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Expressions for the one-phonon collision corrections to the high-frequency long-wavelength (k — 0) di-
electric function e(w) of a semiconductor have been computed in the low-temperature cold-electron-plasma
limit. Only interactions with a single optical-phonon branch are considered, but expressions for both polar
and deformation-potential coupling have been included. Our results differ from previously published work on
one-phonon collision corrections in that we have taken dynamic screening into account, a feature which
is important when the electron-plasma frequency is comparable to or greater than optical-phonon fre-
quencies. The principal effect of dynamic screening is to replace the noninteracting phonon and electron
excitation frequencies in the collision terms with the collective-oscillation frequencies of the interacting

electron-phonon system.

I. INTRODUCTION

HE restrictions imposed by energy and momentum

conservation are sufficient to preclude the absorp-
tion of visible or infrared radiation by “free” electrons
in a solid. It is well known that for this reason the long-
wavelength high-frequency conductivity of free elec-
trons is purely imaginary and that their contribution to
the dielectric function of semiconductors is real and
purely reactive. If the conduction electrons are not
strictly free but interact with lattice imperfections,
different species of mobile charge carriers, or lattice
vibrations (phonons), the resulting collisions modify
the electron dispersion relation and generate a real
or absorptive component o(w) in the conductivity
é(w) and a corresponding imaginary component in the
dielectric function e(w)=471¢(w)/w.l For example,
elastic scattering leads to the well-known Drude
expression

(1a)

¢ () Drude= 1€ po?/4m (0+1v,) ,
for which the real part
(1b)

where ¢, is the high-frequency dielectric constant of the
lattice, wpo*=4me*n/me.,, is a plasma frequency in which
e is the charge, # the density, and m the effective mass
(here assumed isotropic) of the free electrons, and
7=1/v, is a momentum relaxation time. Electron colli-
sions which disperse energy as well as momentum lead
to a complex and frequency-dependent collision fre-
quency »¢(w). In what follows, we are concerned with
those collisions of this latter type which involve the
dynamically screened interaction of electrons with
optical phonons. We assume that only a single optical-

0 (@) Drude= Voot pit /AT (W42 2),

1 Throughout this paper we use cgs electrostatic units and
assume w real. OQur Fourier transforms

F(kw)= S (dr)dif(x,t)exp (dwt—ik-T)
F@t)=(1/V) Zx S (dw/2m)F (k,w)exp (—iwt+ik-1).

With these conventions the complex electrical impedance
Z(w)=R(w)+iX (w), where R and X are, respectively, resistance
and reactance.

and
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phonon branch is important but admit either polar or
deformation-potential coupling.

The elementary processes with which we are specifi-
cally concerned are illustrated schematically in Fig. 1.
Briefly, they are processes in which the absorption of
an electric-field quantum (photon) by an electron is
accompanied by the emission or absorption (not shown
in Fig. 1) of an optical phonon. The energy and mo-
mentum of the photon are shared in the final state by
the electrons and the vibrating lattice. Although energy
is conserved in the final state, it is not necessarily con-
served in the virtual intermediate state.

For mathematical simplicity we restrict our dis-
cussion to a zero-temperature “cold-plasma’ system.
We assume that in the initial state the lattice is in its
ground state (no phonons excited) and that all elec-
trons have zero momentum (k;=0 in Fig. 1). Although
these assumptions are accurate only if the energy resolu-
tion is poor compared to 27" and to the electron Fermi
energy wr, as it frequently is, the simple closed-form
expressions which result are a compensating advantage.
The errors involved are often no worse than those im-
plicit in the more common assumption, which we also
make, that the optical-phonon frequency wo (or wio for
longitudinal polar phonons) is sharp and independent of
wave number. The cases of greatest interest to us here
are those for which wy>we>wr and kT/#%. The con-
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Fic. 1. Schematic representation of some of the elementary
single-phonon processes contributing to the conductivity of
electrons in a semiconductor. These diagrams show processes in
which an electron (solid line) and a phonon (wavy line) share the
energy and momentum of an electric-field quantum (dashed line).
Diagrams (a) generate positive resistance or loss; diagrams (b)
generate negative resistance or gain.
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dition w,c>wr implies

wpo  (m/me)' 2

— =1, )

Wp 6w1/2(n/n0)1/6

where 70=6.970X10%2 cm™3. First-order collision cor-
rections to the free-electron conductivity have been
numerically computed with dynamic screening by
Tzoar? for a special case in which wp is large : wp=3.0w0;
wpo=17.8w;; w;=10% rad/sec.

In the following section we consider collision cor-
rections due to the interaction of electrons with polar
phonons. The results show that the principal effect of
dynamic screening is to replace the noninteracting
phonon and electron excitation frequencies in the col-
lision terms of first-order perturbation theory by the
collective-oscillation frequencies of the interacting
electron-phonon system. In Sec. IIT we treat deforma-
tion-potential coupling of electrons to phonons and in
the last section we briefly indicate the magnitude of
the first-order electron-phonon collision corrections in
various materials.

II. POLAR PHONONS

In the absence of electron-phonon collisions, but with
the Drude contributions (1) included, the long-wave-
length high-frequency (w>>v.) dielectric function of a
polar lattice plus electrons has the form

e(w)’=¢, —__—(w+i'y)2—wzo2—_w_pf<l_ilz_c>} , )

(wtiy)?2—wd W w.

where wy is the angular frequency of the optically active
transverse phonons, w; the angular frequency of the
polar longitudinal phonons in the absence of electrons
(wpo=0), and y<w; the damping coefficient of the
phonons in a simple Lorentz-line-shape model. If
€0 and e, are, respectively, the low- and high-frequency
lattice dielectric constants, the Lyddane-Sachs-Teller
relation gives wi®=weo/ €0> wi? if w>y, as we assume.
The real or absorptive part o(w) of the conductivity
¢ (w) =we(w)/4mi computed from (3) has the form

(w>>Vc ,wt>>7) :
€ |W 2 Y
owp=— —‘iuc+%(wzoz—wf)-——-——}. @
rl o (o] @ity

The last term describes absorption by the optically
active Reststrahl bands of the crystal; the first term
describes that due to electrons and their Drude
collisions.

Gurevich, Lang, and Firsov® have computed the
first-order collision correction to Eq. (4) resulting from

2 N. Tzoar, Phys. Rev. 133, A1213 (1964).

3V. L. Gurevich, I. G. Lang, and Yu-A. Firsov, Fiz. Tverd.
Tela 4, 1252 (1963) [English transl.: Soviet Phys.—Solid State
4, 918 (1963)7].
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the unscreened interactions of “electrons and longi-
tudinal polar phonons. Making the zero-temperature
cold-plasma approximations described earlier, we can
write their correction to Eq. (4) in the form

Q052 €w10° 2
. (o] —ww) 2 (o] —wn),  (5)
67| w|?

where a=e2(ey— €,) (m/2hw10) %/ €oe?t is the familiar
dimensionless polaron coupling coefficient! and where
the step function
6(x)=1 for x>0 6)
=0 for x<0.

Ac(w)=

In (5), this step function ensures that no radiation
will be absorbed by the cold-electron-lattice system
unless [see Fig. 1(a)] it has the minimum energy #wo
necessary to excite an optical phonon. The square root
in (5) reflects the energy density of conduction-band
electron states.

If we neglect the photon momentum (k=0) in
Fig. 1(a) and assume that the electrons are initially
cold (ki=0), the final-state phonon and electron mo-
menta are equal and opposite (k’’). Equation (5)
follows from the additional assumption that the net
electron-lattice excitation energy AE;;(k’), the dif-
ference between the final-state and initial-state energies,
is

AEf,; (k") = hwm—l— (hk”)z/ZmZ hwzo. (7)

Notice that the electron excitation energy AEj;(k’)
— iy approaches zero as k" — 0. This behavior is
only accurate in the limit of vanishing electron density
for which wyo— 0; it is not accurate for w,o finite.
Roughly, if wp is small, we expect the long-wavelength
electron excitation spectrum to be dominated by the
plasma resonance. In that case, the electron system will
appear to have a minimum excitation frequency equal
to the plasma frequency, and the excitation energy
AE;;(k") will be bounded below by #%(wzotwio), such
a lower bound being reflected in the step-function
cutoff of the absorption spectrum. In their derivation
of Eq. (5), Gurevich ef al.? neglected the dynamic screen-
ing of the electron-phonon interaction,®® and for this
reason their results do not show the expected plasma-
frequency effects. When dynamic screening is taken into
account, these collective plasma effects correctly appear.
Dynamic screening is unimportant if wpe&Kw; or if
w>>wpo+wlo.

General expressions incorporating the dynamic
screening of polar and deformation-potential phonons
have been developed elsewhere.®® Specializing those
results to a single species of carrier and to a single set

4 H. Frohlich, Advan. Phys. 3, 325 (1954).

5 N. Tzoar, Phys. Rev. 132, 202 (1963); A. Ron and N. Tzoar,
ibid. 133, A1378 (1964).

6 D. E. McCumber, Rev. Mod. Phys. 38, 494 (1966).
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of infrared-active optical phonons, we find after con-
siderable algebra that the collision correction analogous

aw 026
Ac(w)=——n
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to (5) for the real or resistive part (4) of the conductivity
is

I, ([@] /w10,0p0/wi0,€0/ €0) (8a)
TWI0
where (41— 2~ 2~ 22 (1— R} ]2} 14 (2 — 1 — 28— 2R)
P2H1—a2— 22— 2 (1— 2—1—a2— 2
I,(z%,R?)= . (8b)
22[22_x2(1._R2):|1/2
In the low-density limit for which ¥=wpo/wi— 0, modes whose frequencies w.. (k) satisfy
I,(3,0,R?)=5"3(3—1)'29(z—1) 9) w2(B)=3(@i+wp’+2?)£3[ (' +wt Q)

—4 (iU Hwpled) 12 (11)

and (8a) correctly reduces to (5). The function
I,(2,%,R?) has been plotted in Fig. 2 as a function of
z=|w|/ww for various values of x=wpo/wiw and
R2=¢,/er. The absorption threshold, which for fixed
wyo Increases as wpo increases, occurs at a frequency

wm= (wi0*+ 2wiwpotwme?) 2, (10)

which is near the threshold (wpotwi) we intuitively
estimated. For z>>1, the function (8b) asymptotically
approaches the x=0 function (9), so that at high fre-
quencies (w>>wp) the collision correction (8a) with
dynamic screening approximates the result (5) without
screening.

Because the polar phonons and the electrons are
coupled through their joint self-consistent electric
field,® the resonant frequencies of the coupled long-
wavelength longitudinal modes are different from wjo
and wyo, except in special limiting cases.”® In lowest
order the frequencies characteristic of longitudinal
normal modes of momentum k are the zeros of the
collisionless dielectric function e(k;w)’. In the cold-
plasma system considered here, there are two such

with Q= #k?/2m. In the limit wyec>wi,

wy (k) = [wpd+Qu2 ]2,

w_ (k) = [+ (@i — @)W/ (wpo+) /7. (122)
In the opposite limit wi>w o,

@y (k) — wi,
w_(k) = [Q24 €’/ €0 ] 2. (12b)

In the former case w_(k) belongs to a mode with pre-
dominantly phonon character and w; (k) to one with
predominantly plasmon character; these characters are
reversed in the latter case. In intermediate cases it is
less meaningful to identify w, (k) as phonon or plasmon
frequencies.

While the real part o(w) of the conductivity is con-
vienient for physical interpretation, the dielectric func-
tion e(w) is generally more relevant to experiments at
infrared or visible frequencies. Adding the first-order
polar-phonon collision corrections to (3), we find that
with dynamic screening the high-frequency (w>>v.)
dielectric function is

f(‘“)%{ (@ =0+ 29 (P Fod) ot

20 (w1l —w?2)y

(@?*—w) (WP —wi?)+7[ (@ +od)+ (@) J+v* wif[l @? :”

+- gPp (w/ww ,wpo/wzo 7600/50)

w? T

trie {
(@0t 27wl

where I,(z,2,R?) is the function (8b) plotted in Fig. 2

and
©  21,(3,%,R?)
P, (3,24,R%) =20 / dF—F——. (14a)
) 2z

® means that the integral in (14a) is the Cauchy

7See A. S. Barker, Jr., in Proceedings of the International Con-
Jerence on Optical Propemes and Electronic Band Structure of
Metals and Alloys, Paris, 1965 (N orth-Holland Publishing Com-
pany, Amsterdam, 1966),

8 B. B. Varga, Phys. Rev 137 A1896 (1965).

il e o —I (lw[/ww,wm/wzo,feo/éo):”, (13)

wzl_w wio

principal-value integral. In the low-density limit for

which x= wpo/wzo g 0,

Pp(z,0,R) =z { (14 [2] )/
+(1—[z])P0(1—z[)—2}, (14b)

aresult previously obtained by Balkanski and Hopfield.®

The function P,(z,x,R?) has been plotted in Fig. 3 as a
function of 3= w/w; for various values of x=wyo/wi and

( °M). Balkanski and J. J. Hopfield, Phys. Status Solidi 2, 623
1962).
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R*=¢,/e0. The sharp cusp in each curve lies at the
threshold of the corresponding absorption function
I,(z,%,R? of Fig. 2 and results from the rapid rise in
I,(2,%,R?) at that threshold. The cusps will be blunted
by any effects which might soften the absorption
edge—for example, the neglected effects of finite tem-
perature and of finite electron Fermi energy.

When z=x=0, Eq. (14b) gives P,(0,0,R?) = —x/4, so
that in Eq. (13) the factor

wpt?[ 14 (a/m)3Pp] — wpe’(1—a/6) (15)
0.3
Q)
X=0
€x0/€o = 1.0
0.2~
0.5
0.707
o 1.0
’ 1414
2.0
3.0
o
0.3
X=0 (b)
€00/ €0= 0.25
0.2~
0.1 -
[
0.3
0.2
0.1 -
0 | ]
0 1 2 3 4 5

FREQUENCY, Z

F1G. 2. Polar-phonon collision-correction function I,(z,x,R%) as
a function of frequency 2= |w| /w0 for different values of %= zo/wio
and R*=c¢,/ep. This function relates to the imaginary or dissipa-
tive component of the dielectric function.
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(b)

(c)
€0/€o = O

|
o 1 2 3 4 5
z

F16. 3. Polar-phonon collision-correction function P,(z,x,R2)
as a function of frequency z=w/w; for different values of
x=wp/wio and R?=e¢,/eo. This function relates to the real or
reactive component of the dielectric function.

in the limit w, wyo—> 0. This limiting result will be
recognized as the first-order low-energy polaron cor-
rection? to the electron mass as it appears in wpe:
m— m(14+a/6). Figure 3 indicates for wpo finite
(x>0) that dynamic screening of the electron-phonon
interaction reduces the low-energy (w=0) polaron mass
correction below this single-electron value. For finite
frequencies, the “mass correction” wvaries with fre-
quency in the way indicated by Eq. (13) and Fig. 3.
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III. DEFORMATION-POTENTIAL PHONONS

The preceding section pertains to electron collisions
with polar phonons. Similar results obtain for electron
collisions with deformation-potential-coupled nonpolar
phonons, although in this case the transverse phonons
are not optically active and the collisionless high-fre-
quency (w>v,) dielectric function (3) has the form

The real or absorptive part of the corresponding con-
ductivity is

(16)

(ap=m e (17)
o\W)"=———"V¢
dr o

which is simply the Drude component of (4).

Specializing previously derived general expressions®
to a single species of carrier and to a single branch of
deformation-potential-coupled optical phonons of an-
gular frequency we, we find after considerable manipula-
tion that the collision correction to (17) is

Ar(@) E"%”"z(zm Lol fanspfe), (180
w)=———ro| — | /wo,wpe/w) , a
)i ) Tl
where

I(z2) =23 (z—1)*—22PH9(z—1—=x). (18b)

In deriving (18) we have used the phonon-electron
interaction due to Seitz! in which Ex is a (phenomeno-
logical) deformation-potential energy, K is a vector of
the reciprocal lattice, and pys is the mass density of the
crystal. We have also assumed, as is nearly always the
case, that

V2w w2/ wpe? (19)
for all &, where Qx=#%k%/2m as in (11) and where
7k2= EK2K2k2/41r62pM. (20)

In the low-density limit for which x=wyo/wi— 0,
I(z,x) reduces to

I14(2,0)=2"3(z—1)3%9(z—1), 21)

which is the envelope of the finite-x expressions (18b).
In Fig. 4 we have plotted I (2,x) as a function of
2= |w|/wo for x=0 and for various finite = wyo/wo. The

e(w)=e°°{1—.-wp02l:1+

Ex*K%q (2m)5/2
fiwo

241 mp aren

w2

D. E. McCUMBER

Py(w/wo wp0/w0)

154

0.3

0.2~

0.1 -
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F16. 4. Deformation-potential-phonon collision-correction func-
tion I4(z,%) as a function of frequency z= |w|/wo for different
values of #=wpo/we. The dashed curve is the polar-phonon func-
tion I,(2,0,R?) shown previously in Fig. 2 and included here to
demonstrate the different spectral shape of the polar and de-
formation-potential corrections.

absorption threshold in this system occurs at the
frequency
(22)

wth=wpo+wo,

as we would intuitively expect.

Again, because the phonons and the electrons are
coupled through a self-consistent field (different from
the electric field relevant to polar phonons),® it is
useful to note the frequencies wy (k) of the longitudinal
normal modes. In_the cold-plasma system considered
here,

0228 =} (i -Fopt+ 0 3L (o —op— 02
+dyidwp 2.

Near the “crossing” point w@=wye*+Q? of the un-
coupled modes, the coupled modes have mixed phonon
and plasmon character. Away from that point one mode
has phonon character and frequency wo, while the other
has plasmon character and frequency (wyo®+Q:2)!2

Adding the first-order deformation-potential phonon
collision corrections to (16), we find that with dynamic
screening the high-frequency (w>>v.) dielectric function
analogous to (13) is

(23)

]

EKszw() 2m

+ieww—piz,:2+—————<~—>5/2 —w—I (/w0 ,wp0/ cL’0)] , (24)

W Lw  247mpares \hwy o

10 F, Seitz, Phys. Rev. 73, 549 (1948); see also J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, England, 1960), p. 439.
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where I4(z,x) is the function (18b) plotted in Fig. 4
and
©  2I(3%)
Pd(z,x)=2(P/ dg———.

0 22—22

(25a)

In the low-density limit for which x=wo/wo— 0,

Pa(3,0)= —z2r{ (14| 3] )2
+(1—z])¥9(1—|z|)—2}.

The function P4(z,x) has been plotted in Fig. 5 as a
function of z=w/wy for various values of x=w,o/wo.
Note that the curves of Fig. 5 do not display the sharp
cusps of the corresponding polar-phonon curves of
Fig. 3. This reflects the fact that the function 7,(z,x)
of Fig. 4 rises much less steeply at the absorption
threshold than does the function 7,(z,x,R?) of Fig. 2.

Just as we did in Eq. (15) ff. for the function
P,(2,2,R?), we can view the function P4(z,x) and its
coefficients in (24) as a phonon correction to the elec-
tron mass as it appears in wpe®. From P4(0,0)= —37/4
we infer the low-energy mass correction m— m[1
+ (Ex?K%wo/32wmpre.) (2m/ fiwg)®%]. As before, screen-
ing of the electron-phonon interaction by other elec-
trons (x=wpo/we>0) reduces the mass correction below
the single-electron value.

(25Db)

IV. RELEVANCE TO EXPERIMENT

Barker” and Baer!! have tentatively attributed small
anomalies in the infrared dielectric properties of some
polar semiconductors to polar-phonon collision correc-
tions of the type we have discussed in Sec. IT. A detaijled
analysis of these anomalies requires a more complete
understanding of the electronic band structure of the
materials and, perhaps, extensions to the theoretical
results described above. Nevertheless, the available
evidence suggests that collision corrections do produce
observable modifications in the infrared properties of
semiconductors.

Our preceding analysis of collision corrections is
incomplete in several important ways. Only first-order,
albeit dynamically screened, collisions have been con-
sidered ; higher order multiple-collision corrections will
be important when phonon-electron interactions are
strong (e.g., a2 in Sec. II). The Fermi energy #wr

ONE-PHONON COLLISION CORRECTIONS
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F1c. 5. Deformation-potential-phonon collision-correction

function Pg(z,x) as a function of frequency z=w/w, for different
values of #=wpo/wo.

has been assumed small relative to #wgo; while this is
valid for some systems, it is generally invalid in ma-
terials with e,>>1 and m/m.&L1 (e.g., GaAs). Finally,
only materials with a single active optical-phonon
branch, a constant isotropic electron mass, and a single
conduction-band valley have been considered, whereas
many important materials are more complicated (e.g.,
SrTiO; and BaTiOz). We postpone the treatment of
these refinements to later papers. From the work? of
Tzoar we can anticipate, however, that the displaced
thresholds (10) and (22) will be conspicuous only if
WpoDWF, Wo.

In Table I are listed parameters typical of three
single-valley polar materials—GaAs, CdS, and ZnO.
Using these parameters with Figs. 2 and 3, we can
estimate the magnitude of the polar-phonon collision
corrections of Egs. (8) and (13). For example, for a
fictitious material not too different from ZnO for which
a=1 and R?=0.5, we find for <1 that the effective-
mass correction in the real part of Eq. (13) can be of the
order of 309, for w~w, a fact which must be taken
into account in estimating an electron effective mass
from reflectivity spectra. Reflectivity spectra computed

TasLE I. Effective masses, dielectric constants, polar coupling constants, and frequencies® of some single-valley polar semiconductors.

7=06.97X10' cm™

m/me €0 €0 a wplcm™)  wplem™)  wr/wp x=wpo/wn Ri=e,/eo
GaAs 0.08 109 12.5 0.065 288 84.6 1.75 0.29 0.87
[CdS 0.2 5.24 9.19 0.69 306 77.1 0.51 0.25 0.57
ZnO 0.3 4.0 8.15 0.95 591 65.8 0.37 0.11 0.49

aFrequencies w are quoted in wave numbers. In the formulas of the text angular frequencies in rad/sec are required. The conversion factor

is 2m¢ =67 X101 rad cm/sec.

1\, S. Baer, Phys. Rev. 144, 734 (1966).
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1.00 -
(8)
080}
0
0.60|-
0.40\-

0.20

Fic. 6. Reflectivity of a po-

X=2.0
1
| |
xX=2.0
0.80-
0.60H

0.40H-

2

)
where e(w) is given by Eq. (13).
In all examples, the phonon damp-
ing parameter v =0.05 wyo and the
dielectric constants e,=4, eo=8.
The polar-phonon coupling param-
eter « and the collision frequency
v, are (a) a=0, »,=0; (b) a=1,

020

REFLECTIVITY AT NORMAL INCIDENCE

v,=0; and (c) a=1, ».=0.1w;.
Case (a) obtains when all high-fre-
quency collision effects are ne-
glected. The case (not shown) for
which =0 and »,=0.1w; differs

from (c) in much the same way

1.00

as (a) differs from (b).

0.0

0.60

0.40

(
0
lar crystal at normal incidence
as a function of wavelength
1/2=wi/w for different values of
x= wpo(wm. The plotted reflectivity
is R=|[e(@)?—1]/[e(w)2+11]]
0.5
0
/
0

0.20

!
%5 1 2

WAVELENGTH, I¥Z

from Eq. (13) have been indicated for this same material
in Fig. 6 for a range of carrier concentrations (x=wpo/wio
is proportional to #!/2). In Fig. 6(a) all collision correc-
tions are absent. In Fig. 6(b) the high-frequency one-
phonon corrections are included. Their most con-
spicuous effect is to shift the long-wavelength “plasma”
resonance to longer wavelengths through the polaron
effective-mass correction already noted. Changes at
shorter wavelengths in the neighborhood of the absorp-
tion threshold (10) are also present but less conspicuous.
The system of Fig. 6(c) differs from that of Fig. 6(b)
by the additional inclusion of Drude collisions.

Little is known about the strength of the optical-
mode deformation potential Ex or about the relevance
to measured spectra of the deformation-potential
collision corrections of Egs. (18) and (24).
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