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exists for Si (e=12.0). Kohn, noting this discrepancy,
corrected the effective-mass formalism for deep donor
states. Formally, this was done by dividing the wave
function into two parts, an outer region where the
effective-mass formalism is still valid, and an inner
region where, since the dielectric constant is no longer a
good concept, a new wave function is required. Kohn, in
addition, used the observed E'~ rather than the calcu-
lated E& in the effective-mass theory.

A recalculation of the g values with the corrected
wave functions has not been carried out. However, the
effect of the corrected wave functions on the g value can
be considered qualitatively. Since the electrons of deep-
donor impurities are less influenced by the lattice, a g
value between that calculated from the uncorrected
effective-mass theory LEqs. (4) and (5)j and the 2.0023
expected for a tightly bound s-like state would be pre-
dicted. In the case of the donor resonance s in GaP, the g
values are indeed between these limits.

As a final note, a comment on the linewidth and shape
will be made. The wave function of the donor electron
will, even with a radius of 7 A, overlap several neigh-
boring Ga and P nuclei. Since all Ga and P isotopes have
a nuclear moment, there is a resultant hyperfine inter-
action between the donor electron. and every nucleus

overlapped by the electron. If the individual lines
resulting from these hyper6ne interactions are not
resolved, an inhomogeneously broadened line is ob-
tained. The width of 45—60 G is not inconsistent with
unresolved hyperfine interactions with several neigh-
boring Ga and P nuclei. However, an inhomogeneously
broadened line would be expected to have a Gaussian
rather than the observed Lorentzian shape. The ob-
served Lorentzian shape is probably due to motional
effects caused by hopping of electrons between donor
impurities. If one uses the criterion observed in Ge and
Si, hopping begins to occur when the average separation
between donors is about fourteen times the Bohr radius.
With a Bohr radius of 7 A, hopping would therefore
occur when the total donor concentration X~ is the
order of 10" cm '. The net donor concentration in the
samples used in the resonance experiments was of this
order, and hopping would therefore be expected.
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A detailed and accurate study of the de Haas —van Alphen effect and Fermi surface of arsenic has been
made by a vector-modulation technique. We 6nd two sets of Fermi surfaces which together give the required
volume compensation. The 6rst set contains three closed, centrosymmetric pockets (P in our notation)
which have a tilt angle (for the minimum area) of 86.4&0.1' from the trigonal axis. Their total volume is
found to be (2.12&0.01))&10"carriers/cm'. The other set forms a single multiply connected surface of
symmetry 3m and consists of six a pockets (the Berlincourt carriers) which have a tilt angle of 37.25+0.1,
and which are connected together by six long thin necks with a tilt of —9.6%0.1'. This is in excellent
agreement with the recent pseudopotential calculation by Lin and Falicov if the P pockets are due to elec-
trons at L and the multiply connected surface to holes around T. The multiplicities of the pockets are de-
duced from the experimental data and are supported by the consequent satisfactory agreement with the
observed electronic speci6c heat.

I. INTRODUCTION

RSENIC is a semimetal with the same A7 trigonal
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~ ~

~

crystal structure as the other semimetals bismuth
and antimony. ' Recent theoretical work by Cohen,
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Falicov, and Golin' has shown that all their band
structures are primarily a function of this crystal
structure, and so these semimetals should have many
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common features. Detailed experiments have been
made for Sb' ' and these agree very well with the
results of a pseudopotential band-structure calculation
by Falicov and Lin. For bismuth the experimental
situation is at last fairly clear" but theoretical work
has been hampered by the large spin-orbit coupling.

In the case of arsenic the published experiments give
only a partial picture of the Fermi surface and its
relation to the band structure. The first experiments
were made by Berlincourt' who studied the de Haas-
van Alphen (dHvA) effect. He found two sets of car-
riers, one with very long periods of the order of 10 'G '
(y in our notation; see Sec. III) and the other with
short periods of SX10 'G ' (n in our notation). He
fitted the short periods to a number of ellipsoidal
pockets related by the crystal symmetry and tilted by

35' from z in the yz plane. The long periods were
assigned to a small pocket directed along the trigonal
axis. It was noted that the required carrier com-
pensation could not be obtained from these two carriers
alone. Later, ultrasonic-attenuation experiments by
Ketterson and Eckstein" (geometric resonance and
quantum oscillations) and experiments by Shapiro and
Williamson ' on the quantum oscillations in the ultra-
sonic attenuation and on the dHvA effect showed the
presence of another set of carriers (P in our notation)
which could be used to provide volume compensation.
The volume of each P pocket was determined in these
experiments as 5.9—6.5&&10" electron/cm' but neither
the number of pockets nor carrier compensation could
be established. Ketterson and Eckstein's data' on the
very long period suggested that the p pocket had a
small tilt angle of the order of 5' from the trigonal axis.

Cyclotron resonance in As has been studied by
Datars and Vanderkooy. "Their data for this and the
dHvA eGect" are quoted as being in agreement with
the tilted ellipsoid model for the n carriers proposed by
Serlincourt.

A pseudopotential calculation of the band structure
by Falicov and Golin" enabled some conclusions about
the carriers to be made but further identification was
hindered by the lack of experimental data. It was
therefore of considerable interest to apply to arsenic
the new experimental techniques developed for the
study of the dHvA eGect in antimony. 3' The difEcult

' L. R. Windmiller and M. G. Priestley, Solid State Commun.
3, 199 (1965).' L. R. Windmiller, Phys. Rev. 149, A472 (1966).' W. R. Datars and J. Vanderkooy, IBM J. Res. Develop. 8,
247 (1964).' L. M. Falicov and P. J. Lin, Phys. Rev. 141, 562 (1966).

7 See J. B. Ketterson and Y. Eckstein, Phys. Rev. D7, A1777
(1965), and references quoted therein.

' R. ¹ Bhargava, Bull. Am. Phys. Soc. 10, 605 (1965).
s T. G. Berlincourt, Phys. Rev. 99, 1716 (1955).
»J. S. Ketterson and Y. Eckstein, Phys. Rev. 140, A1355

(1965)."Y.Shapira and S. J. Williamson, Phys. Letters 14, 73 (1965).
"%.R. Datars and J. Vanderkooy, Bull. Am. Phys. Soc. 10,

110 (1965)."L.M. Falicov and S. Golin, Phys. Rev. 137, A871 (1965).

Fro. 1. The Bril-
louin zone for the A7
crystal structure.
The standard nota-
tion (Ref. 2) for the
symmetry points is
used. With our sign
convention for the
angles in the ys plane
(the same as Ref. 14),
FT is at O', FX at
+59'17', FL at—72 50' or equiva-
lently +107'10'.

experimental problem of producing unstrained single-
crystal samples had already been solved. '

The wealth of new and accurate information ob-
tained in the present experiment enables us to deter-
mine the number, arrangement, and volume of each of
the pockets. This, in conjunction with the concurrent
refinement of the pseudopotential band-structure calcu-
lation by Lin and Falicov, "fixes the location and sign
of the carriers. It is shown below that nearly all details
of the experiment and theory are in excellent agreement.

II. EXPERIMENTAL TECHNIQUES

The modulation technique and apparatus used are
identical to those described in detail in Refs. 3 and 4.
The sample is situated in a static magnetic field of up
to 20 kG and a modulation field at a frequency of ap-
proximately 2 kc/sec is applied. The signal induced in
a small pickup coil around the sample was filtered,
amplified, and detected by a lock-in amplifier tuned to
a harmonic of the modulation frequency. The resultant
signal contains dHvA oscillations as a result of harmonic
generation by the nonlinear susceptibility of the sample.
The modulation field direction and pickup coil axis are
not in general parallel to the steady field and the
angles between them can be adjusted to take full
advantage of the vector nature of each component of
the oscillatory magnetization. All measurements were
made at temperatures between 1.2 and 4.2 K.

The arsenic single crystals were prepared from the
melt from Cominco 99.9999% stock by the techniques
described in Ref. 10. The crystals were cut by a spark
cutter into cylinders 8-in. diam by 4-in. long and were
finally etched in hot aqueous"KOH solution. Samples
oriented to within 1 of the three principal axes were
prepared and used in the experiment.

For accurate experiments on the semimetals it is
essential that the orientation of the magnetic fields
with respect to the crystal axes should be known to
much better than 1'. This was achieved by using a spe-
cially designed back-diffraction x-ray camera accurate
to 0.2'. Final trimming so that the field was rotated in
the desired plane to ~0.2' was accomplished by tilting
the Dewar about either of two perpendicular horizontal

"P.J. Lin and L. M. Falicov, Phys. Rev. 142, 441 (1966).



F ERM I SURFACE IN As 673

axes and utilizing the known symmetry of the
oscillations.

Magnetic Gelds were measured directly by NMR to
1 part in 10', so dHvA periods could be measured to
better than 0.1% except for the very long period, of
order 10 'G ', where the small number of oscillations
limited the accuracy to 0.2%%uz. Periods were measured
in this way at selected points and the remainder of the
data was obtained from Geld-rotation measurements,
with the modulation conditions adjusted so as to make
the desired oscillatory component dominant.
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III. RESULTS

The Brillouin zone for the arsenic structure is shown
in Fig. 1. In presenting the results we follow the usual
convention of labeling the mutually perpendicular
binary (PE), bisectrix, and trigonal (PT) axes as the
x, y, and z axes, respectively. The sign of angles meas-
ured from the trigonal axis in the ys plane is such that
a positive rotation is from the direction I'T towards
that I"X which lies in the first quadrant. It should be
noted here that previous experiments have not deter-
mined the sign of the tilt angles in arsenic. The resolu-
tion of this ambiguity is discussed in Ref. 4.

A. The Long Periods

The data for the long periods in the ys plane are
shown in Fig. 2. These oscillations are found down to
approximately 600 0 for the magnetic field H parallel
to z. A series of careful determinations of the period
for H along s, using direct NMR measurements of the
magnetic field, gave

E=3.835+0.006&(10 'G '.
It is quite clear from Fig. 2 that these long periods
arise from approximately cylindrical Fermi surfaces
which are tilted in the ys plane. A separate experiment,
in which the Geld was rotated in a plane containing the
z axis but inclined at 15' to the ys plane, showed that
the necks had no tilt in the xy plane. This also shows
that their degeneracy is either three or six, and there-
fore that they do not lie at a general point in the
Brillouin zone (see Ref. 4 for a detailed discussion).

The tilt angles and period maxima were found by
making a least-squares fit of the observed periods to an
expression of the form

P'(8) =A+ J3 sin28+C cos28, (3.1)

where 0 is the angle from the z axis. In units of 10 "G '
the values obtained were 2= 7.495, 8= —2.534,
C=7.195, with a tilt of —9.6&0.1' and P, =3.89
&0.01X10 'G ' for the curve y~ in Fig. 2. For the
other curve y2 the corresponding values were, in the
same units, 2 =7.252, 8=1.247, C=7.433, with a tilt
of +4.8&0.1' and P, =3.85&0.01X10 'G '. Clearly,
these are the principal and nonprincipal branches,
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Fxo. 2. The long periods observed in the ys plane. These are
referred to in the text as the 7 oscillations. The solid line is a
hyperbolic irt using Eq. (3.1), with the parameters given in the
text. Over the rest of the data the hyperbolic 6t is within the
experimental error. s—points measured using NMR.

respectively, because application of a threefold rota-
tion to the principal branch gives excellent agreement
with the observed nonprincipal tilt angle and maximum
period.

A most important feature of these surfaces is that
they are necks. This is clear from the fact that
(8'+C')'~')2 and is illustrated by Fig. 3, in which
the observed (Pecos%' —P) for the principal neck is
plotted against 0', where 0' is the angle in the ys plane
from the maximum period I'0. The period decreases
more rapidly than cos+ for all 4, and this is character-
istic of a neck.

0.4— yz plane y necks

Pc&l = 5.S9 cos fx lO

0,2—
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0 g 0 is~AD
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FIG. 3. The deviations of the observed principal y-neck periods
from a cylindrical approximation in the ys plane. + is the angle
from the period maximum at 8= —9.6', dots represent 8 negative,
squares represent 8 positive. The solid line is the hyperbolic Gt to
Eq. (3.1).

B. The Short Periods

Figure 4 shows the short periods in the ys plane.
These data fall into two distinct groups.
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(1) We shall call the erst group the u carriers, with a
principal pocket which has a maximum period of 6.715
&0.006)&10 ~G ' at +37.25&0.1' from the trigonal
axis. The corresponding nonprincipal pockets have a
maximum period of 5.735&0.006&&10 'G ' at +156.15
&0.1' from the trigonal axis. These are the Berlincourt
carriers, and at first sight appear consistent with an ap-
proximately ellipsoidal model. However, there is one
feature that strongly suggests a multiply connected
surface, namely, that the n carrier oscillations disappear
abruptly at certain orientations. A striking example of
this is shown in the field-rotation diagram in Fig. 5,
which shows the disappearance of the principal n

oscillations in the yz plane at about —81.8' from z, the
trigonal axis. This recorder trace shows that the ampli-
tude of the n oscillations decreases by a factor of at
least 50 within 1' and then disappears. The only con-
vincing explanation for this is that the corresponding
extremal cross section ceases to exist. Similar behavior
was observed at the other points in Fig. 3 where the
data for the n carrier ceases.

(2) We shall call the other carrier the p carrier. In
the yz plane this has a maximum period of 4.694~0.004
)&10 ~G ' at +86.4&0.1' from the trigonal axis I'T.
We observe only the principal pocket of this set,
probably because of the large angle between the oscil-
latory magnetization and the pickup-coil axis for the
nonprincipal pockets. The p oscillations appear to come
from a closed pocket and are observed over all the yz
plane with the exception of a region of about 7' near
the trigonal axis (Fig. 4). Here the amplitude does not
decrease abruptly but falls gradually until it is below
the noise level. In order to obtain a good estimate of
the volume of each pocket of the p carriers it is therefore
necessary to extrapolate the data to 6nd both the
position and magnitude of the minimum period. The
best extrapolation functions are those which have the
appropriate symmetry and periodicity for the yz plane
and also form an orthonormal set. We therefore make
a least-squares 6t of all the principal p carrier data in
the yz plane to a finite Fourier series of the form

FzG. 5. Rotation data which show the abrupt disappearance of
the a oscillations in the ys plane near the bisectrix axis. The
angles 0 are measured from the s axis. N'ote that the amplitude
decreases by more than a factor of 50 within 1'. The small oscil-
lations that remain at the right are due to another period.

I"(9)=+o+g a2q cos(210)+b2g sin(239), (3.2)

where 0 is the angle from the trigonal I'T.
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We thus have 2K+1 terms. We fit to E'(8), the
square of the period, rather than directly to E(8)
because for an ellipsoid the expansion for P'(8) termi-
nates after 3 terms. It was, however, necessary to use
a large number of terms to obtain a good fit to the
observed data. The final 35-term expansion (see Fig.
6 for details) gave an extrapolated period minimum
of 1.045~0.005)&10 'G ' at —9.0~0.2' from the
trigonal axis. It should be noted here that the two
extrema of the period plot for the I8 carriers in the ys
plane are not 90' apart, the angle between them being
84.6&0.2'. This indicates that the corresponding pocket
of the Fermi surface is somewhat 8 shaped in the ys
plane.

Figure 7 shows the short period data in the xy plane.
The n carriers are observed only within about 38.5' of
the principal bisectrix direction, but the P carriers are
found at all angles except for a region of about 5' either
side of the principal binary axis. We again use a Fourier
series to extrapolate the data to the binary axis, but
now the expansion is simpler because the period curve
has mirror symmetry about the binary axis. Thus we
need only the cosine terms in the expansion of I" in
Eq. (3.2). An 11-term extrapolation yields

pb. y
——1 304~0 004X10 7G

The rotation data for both the n and P carriers in
the xy plane show that any tilt in the xy plane is less
than 0.1'. Hence both are almost certainly 0' and
consequently the number of pockets of these carriers
is either three or six.

Another group of periods, which are labeled 8 in Fig.
7, is found when the field lies within about 6' of the
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Fit . 6. Details of the extrapolation of the p period over the7' region in the ys plane where no p oscillations were observed.
The circles represent measured periods. The extrapolations are
made by a least-squares fit to Eq. (3.2). Curve (a) has 3 terms
(i.e., an ellipsoidal fit); curve (b) has 21 terms; curve (c) has 35
terms.

binary axis. These do not fit at all into the tilted
"ellipsoid" schemes and it is shown below that they are
a consequence of the multiply connected hole surface.
Note that the data in Fig. 7 show unambiguously that
the 6 periods cross at the binary axis in the xy plane.

The data for the short periods in the xs plane are
shown in Fig. 8. Those for the o. carriers were obtained
by field rotations and the expected three branches are
seen. Again the n oscillations were found to disappear
abruptly at certain orientations and these are shown in
the figure. In this plane the P-carrier data are less
accurate (&1%) because they were obtained from
6eld sweeps not directly calibrated by NMR. Only
two of the three groups of P oscillations were found
because the third has an oscillatory magnetization
which is almost perpendicular to both the modulation

I I I I I I I I I I I

~oe +' s +op~e

Fn. 7. The data for the short
periods in the x-y plane. The data
have mirror symmetry about the
bisectrix and binary axes only if
the 6eld is rotated accurately in
the xy plane. Large circles are
points obtained from NMR meas-
urements. The 11-term extrap-
olated values of the p period are
shown.
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coils and the pickup coil. The two observed sets of P
oscillations are in agreement with the proposed model
of three or six closed pockets.

When the field is within about 3' of the binary axis
we again observe the 5 oscillations and in this plane, too,
we find that the 8 periods cross at the binary axis. The
corresponding Fermi surface orbits are thus skew in
both the xy and ys planes.

A summary of the period data is given in Table I.
A number of mixing frequencies were observed in all
three planes. These were all accounted for as either the
sum or difference of the observed dHvA frequencies
and consequently are not shown as data in the
figures.

In the remainder of this section we discuss in detail
the angular variation of the n and P oscillations and
we attempt to establish the necessary volume com-
pensation by making a careful estimate of the volume
of each pocket.

First we consider the n oscillations. In Fig. 9 we have
collected together all the data on their angular range.
These are shown on a stereogram centered on the field
direction for the period maximum, i.e., +37.25 from
I'T in the ys plane. This figure illustrates the pronounced
asymmetry in the angular range of the cx oscillations in
the ys plane, in that they extend for 87' from I', in
the direction to I'T, but only for 61' towards I'X. There
is a corresponding asymmetry in the periods themselves,
as is shown in Fig. 10(a), in which the deviations of the
measured periods from the best ellipsoidal fit are plotted
as a function of the angle from the period maximum.
The best ellipsoidal fit is determined in the same
arbitrary but plausible way as in Ref. 4, i.e., the best
extrapolated values of the extremal periods are taken
as the principal ellipsoidal periods even though the
former are not 90' apart. Figure 10(a) also shows the
21-term least-squares fit to Eq. (3.2) and this is clearly
an excellent fit to the data.

TAnLE I. Arsenic data summary (a.u. =atomic units).

cx oscillations
Maximum period in 10 7G ~

Extremal area in 10 ' a.u.
Tilt from trigonal FT

P oscillations
Extremal periods in 10 7G '
Extremal areas in 10 3 a.u.
Tilt from trigonal

7 oscillations
Maximum period in 10 'G ~

Minimum area in 10 5 a.u.
Tilt from trigonal

5 oscillations
period in 10 ~G 1

area in 10 ' a.u.

6.715+0.006
3.981~0.004

+37.25 ~0.1'

4.694~0.004
5.695~0.005

+86.4 +0.1'
1.045+0.005

25.5 +0.1—9.0 ~0.2"

3.89~0.01
6.87&0.02—9.6 &0.1'

Bisectrix trigonal plane (yz) Binary axis (z:)

1.304&0.004b
20.50 &0.07

2.76 &0.01
9.68 &0.03

35-term extrapoIation over 3.1'. b 11-term extrapoIation over 4.7'.
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We now need to estimate the volume of an rr pocket.
Because these are so nonellipsoidal and because (as is
shown below) they lack a center of symmetry, any
estimate will be subject to considerable and unknown
systematic error. A reasonable way to calculate the
volume is to take the three extremal periods and to use
these in the expression for the volume of an ellipsoidal

pocket

V= (8/3s'I')(e/ch)sl'(PtPsPs) 'I' carriers/cm' (3.3)

This can be seen to give good results when the pockets
are only slightly nonellipsoidal. In our case we do not
observe three extremal periods for the n carriers because
the pockets are multiply connected, so the best we can
do is to And extrapolated values, which do not, how-

ever, imply the existence of a corresponding extremal
area. In the yz plane a 21-term extrapolation using the
method described earlier gives a minimum period of
1.60X10 'G ' at —64' from the trigonal axis. In the
xy plane the data must be extrapolated for over 50'
and the simple two-term 6t to the observed data shown
in Fig. 10(b) gives Pb;„~1.75&&10 rG '. When these
values are substituted in Eq. (3.3) we find that the
number of carriers per pocket is 3.9&(10'9 cm '.

Fortunately the analysis of the P-carrier data is much

simpler, because the P pockets are closer to ellipsoids
and the data cover nearly the whole range of angles.
However, the pockets are still nonellipsoidal, as is
shown by Fig. 11(a), in which the deviations from the
best ellipsoidal 6t in the ys plane are shown as a func-
tion of the angle from the period maximum. A corre-
sponding plot for the xy plane is shown in Fig. 11(b).

For the P carriers we expect to be able to obtain a
much more reliable estimate of the volume of each
pocket by using the ellipsoidal formula (3.3), with the
three principal extremal periods obtained earlier in this
section. We thus find that the volume per P pocket

F&G. 9. A stereo-
gram showing the
angular range of the
n oscillation. It is
centered on the pe-
riod maximum in the
ys plane at 37.25
+0.1' from the trig-
onal direction FT.
Closed circles are the
observed disappear-
ances of the n oscil-
lations in the prin-
cipal planes.

corresponds to (7.07+0.04)&&10" carriers/cm', where

the error shown represents just that due to the random
errors in the determination of the principal periods.
The ratio of the volume of a P pocket to that of an n

pocket is therefore 1.8, with an error which we guess to
be of the order of 20%. This large error arises almost
entirely from the difhculty in estimating the volume

of an 0, pocket. It is shown below that the 7 necks are
associated with the o. pockets, but in any case, they
mak. e only a negligible contribution to the volume.

The actual value of this ratio must of course be a
simple rational number. The nearest remaining possi-
bilities are 1, 2, and 4, so it is natural to conclude that
the real value of the ratio is 2. Even though our estimate
of the volume of an n pocket may not be very accurate,
we feel that it is suQiciently good to rule out any other
value for the volume ratio.

It now follows that, since neither set can contain
twelve pockets, there are six n pockets and three P
pockets, hence the P pockets must be located at either

the point I. or X in the Brillouin zone. Both of these

points are a center of synmietry, so we have now shown

that the corresponding P surface is centrosymmetric,
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appearance of the n oscillations. The solid line is the 21-term 6t to the data, using Eq. (3.2); this is used in the volume estimate, (b) A
plot of P versus cos p for the n oscillations in the xy plape +=0 is the bisectrix axis. The straight line is the least-squar|;Z ii) me&;
tioned in the text.
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FyG. 11. (a) The deviations of the p periods from ellipsoidal behavior in the ys plane. +=0 is the period maximum at +86.4 from
the trigonal axis. Closed circles are periods for 8 &86.4', squares are periods for 0)86,4'. The solid line is the least-squares 35-term Qt
to the p periods, using Kq. (3.2). (b) A similar plot for the xy plane. +=0 is at the bisectrix axis. The solid line is the 11-term Gt to
Eci. (32) used in the volume estimate.

~ neck for H~~trigonal

p pocket for H minimum area
~ pocket for H minimum area
5 oscillations at binary
Fermi energies derived in a

parabolic approximation
y neck
P pock.et
a pocket

0.028~0.001
0.130&0.005
0.098~0.005
0.26 ~0.01

es (Ry)
7.8X10-4
1 4X10~
1.3X10~

5 I.M. Lifshitz and A. M. Kosevich, Zh. Kksperim. i Teor. Fiz.
29, 730 (1953) [English transl, ; Soviet Phys. —JETP 2, 636
(1936)g.

and hence that its extremal area is always the central
section. This removes the major source of uncertainty in
the extimation of its volume and shows that the quoted
volume of (7.07&0.04) X10"carriers/cm' is not subject
to any major systematic error. Since there are three p
pockets the total number of carriers of each sign is
(2.12+0.01))(10'e per cm'.

Several measurements of the effective mass were
made, in order to permit estimates of the relevant
Fermi energies. The temperature variation of the
oscillation amplitude was measured and the standard
amplitude expression" was used to derive the cyclotron
mass. The values found are listed in Table II together
with estimates of the Fermi energies derived from a
parabolic band approximation. This approximation is
reasonable for the p pockets, but may be rather poor
for the a pockets because of their large deviations from
ellipsoids. Comparison with the fragmentary cyclotron-
resonance data" is inconclusive. Datars and Vanderkooy
measured (to &10%) effective masses of 0.16 and 0.33
for H~~x, and 0.14 and 0.22 for H~~y. The values of 0.14
and 0.16 agree with the predictions from our measured
masses for the P pocket and the value of 0.22 for H~~y

TAnLE 11.Measured effective masses m+/ms.

is probably due to the principal o. pocket. The mass of
0.33 found for H~~x is probably the 3 period, although
our measurements give 0.26~0.01 for this period.

IV. INTERPRETATION AND COMPARISON
WITH OTHER EXPERIMENTS

In this section we discuss the arrangement in the
Brillouin zone of the pieces of Fermi surface described
by the data given in the previous section.

Our observation that the long y periods are in fact
necks shows that they connect at least two larger pieces
of surface. Since the n carriers show features character-
istic of multiply connected surfaces we conclude that
the a oscillations arise from the pockets which the necks
connect. We have already shown that there are six n
pockets, three p pockets, and either three or six 7 necks.

Before discussing the arrangement of the e pockets
we make some preliminary remarks about the origin
of the 3 oscillations. Since the P carriers form a simple
set of closed surfaces it is natural to conclude that the
8 oscillations come from the same surface as the o. and
y oscillations. The crossing of the 8 oscillations at the
binary axis in both the xy and xs planes shows that:

(a) The 3 orbit cannot be centered on the binary
axis perpendicular to it, because that would require
each period branch to be symmetric about that axis.
The same argument shows that the 8 orbit does not lie
in the mirror plane.

(b) The 3 oscillations are twofold degenerate at each
binary axis. There are three distinct binary axes, so
there are six diBerent 8 periods. The number of orbits
is thought to be twice this because of the inversion
symmetry about F or T. The 8 orbits are thus skew in
both planes.

The observation that the area of a b orbit cs larger
than that of the parallel u orbit together with the fact
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FIG. 12. Two possible ar-
rangements of the a pockets
and the 7 necks.

rx

(ii)

that the 0. orbit is a local maximum in the cross-
sectional area shows that the b orbit cannot be a topo-
logically equivalent maximum area. No other period is
observed which could provide the necessary inter-
mediate minimum cross section, so it follows that (1)
the n and 8 orbits are topologically distinct, and (2) that
the 5 orbit arises from a skew orbit associated with the
junction of the p necks and the o. pockets.

We now return to the problem of the arrangement of
the n pockets and make the further plausible assumption
that any surface they form is completely describable in
terms of smooth o. pockets connected by p necks. This
assertion is supported by the carrier compensation
derived in Sec. III and by the smooth behavior of the
n periods.

The only possibilities are that the a pockets are
connected in groups of two, three, or six, and we con-
sider these in turn.

If we have groups of two, there must be three such
groups. This follows from the observed zero xy tilt for
the n pockets and is independent of our arguments
based on volume compensation. Each group of two
pockets is therefore centered on an inversion center.
The four inversion centers are I', T, L, and X. The
first two are obviously ruled out because there would
not be enough pockets and because there would then
be no ys tilt for either the o. or y periods. The remaining
points, L and X, lie in the mirror plane, so that the e
pockets and the associated y necks would then lie in.

this same vertical plane. If this were so we could find
no explanation for the skew nature of the 5 periods, so
we discard groups of two.

Because of the limitations placed by the available
point-group symmetries, groups of three can themselves
exist only in inversion pairs above and below F or T.
These points have symmetry 3m and it is easily seen
that for groups of three pockets this requires that the
tilt angles of the y necks be 90'. This contradicts the
data and we therefore are left with one group of six n
pockets as the only remaining possibility. Since neither
the o. nor the p oscillations have any xy tilt, it follows
that in a projection perpendicular to FT, the y necks
lie at 60' to the o. pockets they connect. The resultant
complex surface then has just two possible locations in
the Brillouin zone, around I' or around T. Both of these
have the point group symmetry 3m and the dHvA data
cannot distinguish between them. In both these cases
we have six n pockets and six y necks. FIG. 13. A Pro-

jection of the mul-
tiply connected hole
surface on the bi-
nary-bisectrix plane
through T. The
shaded circles 8 are
the intersection of
the surface with this
plane. The full lines
denote projection
from above; the
dotted lines projec-
tion from below.
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The present data also enable us to determine some
further features of this surface. We know that the six
p necks must be either centered on the binary axis or
lie in the mirror plane, but it is clear that the second of
these possibilities does not fit the data, because then
there would be either too many n pockets or there
would also be another no-tilt pocket at I' or at T, and
this is not observed experimentally. We thus conclude
that the e pockets lie in the mirror plane and that the
p necks are centered on the binary axes. The surface is
thus multiply connected, with the topology of a torus.

It now remains to determine the relative orientation
of the n pockets and y necks. The data show that their
tilt angles are of opposite sign and this restricts us to
the two possibilities shown in Fig. 12.

We distinguish between these by using the measured
asymmetry of the n periods in the ys plane. This was
discussed in Sec. III and it is evident that the pro-
nounced asymmetry of the angular range in the y2'

plane (Fig. 9) of the n period with respect to its period
maximum is consistent with arrangement (i) in Fig. 12,
but not with arrangement (ii), because the latter would.

predict an asymmetry of the opposite sign to that
observed.

We have thus shown that consideration of the
experimental data alone leads to the conclusion that
the o., y, and 5 oscillations are all due to a complex
multiply connected surface of symmetry 3m about I."
or T. The surface consists of six y necks (with a tilt
of —9.6') centered on the binary axes through I' or T
and six n pockets (with a tilt of +37.25') which lie
in the mirror plane through I'T. These are connected
by six p necks as shown in Fig. 13.Three of the pockets
lie above the plane perpendicular to I'T through the
inversion center, and the other three lie below in the
remaining sextants.

No other arrangement is consistent with our experi-
mental data. We have previously established that these
six u pockets, together with three closed P pockets, give
satisfactory volume compensation if one set are elec-
trons and the other are holes, but of course the dHvA
data alone do not tell us which is which. Fortunately,
the identification is self-evident when we compare the
dHvA data with the pseudopotential band calculation
of Falicov and Lin, as is done in Sec. V.
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TABLE DI. Arsenic electrons. Areas and masses are given in atomic units.

Number of pockets
Location in Brillouin zone
Tilt in ys plane for:

(a) minimum area
(b) maximum area

Minimum area for H in ys plane
Area for H to x (binary)
Area for ff to s (trigonal)
Total number of electrons

Principal e8ective masses in
ellipsoidal approximation
(a)along binary axis

(b)in ys plane

Fermi energy (Ry)

This experiment
P carriers

3
I.or X

+86.4+0.1'
+171.0~0.2'

(5 695&0 005) X10 '
(2.050&0.00'1) X10 '
(2.088+0.005) X10 '
(2.12 +0.01)X10"cm '
(4.60 &0.05) X10 ' per atom

0.163

0.105
2.11
0.0140b

Pseudopotential calculation
(Lin and Falicov)

~+800
~+171
5.5X10-3
1.8X10 '
16X10 '

0.11

0.038
0.94
0.0270

sa The electron Fermi energy was fitted to this value. b Derived in a parabolic approximation.

We have still to establish the details of the origin
of the 8 oscillations, which have been shown to arise
from a skew orbit associated with the junction of the y
necks and the n pockets. The most likely assignment
appears to be that shown in Fig. 14, and this is sup-
ported by consideration of the values of dI'/do shown

by the 8 periods at the binary axis. These give us a
direction associated with the surface traced out by the
orbit. It is clear that the relation is exact only for a
cylinder, but the concept remains useful in a more
general case. The "angle of tilt" (in the above sense) is
given by

q = tan —'$(1/P) (dP/de) j.
For the 8 oscillations with H parallel to x these angles
are 51' and 70' in the xy and xs planes, respectively,
measured from the binary axis. These magnitudes are
reasonable for the interpretation given in Fig. 14. In
particular we note that the tilt in the xs plane (when
referred to the trigonal axis FT) should be intermediate
between the principal n tilt of 37.25' and the non-

FIG. 14. Two sketches to show the proposed origin of the 5
period. (a) One n pocket is shown in the same projection as Fig.
15. (b) The section of an n pocket by the mirror plane. This is
shown as section mm in Fig. 13.

principal 7 tilt of 4.8'. The 5 value of 20' satisfies this
condition. The relative signs of these two angles for
an individual 5 period are also relevant, but they have
not been determined experimentally.

There is one shortcoming in this interpretation of the
experimental data, in that it necessarily predicts an
extra extremal area for H parallel to the binary axis.
This extremal lies in the mirror plane 0- and is the central
section of an n pocket. A careful search was made for
this missing period, but it was not observed. We assume
that this is because it has a very low amplitude, and a
plausible reason for this is the expected large curvature
of this e surface perpendicular to the central orbit for
this particular field direction.

As an over-all check on our interpretation we may
use this model to calculate the electronic specific
heat, which has recently been measured by Culbert. '
He &nds 7,~

——0.194&0.007 mJ mole ' 'K ' for arsenic.
For ellipsoidal parabolic bands we may write the co-
eKcient of the linear term in the specific heat as

S
y,(=-,'x'k'V Q —per mole,

5p

where V is the molar volume, e is the number of
carriers/cms per pocket, e& is the Fermi energy of a
pocket, and the summation is over all pockets, both
electrons and holes. We take six a pockets and three P
pockets, with the parameters taken from Tables III
and IV, and we treat the necks as cylinders with a
length estimated from the observed angular range of
the y period. Although the necks make a negligible
contribution to the volume, they make approximately
an 8% contribution to the electronic specific heat,
because their Fermi energy is so much smaller. Our
calculated value for y, ~ is 0.192 mJ mole ' 'K ', which
is in surprisingly good agreement with the measured
value of 0.194.This comparison provides strong support

"H. P. Qulbert, Bull. Am. Phys. Soc. 10, 1104 (1965).
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TABLE IV. Arsenic holes. Areas and masses are given in atomic units.

(1) y necks
Number:
Location in BZ
Tilt from I'.T in ys plane
Minimum area
Minimum effective mass
Fermi energy (rydbergs)

(2) u pockets
Number:
Location in BZ
Minimum area in ys plane
Tilt angle of minimum area
Fermi energy (Ry)

This experiment

6
on binary axis through I' or T—9.6~0.1'

(6 8'/+0 02) X10 s

0.028&0.001
7.8X10-4b

6
in mirror plane through j.' and T

(3.981%0.004) X10 '
+37.25+0.1'

0.013b

Pseudopotential calculation
(Lin and Falicov)

6
on binary axis through 2'(2'W)

6.9X10 5'

6
near T in mirror plane through F and T

dificult to calculate
~+44~

0.0266

' The Fermi energy for holes was adjusted to fit this value. b Derived in a parabolic approximation.

for our previous conclusion that there are six o. pockets
and three P pockets.

The geometric resonance data'0 provide an additional
check on our data. The P carriers have sufhcient sym-
metry to ensure that the momenta observed for q~~x

and HJ q trace out the section of the Fermi surface
which lies in the mirror plane. Thus, Fig. 2 of Ref. 10
gives directly the extremal dHvA area for H~~x. These
geometric resonance data give an area of 19.9+1.0
X10 ' a.u. which is in good agreement with our dHvA
value of 20.50&0.07&10 ' a.u.

V. COMPARISON WITH THEORY

A general survey of the band structures of the Group-
V semimetals was recently made by Cohen, Falicov,
and Golin. ' They pointed out the primary role of the
A 7 crystal structure and showed that arsenic, antimony,
and bismuth were likely to have rather similar band
structures, with the holes at or near T and the electrons
at or near L or X. A more detailed pseudopotential
calculation for arsenic by Falicov and Golin" derived
its pseudopotential by a four-parameter interpolation
between the best values for Ge determined by Brust."
(Ge is next to As in the periodic table. ) These four
parameters were then varied a little in an attempt to
6t the existing experimental data and the effects of spin-
orbit coupling were added as a perturbation. Unfor-
tunately, the then available experimental data were
not enough to either identify the observed carriers or
to establish a best choice of pseudopotential parameters.
This work also concluded that the over-all features of
the band structure were determined mainly by the
crystal structure, while changes in the pseudopotential
had relatively little effect.

A erst-principle self-consistent orthogonalized-plane-
wave (OPW) calculation was made by Golin" and this
confirmed the general features of the pseudopotential
calculation. However, it was not possible to identify the

' D. Brust, Phys. Rev. 134, A1337 (1964)."S. Golin, Phys. Rev. 140, A993 (1965).

observed carriers or to calculate the expected tilt
angles.

The appearance of further experimental data""'9
prompted Lin and Falicov' to make further pseudo-
potential calculations and they were able to find
modified pseudopotential parameters which gave an
excellent fit to all the data. The calculation was
carried out concurrently with this experiment and was
in part guided by its preliminary results. In particular,
our data showed that it was necessary to consider
points of lower symmetry than in the earlier calculation.

The band structure finally obtained from this semi-
empirical calculation is in excellent agreement with so
many features of our experimental data that little
doubt remains of its correctness near the Fermi level.
The gross features of the band structure are very
similar to the previous calculations but the details of
the levels near L and T are rather different. The
relevant levels are shown in Fig. 15. It should be noted
that the maximum energy in the hole band lies on none
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I'IG. 15. Lin and I'alicov's band structure for arsenic in the
neighborhood oi the points 2' (holes) and I. (electrons). Energy
and k vectors are given in atomic units.

'9 M. G. Priestley, L. R. Windmiller, J. B. Ketterson, and Y.
Eckstein, BulL Am. Phys. Soc. 10, 1089 (1965).
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Fxo. 16.A perspec-
tive vievr of the mul-
tiply connected hole
surface as deter-
mined by Lin and
Falicov's calculation.

of the symmetry lines through T but is in the mirror
plane at a point B with rectangular coordinates
gp(0. 3595, 0.0027, 0.3595). (See Ref. 13 for the co-
ordinate system and the value of gp. ) The six resultant
pockets are joined by six necks centered on the TS'
line (the binary axis through T) and together form the
complex hole surface sketched in Fig. 16. It is evident
that this is in all essentials identical to that found from
our experiment, except that this calculated Fermi
surface would not produce the observed 8 oscillations.
The difference from the experimental Fermi surface is
only a minor one and can be removed by making the p
necks join the n pockets a little away from the ends of
the latter, as shown in Figs. 13 and 14. It is not clear
whether minor changes in the pseudopotential parame-
ters will remove this small discrepancy.

The electrons are in three closed pockets at the
points L, the centers of the hexagonal faces not per-

pendicular to the trigonal axis (Fig. 1). A detailed
numerical comparison between our experimental data
and these calculations is shown in Tables III and IV,
which cover electrons and holes, respectively.

The dHvA data for the pure metal of course give us
no information about the signs of the carriers, but the
comparison with the calculations gives an obvious
choice of the three closed P pockets as electrons, while
the complex multiply connected surface contains all
the holes.

The agreement for the numbers of pockets and their
Brillouin-zone locations is complete. The tilt angles
agree very well in both magnitude and sign, and the
general anisotropy of the pockets is correctly calculated.
There is a minor disagreement in the electron effective
masses, where the calculated values are approximately
a factor of two too small, but this may well be due to
the nonparabolic bands.

It is interesting to note that the locations and tilt
angles of the carrier pockets are very similar to those for
antimony. ' 4 ' There the electron pockets are also at L
with a tilt angle only 1.1' larger than in arsenic, while
the holes are again in a group of six about T. The spin-
orbit coupling is larger in antimony and this may well
account for its smaller number of carriers' (S.SX10ts
electrons/cm') and the absence of the necks. Pre-
sumably in bismuth the spin-orbit coupling is so large
that the maximum in the hole band lies directly at T
and the resultant single-hole surface has no tilt. ' ' "
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