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Ground-State Energy Shift due to the s-d Interaction

J. Koodoo'
Bell' Telephone Laboratories, Murray Hil/, Em Jersey

(Received 11 August 1966)

A calculation of the ground-state energy of a localized spin embedded in a normal metal is described.
The unperturbed state is taken as the state of the unperturbed Fermi sphere multiplied by a spin state
with $,=$. Configurations with 1, 2, ~ - ~ electron-hole pairs excited are taken into account by a pertur-
bation theory. Then a self-consistency equation to determine the ground-state energy is obtained. This
equation has a solution which reduces to the Rayleigh-Schrodinger perturbation theory. In the case of anti-
ferromagnetic exchange interaction, however, there is another solution which is lower than the Rayleigh-
Schrodinger theory by a BCS-type expression. Thus the ground-state energy is expressed for small and
negative J as

E= 4(ln2—)S(S+1)J~psD kDe«—s &

for a band structure described in the text. Here k is a constant of order unity. A consideration of the spin
con6guration of the perturbed state is given.

1. INTRODUCTION

PARAMAGNETIC impurity in a metal causes a
singular scattering of the conduction electrons. '

SuhP found unstable complex poles of the t matrix by
using a dispersion theory. Nagaoka' investigated the
electron Green's functions in a self-consistent way and
showed that there occurs a quasi-bound state coupled
antiparallel to the localized spin in the case of anti-
ferromagnetic exchange interaction.

Our present concern is the energy and the wave func-
tion of the ground state of a single paramagnetic im-

purity embedded in a normal metal. Attempts" have
been made to investigate these points by using variation
functions. These calculations show that the ground-
state energy involves the BCS-type expression and so
this cannot be expanded in terms of the exchange
interaction J. On the contrary, Yosida and Miwa'
showed that the perturbation expansion of the energy
shift due to the s-d interaction shows no singularity at
least up to the fourth order in J. Then there occurs a
question' of whether the energy can be expanded in
terms of J or not. The purpose of this paper is to give an
answer to this question and to give a correct expression
of the energy shift for su6iciently small J.

parts:
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where notations have the usual meanings. ' We consider
the Zeeman splitting only for the localized spin. The
unperturbed ground state is assumed to be the state in
which all the conduction levels below the Fermi energy
are occupied by up- and down-spin electrons and the s
component of S has a maximum value S. We take the
s-d interaction V as a perturbation and calculate the
ground-state energy shift up to the fourth order in J.

We erst consider the second-order term, which is
given by

(foV(& o Ho) 'Vfo)—

2. PRELIMINARY CONSIDERATION

In this section we calculate the ground-state energy
shift as a function of the Zeeman splitting 6 of the
localized spin by using a perturbation expansion in J
but not in h. Our Hamiltonian is composed of two
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where fs 1 for k(——ks" and f„=0 for p)pF, and g„
means the unperturbed energy, (psHsfs). We assume a
square band, whose density of states Xp is constant
over the width of 2D. We also assume that the Fermi
level is at the center of the band. Then we have

(g sV(E„~ —Hs)-' Vins)
= —4(ln2)5(5+1)JspsD —2Jsps+P in(2+/D) (3)

The second term involves hind, which shows no
singularity at 5=0.

As we calculate higher order terms, we find that the J"
terms involve terms proportional to A{in(A/D) }"(0&r
&ss—1), which show no divergence at A=O. We retain
644
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only the most "divergent" term (r=N —1). This pro-
cedure is valid when Jp is small compared with unity.
We retain only the lowest order term ( J') of the terms
which do not involve the logarithm, which is also valid
for small Jp. We then And

E=Ers SA —4(ln—2)S(S+1)J'psD+0 (Jsps)
—2J'p'Shfln(d/D) ({1+2Jp ln(h/D)

+PJpl (A/D)7+. }, (4)

where Eps is the energy of the unperturbed Fermi
sphere. We have calculated the first three terms of the
series involving the logarithm. We may expect that the
series is a geometrical one. When we put 5=0, (4)
becomes identical with the result of Yosida and Miwa
and shows no divergence. We note that this does not
necessarily mean that the result of Vosida and Miwa is
valid, because the series diverges for sufFiciently small
values of 6 unless 6 is exactly equal to zero. If we
assume that the series is a geometrical one and write
(4) as

E=E1s —SA—4(ln2) S(S+1)J'psD+0 (J'p')
—2JspsS& in(5/D){1 —2Jp ln(6/D)} (5)

this expression behaves properly for all values of 6 for
positive Jbut diverges at 6=6,=—De'I' & for negative J.
In the former case we may expect that (5) is correct (in
the limit of Jp small compared with unity). On the
contrary, in the case of negative exchange interaction,
(5) may be valid only for 6 well above d .. When 0 is
larger than but close to 6„ its behavior is not reason-

able, so that it does not seem to represent the correct
value of the energy, even though the series in (4)
converges absolutely. For 6 smaller than A„(5) is
absolutely incorrect. This can be seen by calculating the
average of S, from (4).

methods takes the place of the last term of (5) when we
let 6—+ 0. It is the task of the next section to show that
this is the case.

E=EQ+(Es+Es+" ) (7)

where E2, E3 are the second- and third-order terms of J,
namely, Es —4(ln——2)S(S+1)J'p'D, etc. As we men-
tioned, Eo may not be equal to the unperturbed energy
E,p, ,=Epa SA but may involve the BCS term. Then
from Eq. (7) we see that the perturbation expansion
shouldbe appliednot to E E p but to E Ep. To do
this we use a perturbation scheme which is a mixture
of the Rayleigh-Schrodinger and Brillouin-Wigner
methods.

We expand the ground-state wave function as

f=&Q+4 1+0s+

where QQ is the unperturbed ground state, and f; is the
state in which there are i electron-hole pairs present.
Putting (8) into the wave equation (He+ V)/=ED and
arranging terms according to the number of electron-
hole pairs, we obtain a set of equations:

H.~.+'(«.)=E~., (9 )

H,~,+V~.+ (V~)+ (V~.)=E~, (9b)

HQPQ+'(V/1)+'(Vgs)+'(Vfs) =Ebs, (9c)

3. CALCULATION

From the consideration of the previous section we
expect that the ground-state energy of our system may
be divided into two parts; one can be expanded in
terms of J and the other cannot:

dE
(S,)=— =S+2J psS jn(6/D)

dh

where '(V/1), for example, means that part of V/1 which
contains two electron-hole pairs. We solve these equa-
tions for $1,fs, ~ by a perturbation expansion. We put

X{1+2Jp»(~/D)+L2Jpln(~/D)7+. . }
=S[1+2 JspsDn(&/D)j{ 1—2Jp 1n (6/D) } '], (6)

P1 4'1 +it'1 + ' ' '

Ps —fs( )+it s( )+.. .
(108)

(10b)
where we have again kept only the most divergent
terms. ' This gives an unreasonable result, (S,) )S, for
6&6,.For this reason there is no point in regarding the
perturbation result of the energy for 6=0 as legitimate
for negative J, even when there is no singularity in
perturbation theory.

We now expect that, in a correct theory, the BCS-
type expression which was obtained by variation

This expression becomes identical with that obtained by
Yosida and Okiji PK. Yosida and A. Okiji, Progr. Theoret. Phys.
(Kyoto) 54, 505 (1965)g, for a=o and TWO, when A is replaced
by kT.

$10)— Vg,
&0—&o

(11a)

Pr(s)— Vlf'Q
~

etc.
EQ HQ k EQ—HQ—

Putting these into (9a), we obtain, up to the fourth

where f;(&) is the jth-order part of ip;. Putting (10)
together with (7) into (9b) and (9c) and solving for
it;(~'), we obtain
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order in J,
E=Eo+E2+E3+. . .
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where k is a constant of order unity. Then the ground-
state energy is expressed by

E=EFs 4(—ln2)S(S+1)Jmp2D+0(J~p ) kD—e ~ I'. (18)

This is exact in the limit of small Jp. As we expected,
the extra term cannot be expanded in terms of J.On the
other hand, for positive J the last term of (18) is missing;
the usual perturbation theory gives the correct result.

4. DISCUSSION

Our ground state is (2S+1)-fold degenerate when
3=0. This does not necessarily mean that the sus-
ceptibility of the localized spin follows Curie's law down
to the absolute zero. In order to clarify this point, we
calculated the average of 5, in the limit of 6—+ 0 by

(12) using the wave function (8). This is obtained by differ-
entiating both sides of (12) with respect to d and
setting 6=0. Then we have

This is a self-consistency equation to determine Ep. We
look for a solution Eo(6=0) in the limit 6—& 0. Evi-
dently there is a solution, Eo(6=0)=E„~. Then Eq.
(12) reduces to the usual Rayleigh-Schrodinger per-
turbation theory. But we shall show that there is another
solution which is lower than this when the s-d exchange
interaction is negative.

To show this, we calculate matrix elements of the
right-hand side. This is straightforward but tedious. We
6nd that the eth-order terms involve terms proportional
to a{in(a/D) }"(0&r&a—1), where a=E„,. Eo(h= 0—). —
Again we retain the most divergent terms (r=e—1).
Then we find

E(~=0)=ED(~=0)+E2+Ea+ . .
=E„p —4(ln2)5(5+1)J'p'D+0(J'p')

—2J~p S(S+1)a ln(a/D){ 1+2Jp ln(a/D)
+L2Jp ln(a/D) ]'+ . } (13)

dEp

d~ ~=o

5,—5 1
+2 V V V

(Eo—Ho)' Eo Ho—
S,—5 1 1

+2 V V V V
(Eo—Ho)' Eo—Ho Eo Ho—

S—5,

We may again assume that the series is a geo-
metrical one. Then we have, from (13) and E2
= —4(ln2)5(S+1)J'p'D etc. ,

2J'p'S(S+ 1)a ln(a/D)

1—2Jp ln(a/D)
(14)

S,—51 1j V V V V, (19)
E, H, (E,—H, )2 E—,—H,

(S,)—5=2J'p'SDn(a/D) j{1+2Jpln(a/D)

+(2Jp ln(a/D)]'+ }
1—2Jp ln(a/D) =2J'p'S(5+1) ln(a/D). (15)

where Eo and Ho mean Eo(6=0) and Hp(8, =0). When
As we mentioned before, there is a solution a=0, which the most divergent terms are retained, this is calculated
is the only one for positive J. But for negative J, we
have another one which satisfies

In order to be consistent with our approximation of
keeping the most divergent terms, we should write this
as

2J'p'5 ln (a/D)

1—2Jp ln(a/D)
(2o)

Then we have

1—2Jp ln(a/D) =0(Jp) .

a=kDe"~&(J &0),

(16)
Unfortunately our approximation of keeping the most
divergent terms is not accurate enough to evaluate

(1'7) (S,)—S correctly t see (16)j.To d.o this we must sum
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all of the divergent terms, which we have not succeeded
in doing. However, from (16) and (20) we see that the
change of S, due to the s-d interaction is of the order of
unity, i.e., independent of J. Our conjecture on the
ground-state wave function then is the following: We
take S=-,'as the simplest case. Our ground states are
represented by that of the Fermi gas multiplied by the
up- or down-spin state of the localized spin. The above
result indicates that because of the s-d interaction, the
state with the opposite spin direction is mixed by an

amount of order unity. Since the exchange interaction
conserves the total spin, the spin which was initially
carried by the localized spin is now taken over by the
conduction electrons. We may quite naturally expect
that the twofold degeneracy of our ground state comes
from the two directions of the spin carried by the
conduction electrons and thus is trivial. This argument
reconciles the apparent spin degeneracy of our ground
state with the singlet spin state which was assumed in
the previous variational approach. "
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Form Factors and Ultraviolet Spectra of Semiconductors at
High Pressure*
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Using the observed pressure dependence of a small set of band edges in Ge and Si, the pressure dependence
of the pseudopotential form factors is deduced. Using these pressure-dependent form factors, the energy
band structure and ultraviolet spectra are computed as a function of applied pressure. The results appear
to give very reasonable agreement when compared with the observed pressure dependence of the reBectivity.

I. INTRODUCTION

AND-structure calculations in semiconductors at
atmospheric pressure have progressed enormously

in the last few years. In the case of the group-IV
elements (particularly Ge and Si) we can calculate not
only the details of the band edges, but also properties
depending on the band structure far from the energy

gap such as the principal features of ultraviolet re-

Qectivity spectra'' and photoelectric emission yield
and distribution curves. ' ' Pseudopotential band-struc-
tures are now also available for a number of partially
ionic compounds, and will presumably also lead. to a
similar interpretation of ultraviolet data. '

Application of large hydrostatic pressures with a
consequent decrease in the crystal-lattice dimension
results in observable band-structure changes in semi-

conductors. The experimental situation is described at

length in a review article by Paul and Warschauer.
In germanium, Paul and Brooks' found by analyzing
their high-pressure resistivity and electron-mobility
data that the fundamental gap increases with a co-
efficient of 5)(10 eV kg- cm ' This is the pressure
coe%cient, then, of the L1 conduction-band minimum
relative to the top of the valance band (I'ss ). In silicon,
on the other hand, the resistivity data showed that the
conduction-band minima (t),r) move down under pres-
sure. The coeKcient was deduced to be" —1.5)&10
eV kg ' cm', and was reasonably well confirmed by
high-pressure studies of the indirect absorption edge.""
The direct optical gap in Ge (I'ss. ~I's) which is
nearly degenerate with the indirect gap was observed
to shift under pressure at the rate of 12 eV kg ' cm'." '
The 61 conduction-band edge in Ge lies 0.2 eV above
the absolute minima. When pressure is applied to Ge,
61 approaches L& and eventually becomes the absolute
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