—k)s.
(14)

then no frequency will cross cv'(k/l) given by Eq. (13),

s P. Dean and M. D. Bacon, Proc. Phys. Soc. (London) 81, 642
(1963).

ro J.Hori and M. Fukushitna, J.Phys. Soc. Japan 19,296 (1964).
"Lord Rayleigh, Theory ojSONad (Dover Publications, Iuc,

New York, 1945), Vol. 1.

2. Special Frequencies

Exact, analytic, nontrivial results about the spectra
of disordered lattices are very meager. The only ones,
in fact, which actually yield values of the integrated
spectrum are related to the special or forbidden fre-
quencies of Borland, Matsuda, and Hori. ' The most
general statement" so far enunciated of the special
frequency theorem for a one-dimensional chain may be
understood as follows.

The spectrum of a randomly disordered linear chain
in which the heavy masses have inhnite mass may be
derived trivially, and a good approximation to it is
shown in Fig. 4(e). With considerable differences in
degeneracy the normal-mode frequencies are given, for
an infinite chain, by

co'(q) = (4y/m) sin'(s-q/2),

where q=k// is a rational number, with integers k&l.
Now, if the heavy masses are decreased, then, by one
of Rayleigh's theorems, aH the frequencies will in-
crease. " The special frequency theorem says that as
long as the mass ratio satisfies the inequality
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and the integrated spectrum up to that point remains
the same as that for the in6nite mass ratio. H, for
example, k=l —1, then the inequality says M/m) 2,
which is the case Borland considered. The maximum
frequency of a chain of length / —1 with rigid boundaries
is co'(/ —1/l). For mass ratios smaller than 2 there are
no special frequencies. This is consistent with the
observed fact (see Fig. 4) that the spectra for smaller
mass ratios abruptly become smooth. To within the
uncertainty caused by our finite mesh size, all our linear-
chain spectrum calculations are consistent with these
special frequencies. That is, the integrated spectra are,
at the relevant special frequencies, equal to the inte-
grated spectra for the infinite-mass-ratio case, and the
spectra themselves vanish at those points.

It is appropriate to observe here that Borland's
arguments for the case k=/ —1 can as well be applied.
to an arbitrarily ordered chain as to a randomly dis-
ordered one. Therefore if one knows the order of a
chain, hence the spectrum for in6nite mass ratio, then
all the frequencies given by Eq. (13) with k=1—1 are
special as long as M/nz) 2, and the integrated spectrum
at these points remains the same as that for M/m= ~.
We may conjecture that the same is true for all k&l.
This too is consistent with our numerical results. It
may in particular be easily verified that the optical
band edges of the ordered diatomic chain ABAB
are special frequencies as long as the mass ratio satisfies
Kq. (14). The shape of the frequency spectrum in the
neighborhood of the special frequencies depends on the
frequency of occurrence of certain successions of light
and heavy chains and on the mass ratio. In particular,
notice the striking difference between the shape of the
M/no=2 spectrum at the lowest special frequency and
that for M/m=3 [Figs. 4(c) and 3(c)$.
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FzG. 6. Frequency
spectra of 30X30 atom
square lattices, ran-
domly disordered with
a fraction FA of light
masses, the remainder
being 3 times as heavy.
The dashed line in (a)
is the analytically cal-
culated spectrum for
the infinite pure heavy
lattice.
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Iv. TWO- AND THREE-DIMENSIONAL LATTICES

1. Square Lattices

Consider now the square lattice. The motions of the
atoms in either the x or y directions are described by
Eq. (2) with e= 2. The fact that the x and y coordinates
are independent means that our computer can, in the
same time and with the same memory, handle a lattice
with about twice as many atoms as it otherwise could.
The spectra presented here are for lattices of 30&&30
atoms.

A comparison of the effects on the spectrum of the
addition of various concentrations of light atoms into a
square lattice of heavy atoms is shown in Fig. 6. The
characteristic shape of the continuum 'of the heavy-
atom lattice appears in Fig. 6(a) along with the analytic
spectrum of the monatomic host lattice. In these lattices
the central and noncentral force constants were equal;
thus the singularities of the monatomic spectrum appear

g s
l

as a single logarithmic singularity. "A jagged structure
again appears at higher values of the frequency. These
peaks can be identified with localized modes of various
configurations of light impurities. In the transition from
the light impurity concentration (FA) of 0.25 to 0.5 a
marked change in the spectrum occurs. The spectrum
becomes relatively smooth without the isolated bands
or peaks. At a concentration of approximately 0.5 the
probability of an island of light atoms of infinite extent
being formed in an in6nite lattice becomes unity. It is
at this point that the spectrum becomes relatively

~ A. A. Maradudin, K. %. Montroll, and G. H. gneiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Acade"tc Press
Inc., New York, 1963), Vol, 3, Suppl.

DYNAM I CS OF DISORDERED HARMONIC LATTICES
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occurs, and one has electively a host light lattice with
a concentration of heavy impurities of 1—FA. The
spectrum shown in Fig. 6(d) is that of a light lattice
doped with heavier atoms and exhibits a low-frequency
resonance-mode peak. '4 The mass ratio of the lattices
considered in Fig. 6 was 3:1.

Figure 7 shows the behavior of the spectrum as the
mass ratio is increased from 3:2 to 1000:1.The con-
centration of light impurities is 0.25. For a further
comparison the spectrum shown in Fig. 6(d) can be
included in this study since it has the same concen-
tration of random impurities with a mass ral.io of 3:1.

These spectra make plausible the conjecture that
there are special frequencies in the square lattice. The
spectrum vanishes at &Os=-'seers in each part of Fig. 7,
except 7(a), and the integrated spectra at this point
are all equal. Other points where all the integrated
spectra coincide (at least for mass ratios greater than
3:1 and small light atom concentration) are ce'=-s, orzs,

corresponding to the uppermost modes of an isolated
pair of light atoms, and &os= ~~ (4+42), corresponding to
the modes of the triple atom defect in an infinitely
heavy square lattice (tes=rscers is, of course, the fre-
quency of a single isolated impurity in a very heavy
lattice). Figure 8 shows these integrated spectra for
several mass ratios. The multiple crossing points could
be special frequencies; they are points at which the
spectra of Fig. 7 vanish. We therefore believe it rea-

(a) R ~ 3:2
EOI-
R

K

I
cno'

Ol

N
O

(b) R ~ 2:I
Ol
I

a

CL'

I
O FIG. /. Frequency

spectra of a 30X30atom
square lattice which is a
randomly disordered
mixture of 75% heavy
masses and 25% light
masses with mass ratio
R. Special frequencies
seem to begin to appear
at 8=2. The low-fre-
quency behavior of the
spectra is determined
largely by the harmonic
mean mass up to the
frequency of the big
peak, whose position is
inversely proportional
to the harmonic mean
mass.

(c) R ~ 5:I

I.OO

0.75—
(d) R ~ 4:I
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(e) R ~ l000: I

I
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0.25 075 1,00

Z2 (sl] 2
I.

Fze. 8. Integrated spectra for three 30&30 atom square lattices,
randomly disordered 25-75% mixtures of light and heavy atoms
with mass ratios 3, 5, and 1000. The points at which the curves
cross (to within the uncertainty engendered by the finite calcu-
lational mesh on the abscissa) can be special frequencies, as dis-
cussed in the text. The abscissa here is the square of the frequency,
scaled so that the maximum frequency of an infinite pure light
lattice is unity.

4 6
2 ~ 6 +/~s

smooth. This concentration is called the critical perco-
lation concentration. '3 Beyond this critical concen-
tration an inversion of the roles of host and impurity "R.Brout and W. M. Visscher, Phys. Rev. Letters 9, 54 (1962);

Y. Eagan and Y. A. Iosilevskii, Zh. Eksperim. i Teor. Fiz. 42,
259 (1962) LEnglish transl. :Soviet Phys. —JETP 15, 182 (1962)g.'s M E. Fisher, J. Math. Phys. 2, 620 (1961).
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FIG. 9. Frequency spectra for a 6&(6)&25 atom randomly disordered simple-cubic lattice with a mass ratio of 2 and light-atom
concentration given by IlA. The dashed line is the exact spectrum «r an in'»te lattice with IA =0.

sonable to conclude that there are indeed special
frequencies in the square lattice and that their origin
and nature are straightforward generalizations of those
of the special frequencies of the linear chain.

The boundary conditions were such that the two
shorter sides (or opposite sides in a square array) were
axed and the other two were restricted by helical con-
straints. That is, an atom on one edge was connected
to an atom on the opposite edge one row removed by
a noncentral spring. The spectra for several lattices of
varying shapes but constant number of atoms were
calculated to give an estimate of the eBect of the
boundaries on the structure of the spectrum. The

changes in the spectra between lattices of SX112,
&6X56, and 30X30 were quantitatively small and
qualitative1y negligible.

2. Simple Cubic Lattices

After the calculation of the one- and two-dimensional

frequency spectra for isotopically disordered binary
lattices, one can almost predict what general features
the three-dimensional simple cubic lattice will have. In-
deed, the spectrum of the simple cubic lattice of two
masses in random order exhibits the continuum spec-
trum of the monatomic host lattice with impurity modes
superimposed. If the impurities are lighter than the host
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these modes appear above the continuum. If the mass
ratio is such that local modes are formed, this high-
frequency spectrum has a peaky, jagged structure. If
the impurities are heavier than the host mass, resonance
modes are formed at the lower frequencies.

The frequency spectra of small Gnite crystals were
calculated using the method outlined earlier. As can
be seen by close examination of the method of counting
negative eigenvalues, the calculational time will be
dependent upon several factors. It depends directly on
the number of mesh points and the length of the lattice.
The time also depends directly upon the square of the
number of atoms in a cross section of the lattice. This
is analogous to the width in the square lattice. It is for
this reason that long, thin crystals were chosen. The
effects of the boundaries which were fixed along the
length of the lattice and helical-toroidal in the other
two directions were investigated and found to be
similar in kind and magnitude to those found in the
square lattice. The calculational time required for a
lattice of 6X6)&25 atoms was about 30 sec per mesh
point.

In Fig. 9 are shown some spectra obtained for dis-
ordered simple cubic lattices with varying amounts of
light impurities (FA). Superimposed on Fig. 9(a) is the
analytic spectrum of the monatomic host lattice. The
mass ratio is 2:1.Even though the calculational mesh
is quite coarse and the lattice is rather small (6X6X28
atoms) the general features are what one would have
expected on the basis of previous cases calculated.

The critical percolation concentration for the simple
cubic lattice is approximately 0.28,"and consequently
the role of host and impurity play a less important part
in concentrations of light atoms from about IiA =0.28
to IiA =0.72. At this point the roles are interchanged;
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FIG. 11.The frequency spectrum for a triangular lattice 10X50
atoms with a mass ratio of 3 and light-atom concentration of
25 o.

the heavy atoms are isolated in islands and low-fre-
quency resonance modes are prominent. ' This trend
can be seen in Figs. 9(a)—9(d).

Figure 10 shows the spectrum of a 6&&6&&40 atom
simple cubic lattice, calculated on a finer frequency
mesh in order to show more detail in the high-frequency
structure. As we will show in a subsequent paper, many
of the peaks can be identified with certain modes of
isolated islands of light impurities. Although our calcu-
lations for the cubic case have been on a coarser mesh
than for the square and linear lattices, they are con-
sistent with the hypothesis that special frequencies
exist for the simple cubic lattice. Specifically, for
example, the integrated spectra for the cases of mass
ratio 3, 5, and 1000 coincide at the normal-mode fre-
quencies of isolated single and double light atoms in a
very heavy lattice.
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FIG. 10.The frequency spectrum of a 6X6&(40 atom"randomly
disordered~rsimple-cubic lattice calculated on a oner mesh than
Fig. 9, for a mass ratio of 3 and a light-atom concentration of 10%.

V. NONSEPARABLE MODELS

Calculation of the frequency spectrum for models
more realistic than those we have been using is more
difFicult. Since the equations for motions in the x, y,
and s' directions are not separable in general, the com-
plete system of mlV variables and equations must be
dealt with. In this section we will show the results of
calculations of the frequency spectra of the triangular
and the body-centered cubic lattices.

The equations of motion and the model used for the
calculation of the triangular lattice have been displayed
in Sec. I. An example of the spectra calculated for this
lattice is shown in Fig. 11. Certain features which were
established in the simple cubic lattices of one, two, and
three dimensions are reproduced in the triangular
lattice spectrum. At lower frequencies the continuum
of the host lattice appears with isolated peaks at higher
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centered cubic lattices such as vanadium. At higher
frequencies there appear to be local modes present just
as in the lattices previously studied. These modes are
not resolved into single peaks or bands because of the
rather coarse calculational mesh employed. It is hoped
that larger lattices of this type can be calculated in more
detail to allow comparison with experiments done on
the inelastic scattering of neutrons by disordered
crystals.
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frequencies. These higher peaks correspond to modes
localized about light-atom clusters. The lattice used for
the spectrum shown in Fig. 11 was 10&50 atoms with
a mass ratio of 3:1and impurity concentration of 0.25.
This particular calculation employed equal central and
noncentral force constants.

The spectra for body-centered cubic lattices are still
more dificult and time consuming to calculate. The
equations of motion and the model empl. oyed have been
presented elsewhere. " We have included the nearest-
and next-nearest-neighbor interactions with central and
noncentral force constants. The calculation of the fre-
quency spectrum is quite slow, and consequently the
lattices calculated are quite small. The lattice used for
the calculation shown is made up of 5X5)&12 atoms
with a mass ratio of 3:1 and an impurity concentration
of 0.1. The lower frequency portion of the spectrum
closely resembles the published spectra for the body-

"D. N. Payton, III, Los Alamos Scientific Laboratory Report
No. LA-3510, 1966 (unpublished).

Fn. 12. Body-centered cubic-lattice spectrum for a concen-
tration of 10 jq light impurities with —, the host mass. The next-
nearest-neighbor force constants are 10/o of the nearest-neighbor
constants, and the central and noncentral constants are equal.

VI. DISCUSSION

We have presented some results of our numerical
experimentation with binary, isotopically disordered
harmonic lattices. They corroborate and extend previ-
ous one- and two-dimensional investigations to larger
and more varied one- and two-dimensional systems
and to three dimensions.

Some general statements can be made about the
nature of the spectra and their dependence on the
parameters which we have varied. For an impurity
concentration less than the percolation concentration
and for impurity mass much less than the host mass,
the spectra are close to the exactly calculable infinite-
mass-ratio spectra. As the impurity mass is increased
the spectra remain peaky, but the peaks get progres-
sively broader until a mass of approximately half the
host mass is reached. At that point the peaks largely
disappear, along with the valleys between them, where
the forbidden frequencies were. As the mass is further
increased, so that the impurity mass becomes much
larger than the host mass, a fairly smooth peak rises
out of the host continuum. If the impurity concentration
is between c„and 1—c„, where c„ is the critical perco-
lation concentration, the spectra are relatively smooth.
It is only for light-impurity concentrations c&c„ that
the jagged structure of the spectrum with forbidden
frequencies occurs. In a forthcoming paper we will
correlate this behavior with the nature of the displace-
ments in the normal modes. It happens that for c&c„
all the normal modes above the host continuum are
localized about islands of light atoms. For c&c„, on
the other hand, most of the modes at those frequencies
have considerable extent.


