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An exchange model for zero-bias tunneling anomalies previously proposed by the author is examined in
greater detail. The tunneling Hamiltonian is derived microscopically and its connection with the one pro-
posed by Anderson is indicated. The interference scattering derived from the model is shown to be capable
of explaining the magnitude and the temperature T and voltage V dependence of the anomalous conductance
G(V, T) found by Wyatt and by Rowell and Shen in A —(oxide A)—B junctions. Here A is a transition metal,
such as Ta or Nb, and B a simple metal, such as Al. (Both metals are always in their normal state. ) In
addition, the dependence of G(V, T) on magnetic field II is studied in detail. Finally, the interpolated forms
for G(V, T, II) previously given are replaced by more exact numerically evaluated curves.

I. INTRODUCTIO5' table of normal-metal tunnel junctions which exhibit
similar anomalous conductance peaks of widely varying
size. In addition, they have found enormous anomalous
behavior in tunnel junctions composed of Cr which is
best exhibited as a peak in the resistance. In the case
of Cr the anomaly is so large as to completely obliterate
any background that might be present; traces of the
anomaly persisted even to room temperatures. In all
other cases the anomalies were observable only in the
temperature region T&10'K. Anomalies as large as a
factor of 10 change in the resistance were reported by
Shewchun and Williams for the P-n junctions, while
for normal-metal junctions the effect varied from 20%
to less than 1'Po.

A number of theoretical attempts have been made at
explaining the anomalies in the p-rt tunnel junctions.
The original interpretation of the III-V tunnel junc-
tions attributed the anomaly to the polar interaction
between the tunneling electron and optical phonons.
Various other attempts to attribute the anomaly to
structure in the density of states caused by an electron-
phonon interaction have been proposed. All these
mechanisms have been extensively analyzed recently
by Mahan and Duke, 7 who concluded that proper
treatment of screening removes the singularities found
in the density of states in previous calculations. They
also go on to invalidate the original polaron-formation
argument advanced by Hall, Racette, and Ehrenreich.

For the normal-metal junctions the original ex-
planation o6ered by Wyatt was that the anomaly was
due to a logarithmic singularity in the density of states
of the transition metals used as one of the components
of the junction. No microscopic explanation was
advanced, however, for this assumption. Kim has
proposed an explanation based on a mechanism whereby
conduction electrons spin-Qip-scatter from one side of
the junction to the other, with the spin recoil taken
up by conduction electrons on either side of the junc-
tion. He 6nds that anomalies with the correct voltage
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A NOMALOUS behavior centered at zero —voltage
bias has been observed in the I-V characteristics

of a number of tunnel junctions. This behavior was 6rst
identi6ed by Hall, Racette, and Ehrenreich in their
study of P-n tunnel junctions composed of III V-
compounds. These semiconductors exhibited a dip in
the conductance centered on zero bias. The dip varied
with dopant, concentration, temperature, and the
III Vsemicond-uctor used. Studies of p njunc-tions
composed of Si and Ge were later performed by Logan
and Rowell, ' who found a peak in the conductance for
large dopant concentrations and a dip at low dopant
concentration. They found that the conductance peak
at zero voltage varied with temperature as ln(ktrT/Eo)
and that away from zero voltage the conductance peak
varied as ln((kltT+

~
eV~)/Eo]. Further studies of p-rt

tunnel junctions of the III-V type and those composed
of lead salts by Williams and Shewchun' found dif-
ferent types of anomalous behavior, some of which
could be interpreted as logarithmic anomalies in the
resistance.

Anomalies not restricted to semiconductor junctions
were erst observed by Wyatt' in tunnel junctions com-
posed of normal metals separated by oxide barriers.
The anomalies Wyatt found were peaks in the conduct-
ance with logarithmic temperature and voltage depend-
ence similar to those found by Logan and Rowell.
Recently Rowell and Shen' have published an extensive
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and temperature dependence 6rst appear in fourth
order in the tunneling coupling constant. Such fourth-
order terms appear to be too small to account for the
observed anomalies.

Furthermore, the fact that the anomalies first
appear in fourth order implies that the relative size of
the anomaly compared to that of the background con-
ductance (second order) should change with oxide
barrier thickness in the same way as the background
conductance does. In fact, what has been experimentally
observed' is that the relative size of the anomaly com-
pared to background undergoes no appreciable change
even though the background conductance varies by
two orders of magnitude.

An explanation based on spin-flip scattering from
localized impurities has been advanced by Suhl' in-
dependent of the work of Appelbaum" and Anderson. "
The Hamiltonian assumed by Suhl contains only a
term involving the spin-flip transmission of an elec-
tron across the junction, and so omits interference
terms depending on spin-flip reflection as well. Suhl
obtains an anomalous term in the conductance which
goes as (1nT)' at zero voltage. No detailed calculation
of the voltage dependence of the conductance is per-
formed but Suhl estimates that the anomaly should
have a voltage-bias width the order of k~T. These
predictions appear to be in disagreement with the tem-
perature- and voltage-dependence studies of Wyatt and
Rowell and Shen.

The explanation advanced by the author" and the
subsequent analysis of the model by Anderson" were
restricted to those anomalies found in normal-metal
junctions of the type first studied by Wyatt. In this
paper the same restriction will be assumed to apply,
although the relevance of exchange scattering to p n-
junction anomalies is discussed briefly.

In Sec. II we will describe the model assumed for the
normal-metal tunneling junctions. In Sec. III a model
Hamiltonian is derived. The conductance is derived
from the model Hamiltonian in Sec. IV. Section V
contains a discussion of the results of Sec. IV.

II. A MODEL FOR NORMAL-METAL
TUNNEL JUNCTIONS

The tunnel junctions to which we restrict ourselves
are A —(oxide A)—8 junctions. Metal A is usually a
transition metal such as Ta and Nb and metal 8 is a
nontransition metal such as Al, Pb, Ag. However,
8—(oxide 8) Bjunctions, where 8 is e—ither Pb or Sn,
have also shown anomalies in the conductance. The
metals are always kept in their normal states. When

9 L. Y. L. Shen (private communication).
0 H. Suhl, Lectures presented at the 1966 International School

of Physics "Enrico Fermi, " 1966, Varenna, Italy (unpublished).
~' J..:Appelbaum, Phys. Rev. Letters 17, 91 (1966).' P. W. Anderson, Phys. Rev. Letters 17, 95 (1966).

temperature studies below their superconducting transi-
tion temperature were done, magnetic fields large
enough to quench the superconductivity were applied.

The nature of the interfaces between A and A
oxide and that between A oxide and 8 is inadequately
understood at present. We shall assume that associated
with these interfaces are localized paramagnetic states.
These localized magnetic states may arise from transi-
tion-metal impurities deposited in the oxidation process
or, quite possibly, interstitial atoms of the transition
metal which lie in the oxide near the metal-oxide inter-
face. We shall assume these localized states have a con-
centration E, per unit area" on the metal —metal-oxide
interface and that the conduction electrons are ex-
change coupled to these paramagnetic tates. Then some
of the current across the junction proceeds via exchange
scattering off these localized magnetic states. With this
model we will be able to reproduce the observed tem-
perature, voltage, and magnetic field dependence of the.
anomalous conductance, as well as show that the e6ect
can be of the right order of magnitude to agree with the
observed size of the anomalies.

At this point the question arises as to the possible
applicability of this model to p-m junctions. It is well
known that paramagnetic impurities (and presumably
paramagnetic complexes in the "impurity-band" limit)
exist in P-e tunnel junctions. These will lead to strongly
temperature-dependent terms in the amplitude for
the scattering of conduction electrons off these para-.
magnetic sites.

For a proper treatment of P-e junctions within this
model it would be necessary to consider the concentra-.
tion dependence of the paramagnetic centers. ' In
addition, a multiple scattering analysis would be.
necessary, in which the mean free path for exchange
scattering was compared carefully to that of normal;
scattering. These steps lie beyond the scope of the
present paper.

III. MODEL HAMILTONIAN

The purpose of this section will be to derive the
tunneling Hamiltonian proposed previously by the
author starting from the physical model described in
Sec. IV. The results reported here are essentially a
simple application of the ideas 6rst used by Cohen,
Phillips, and Falicov" and then put on firm theoretical
ground by Prange. "We consider an idealized junction
as shown in Fig. 1. What Prange has established theo-

"We assume throughout that metals A and 3 are of unit
dimensions, so that E also equals the total number of im-
purities, and the current density j is identical to the current;

'4 Some work on the formation of localized moments in degen-'
erate impurity bands of a semiconductor has been done by Y.
Toyozawa, J. Phys. Soc. Japan 17, 986 (1962)."M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.
Letters 8, 316 (1962); in Proceedings of the Eighth International
Conference on Low Temperature Physics, London, 1962 (Butter-
worths Science Publications Ltd. , London, 1962), p. 178."R.E. Prange, Phys. Rev. 131, 1083 (1963).
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retically, and what the success of these methods in the
6eld of superconducting junctions has demonstrated, is
that if we wish to calculate the current Qowing to
lowest order in the electron coupling constant we may
construct the second-quantized Hamiltonian for the
system by the following procedure. If the Hamiltonian
is written as

where ak and bk are destruction operators for an elec-
tron with momentum k and spin o on side g and b,

'

respectively, and d is the destruction operator for an
electron in a localized state. When f(x) and f*(x) are
substituted into (2), in which we have taken W(x—x')
as the appropriate electron-electron interaction, we ob-
tain a Hamiltonian of the following form:

K=Kg+K2+Kp+K4+

where

in second-quantized form it becomes

K=Kp+Kr, (2a)

Kr Q &kg +kr +kr+2 &kr bks bus ~ (6)

Xo= *x Vx xd'x,( p2

&2m

1
K, =— f*(x)P*(x')W'(x —x')f(x'g (x)dpnPx',

2

where

(2b)

(2c)
K2= Q (Tkk'Ck(r bk'~+Tk'ktlk'~ Gk~)

k,k', o

(7a)

This is just the single-particle conduction-electron
energies. The Coulomb interaction among conduction
electrons solely on one side or the other is dropped, or
better still, taken into the single-particle energies by
treating uk and bk as quasiparticle operators.

P(x)=P a;P (x)+Q b;P (x),

4*(x)=2 ~'*0'"(x)+2 &'*0"*(x).
(3a)

(3b)

+2 7'k~ (~k.*d.+&.*~k.)
k, o'

+Q Tkg'(bk, *d,+d,*bk,) . (7c)

k10. k', a'

+& d.p'(x), (4)

The P; (x) are a complete set of states in the region a of
Fig. 1, the f;P(x) are a complete set of states for region

b, and an asterisk is used for the Hermitian conjugate.
We assume that a; and b; obey the usual commutation
relations among themselves and anticommute with
each other. The above prescription would require no
special justification except for the difhculties introduced

by the nonorthogonality of the states g,'} and {P;P}
due to their overlap in region (—x,x) (see Fig. 1). This
nonorthogonality requires that we treat W(x—x') in

(2c) as a two-body pseudopotential. "The use of (2) to
calculate the current beyond second order in the tunnel-

ing coupling constant is generally of doubtful validity.
The states of interest, {P,'(x)} and g (x)}, are the
conduction electron states {qk,'(x)} and {qk,P(x)} on
sides a and b, respectively, along with the states
{yd,~(x—R„)},of the localized electrons. We assume
for simplicity that the localized state is spin-degenerate
but orbitally nondegenerate. It describes a localized
electron centered at coordinates R„, with the R„'s
confined to a narrow region near the A —(oxide A) inter-
face. In deriving the tunneling Hamiltonian we further
assume there is only one localized state. This assurnp-
tion will be valid if the density E, of localized states is
small —more precisely, if their spacing is large com-
pared to a 'lattice spacing, and if magnetic interactions
between impurities can be neglected.

We obtain for f(x)
4(x)=E ~"~.(x)+ E & -p'. '(x)

The above terms arise from single-particle terms in the
Hamiltonian. The first term is due to the direct overlap
of the conduction-electron states on sides a and b as
they tail into the barrier. This term is what is usually
considered responsible for the current in a "normal"
tunneling junction. The second and third terms are due
to the overlap of the localized d states with the conduc-
tion electrons on the u and b sides, respectively.

Kp=g Zge.+Un.e .,

where U is the direct Coulomb integral between the
localized electrons, Eq is the appropriate single-particle
energies for the localized electrons and e =d *d .

Terms involving the product of four conduction-
electron operators not all from the same side of the
junction are grouped in X4. Among these terms are
those considered by Kim. s

Terms involving the product of four operators for
conduction electrons on side a and the localized elec-
trons are contained in 3.'5. The term of most interest to
us is the exchange-scattering term:

+ dk; dk'~rr ~ko' U'o'~k'e ~

k,k'

In all the remaining terms we factorize the two-body
operators, and retain only terms of the form

Q Vkg (d *uk.+ak.*d.).
This is the procedure followed by Anderson when: dis-
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cussing localized magnetic states in metals /Anderson"
disregards the exchange interaction (9), retaining only
(1o)j

In X6 there are terms involving the product of four
operators for conduction electrons on side b and the
localized state. Since the coupling between electrons on
side b and the localized electron is very small we retain
only a term which is first order in this coupling, the
product of three electron operators for side b and one
localized electron operator. Again we factorize, obtaining

~s=2 Vkd'(d. *bk.+bk.*d~)

2 {5 (akt ak t —akim ak l)++ akim ak t

+& akt*ak t)+TJ. Q &.(( aktb kt+bk t*ak t)

—
(akim bk's+bk t akim))+Tz

+(S+(akt*bk t+bk s*akt)

krak'

+& (a t*bk i+bk t*aks)), (14)

where S„S+,S are the standard spin operators of the
magnetic state and we have assumed J, and Tg. are

In X7 there are terms in which conduction-electron
operators for sides c and 5 along with localized elec-
tron operators appear. Among these we retain only

+t 2 ~kd;k'daku ~a' bk'a'dr
k,k'
0't0'

+Hermitian conjugate (12)

+p JVkd;dk'akim de' dn'bk'n
k,k'
0't 0'

+Hermitian conjugate. (13)

In forming our model Hamiltonian from the above
terms we may proceed in two diferent ways.

Because we are concerned with paramagnetic centers,
we may assume that the conditions for the formation of
a magnetic moment on the localized state are met. "
We replace the d operators by spin operators in (9)
and (12), obtaining

real and constant. In addition we have

(akim bk gp+bk ~ akron)

k,k', 0

+T, p (ak.*bk,+bk..*ak.) . (15)
k,k', 0

The Grst term of (15) is just (7a). The second term
represents all the nonexchange mechanisms for the

tunneling of an electron from side a to side b in which
the conduction electron interacts with the localized
electron. Typical nonexchange mechanisms of this sort
are given in (13).They also result from the interference
between (7b), (10), (7c), and. (11).

Equations (5), (14), and (15) together make up our
complete model Hamiltonian.

The second approach, used by Anderson" in deriving
the model Hamiltonian, retains (5), (6), (8), (10), and
(11).One then has a Hamiltonian of the form

K E ek~ akrr akg+Q eke bko bkrp+Q Edgy

+Ud *dg .*d,+p Vkd(ak, *d,+ct *ak,)

+Q Tkd(bk, *d.+d,*bk,) . (16)

Anderson then uses the results of Schrieffer and WolG"
to argue that by eliminating the terms proportional to
Vkd and Tkd in (16) to second order by means of a
canonical transformation, one obtains our model
Hamiltonian. The exchange Hamiltonian which comes
from (16) comes from terms whose physical meaning is
different from those used to derive (14). Presumably
both contribute to the total exchange interaction, and
in practice the contributions cannot easily be separated.

While deriving the model Hamiltonian we have
assumed that there is a single spin-degenerate localized
state which is paramagnetic in nature, located near the
junction interface. The model Hamiltonian could be
given a much broader interpretation, and its essential
form would be maintained for rather complicated
localized or quasilocalized magnetic states that may be
in the junction region.

IV. CALCULATION OF CURRENT

In a magnetic Geld H, and. with side a at a voltage
bias V, the Hamiltonian of our system takes the form:

K Ks+K

Ks=p ek 'ak *ak +p ek, bk,*bk,+g~ pn~ S H,
k, o

K'=%~+Mr,

(17)

(18)

(19)

'r P. W. Anderson, Phys. Rev. 124, 41 (1961).
'8 The conditions necessary for the formation of a localized moment have been discussed by P. W. Anderson, Phys. Rev. 124, 41

(1961);B. Kjoilerstrom, D. J. Scalapino, and J. R. Schrie8er, Bull. Am. Phys. Soc. 11, 79 (1966); D. R. Hamann, Phys. Rev. Let-
ters 17, 145 (1966); and others."J.R. SchrieBer and P. A. Woltt, Phys. Rev. 149, 491 (1966).
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3' =Tv. P S,P(gkt*bkt —gk~*bk 1)+(bk t gkt —bk ~ gk~) j+TJ.2 S+(gk~'bk t+bk1 gk t)
h, h' k,k'

(21)

+Tg. P S—(gktebk. 1+bk. t*gkt)+T P (gk, ebk. ,+bk.,*gk,)+T, P (gk,*bk.,+bk. *gk,), (20)
kk'

K =Je P (Sl(gkt gk' t gk1 gk' g)+S gkg gk' t+S gkt gk' 4} q

kk~

where ek, and ek, ~ implicitly include the Zeemann
energy and

We treat 3."as a perturbation and following Kondo"
evaluate 5;.,; to third order in 3'.;, . It is given by

(22)ek, ——ek, +eV.
2x' K;p K&& K;~'

If we assume 8=Hz, the last term in (18) takes the W1.g=—p +complex conJ.+ ~&;;('
form jg

g( pe )
S.H= AS„

where g~ pe ~H, the Zeeman splitting of localized spin,
is denoted by 5.

We make the assumption that we may neglect
multiple scattering by diRerent localized spins. Then to
calculate the total current J,~ between sides c and b,
we multiply those terms proportional to Tq, or T,
in j &, the current calculated from H, by N„ the num-
ber of localized spins on side u.

We obtain j g from

xb(~,—z,), (26)

W;., ;t &=(2~P) i3.',;) b(Z;—Z;). (27)

where i denotes a conduction electron-localized spin
state and E; its energy. We shall be interested in those
terms in W;,.; proportional to (T+T,)2, T~,s, and

(T,+T)Tg,
Let us 6rst consider contributions to 8";.,; second

order in K'.

J s e Q I sr Q (Wkgsr;k'g'sr'f(eka )(1 f(ek'r' ))j
M

0'td

—eg I'sr Q t Wk...sr. ,k.srf(ek. ,')
MI

dtd

The superscripts (2) and (3) will be used to indicate
those quantities which are second and third order in 3.",
respectively.

In the transition of a conduction electro~ with mo-

mentum k on side g to a state with momentum k' on

X(1—f(ek;))j, (24) side b there are four possible spin transitions:

where e is the charge of the electron, I'M is the statistical
probability that S,=M, and f(ek) is the Fermi-Dirac
distribution function; with the Fermi energy appearing
in f(ek) the common Fermi energy e2 of sides g and b

when V=O. 8'k, M.,k, M is the transition probability
per unit time that a conduction electron in state (k,o)
on side g scatters into state (k', o') on side b,with the
localized spin undergoing the transition M ~M'.
Since spin is conserved

klM ~k'~M,
k1M ~k'1M+1, klM -+ k')M —1. (28)

Wk t2r., k.

tsar

&2& = (2tr/A)((T+ T.ps+ Tg.2M2

+(T,+T)Tg.M) 5(ek t ek. t '), (29)—

The transition rates 8';,;(') for the above processes are

listed below:

ktM;k't sr+1(2) (2tr/p)T~ 2$S(S+1) M(M+1)J
Xb(.t.-"1'-~), (»)Region a.

Region b.
Wkgsr;k ter—1"'=(2tr/A) TJ'.2LS(S+1)—M(M —1)j

X~(eke —ek t'+~) (32)

o+M =g'+M'. (25) W»~;k i~"'= (2~/&)(P'+T. &2+Tv.2M2

—(T,+T)TJ.M) b(ek1 —ek g'), (30)
t/I/k. M. ,k M has a similar meaning for transition from
side b to side a.

~~Oxide Barrier

-xOx

Furthermore,

~k' tM;ktM ~ktM;k' tM p
(2)— (2) (33)

(34)

Fxo. 1. Shown above is a schematic representation
of a tunnel junction. 2' J. KorLdo, Progr. Theoret. Phys. (Kyoto) M, 3'I (1964).
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WQ~ 4 M;k tM—g (2')r/A) Tz.'[5(S+ 1) M—(M 1)—)
X&(e),g' —e), s'—&), (35)

IVg& )M gsMyg= (2~/A) Tg.'[5(S+1) M(—M+1))
XB(~),g' —e), )~+A). (36)

It is clear from (29) and (30) that the interference

terms between (T+T,) and T~, will cancel in the cal-
culation of the current.

We can split the current j,b(') into two terms: j,&('),

arising from transitions in which there is no spin flip,
and j,&( ), arising from spin-flip transitions. The sub-

script ab on j,b will be dropped henceforth.

j(2)= j„((2)+j,((&)

27( ej-("'=—((T+T.)'+T~.'(M')-) 2 (f(e) .)—f(""))B(".+eV—e) ")
h k,k'

(37)

(38)

27M 27M

j,((') = T ~[5(5+1)—(M'). ] P [f(e),()—f(e), z)]B(~),z+e V—e), z
—A)+ T~.'[5(5+1)—(M'), ]

k,k'

27M
X P, [f(e),s) —f(e), t))B(e),g+eV —e),.&+A)+ Tz.'(3II).„Q [f(e),s)(1—f(e), )))+f(e), t)(1—f(e), s)))

k,k' h

2' e
XB(e~(+eV e), g—+&) —Tg.'(M), Q [f(~m~)(1—f(~a ~))+f(~), ~)(1—f(~) )))]

jg

XB(e),~+eV—e), g
—&). (39)

In the above

(M). = Q I'MM

= —,
' coth —(S+-',) coth(S+-', )

2k~T kgT

energy, the derivative with respect to voltage taken,
and —(Bf/Be)(e cv) repl—aced by B(e—cu), one obtains
for g, f(') and g f(')'

8 4ze2
p'(«) p'(«)

(40) BV h

X[(T+T.)'+(M')..T .'). (43)
S

(M2),= P ZMM2

= (M) '—(5+-')' csch'(S+-,')
k~T

+-,' csch' . (41)
2k~T

g= (BIBV)j. (42)

If the sums over k and k' are replaced by integrals over

j,f(') assumes the complicated form it does compared to
j„,,f(" because of the presence of the term in j,g(')

proportional to (M),„.
, This term arises because

and

di6er by a term proportional to M. Instead of the
functions f(e,)(1—f(eq)) and f(eq)(1 —f(e,)) subtracting
to give f(e;) f(er) they add—in the term proportional to
M.

We are in fact interested not in j so much as in g,
the conductance, given by

8
g

(2) — j ((2)—
BV

4xe2
Tg,2p («)p~(«) S(5+1)

(M), ( e—(M') + ~

tanh
V+A A—eV

+tanh . (44)
2k~T 2kgT

In the above we have made the assumption that the
density of states p(e) is constant, removed it from the
integrals within which it appears, and replaced it by
its value at e=eF, p(e);). This is justified by the fact
that only electrons within a few millivolts of ep on
either side of the junction take part in the tunneling
for voltage biases of interest. Notice that for eV&6
and T—+ 0 g,f"' ~ 0. This is to be expected on general
physical grounds; for with the spins in their ground state
(A/T ~~ ) an electron at energy e on side ()', would have
to tunnel into an energy state e—6 on side b if it
underwent a spin flip. For eV&h, T —+ 0, this process
is forbidden by the exclusion principle. Therefore

j f("=0 for V&A, T —+0, whence g g("=0 for V&3,
T —+ 0. The above argument is clearly not restricted to
second-order processes and is true to all orders in K'.
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Combining (43) and (44):

4xe'
g = p'(e~) pk(E p) S(S+1)Tg '+ (T+T,)'

h

eV+6 6—eV)
+Tg.'(M)„. X-',

~

tanh +tanh
~

. (45)
2keT 2keT )

We proceed now to calculate the third-order transi-
tion rate

4x K;I,'Xp„'Kg'
IV . .(3) Q g(jv,. P,.)

where we have used the fact that J, T, T, and T~, are
assumed real to combine the first and second terms of
(26). It is the third-order terms proportional to Tg,'J
in S';.;&'& which are responsible for the anomalous
voltage and temperature dependence of the conduct-
ance. We shall derive these terms in some detail follow-
ing rather closely an analysis used by Kondo" to ex-
plain the low-temperature resistance found in dilute
alloys of transition metals dissolved in noble metals.

We Grst consider transitions in which the initial and
final spins of the conduction electron are equal. For
TVk ~,k. ~&'& to have the strong temperature depend-
ence characteristic of the experimentally observed con-
ductance the intermediate state must involve a spin-
Qip process. In Figs. 2, 3, and 4 are shown the processes
which are responsible for the anomalous terms in the
conductance. Since W;, ;&" is an interference term be-
tween the Grst and second Born-approximation scatter-
ing amplitudes we have represented it graphically by
drawing separately, one above the other, the processes
resulting from 3C;., ~'K~-, and K;,.

In calculating S';,"& we stress that the transition
from state i to state j by means of an intermediate
state k may occur in two different ways. We denote by
I the transition in which the electron in state i scatters

FrG. 3. Diagrams A and 8 represent third-order scattering
processes which contribute to WI, g~, I, g~+1('&. We have repre-
sented W;.,(') graphically by drawing separately, one above the
other, the processes resulting from 3C;;q'Kq, and K&; .

into state k and then the electron in state k scatters
into state j; we denote by II the preemission process in
which an electron in the intermediate state k first
scatters into the final state j, and then the electron in
state i scatters into the hole left by the k electron.

The contribution of processes I and II to 8'k~. k ~&'&

1s:

(I) Tg.'J,M/5(S+1) M(M+1)j—
1—f(e, g )

XQ 8(~kt &k't ) (4&)
q 6k) 6q$

(II) Tg,2J,M $$(S+—1) M(M 1))— —

If the scattering were not magnetic (I) and (II) would
add in such a way that the terms contaning f(aqua')
would cancel. For magnetic scattering involving spin-
flip processes that cancellation does not occur. This leads
to terms which are strongly temperature-dependent.

We replace g, above by
a. b. 0. Eo

P p(e)de,
—Eo

that is, we restrict the principal-valued sum over
intermediate states to an energy region of width 2EO
centered at the Fermi energy e~ (all energies are meas-
ured from e~), in order to be consistent with our
assumptions that p(e), T~., and J, are constant. We
can then show that

A

FrG. 2. Diagram A represents the third-order scattering process
which contributes to S'qg~., I,.g~('). Diagram B likewise repre-
sents the third-order scattering process which contributes to

We have represented W&;& ('& graphically by
drawing. separately, one above the other, the processes resulting
from 3'.s;g'Xje;, and X;;,'.

is small compared to

&k t &q4
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0. b. 0. Figs. 2, 3, and 4 can yield strong temperature —depend-
ent transition probabilities. Terms proportional to
(T+T,)'J, clearly cannot yield such graphs, since
only one exchange scattering is involved. The terms
proportional to Tg,(T+T,)J, can'not be dismissed so
quickly. It is necessary to investigate whether any
temperature-dependent terms survive if for transitions
which do not involve spin Qip we replace

TJsSs Zk, k' (frfst ffk' f+ffkf fffs' f

A

FIG. 4. Diagrams A and 3 represent third-order scat tering
processes which contribute to 8'I, g~;qg,M. 1(').We have represented
8';,.;(') graphically by drawing separately, one above the other,
the processes resulting from K;;;3'.q;, and X;; .

We therefore drop all terms which do not contain
(~~) ~

Combining (47) and (48) we obtain

Wf*f M;f* fM'"= 4J.Tz.'M—'g (~~f' A)—
Xb(~f, f —ef, f'), (49)

by

(T+T.) P~.P (fff, .'&~.+ off.*&~.)
When this is done for the spin-Rip transitions in Figs. 3
and 4 no temperature-dependent terms remain. For the
transition k)M —s k'&M a term

4(T+—T.)Tg.J~gs(fj, f s A) 8(f—gf s ef,f') —(54)

appears in 8'kg~, , k g~(').
In the transition k/M —+ k'J,M the term

4(T+Ts) Tg,J~gs(ff, ps+ 8)b(ef, f,
s ef,i ) (—55)

where

f(~~f') "f(~)f '(~)«
g (~)=—2

6q f GO

appears in 8'kg~, k g~&'). These terms' contribution
to the conductance does not vanish for a nonzero

(50) magnetic field. The conductance arising from (54)
and (55) is odd in V and has the following form:

Notice we have dropped the spin index on 6qf, this
is because the Zeeman energy of the electron can be
eliminated by a shift of origin in the above integral, and
since d«(EO the limits of integration need not be
changed. We will Gnd throughout that the Zeeman
energy of the electrons can be so eliminated. In a
similar way we obtain for 8'kg~.,k g~.

W. iM, '~M&'&=-4J.T..'M'g. ("i +A)
X8(~gg —ef, g'). (51)

In Figs. 3 and 4 are shown the graphs which contribute
to 8"kg~,-k g~+~ and 8 kg~., k. g~+~~'&. We have:

Wf f M; f f M+f
"'=—2Tg.'J,[S(S+1) M(M+1)j—

X(g ( '—&)+g ( ))
X&(4f'—~f, g' —5), (52)

Wf, g M,.f,.f M i= —2'.' 1sLS( S+1)—M (M—1)j
X(g (~f ~ +&)+g (~~i ))&(s~~ —

~f f'+&). (53)

In evaluating 8';.;&'& we have considered only those
terms proportional to Tg,'J . These terms represent
the interference between rejected and transmitted
exchange-scattered currents. We investigate now to see
if there are any terms proportional to (T+T,)'J, or
(T+T,)T~,J, which exhibit anomalous temperature
and voltage dependence. We know from the work of
Kondo" that only processes like those shown in

jsf jsff +jsf4

271'8 S
j.ff"'= P L P &MWf, fM, j, ~M+if(~f, f)

gg k,k' 3l=S

S
X(1—f(~f" i))—2 &MWf* ~M;f*fM if(~f ~)

2%8
jss~"'=

X(1—f(ef f))j, (58)

s
&MWf*fM;f fM if(ff*f,)

kk' M—S

S
X(1-f(ef f))—P FMWf, fM;f, ~M~ff(ef f)

X(1—j( ~))j

(M), (F(f',V A) F(eV+—6)),—

where F(x) is an even function of x which changes
slowly for a change in x~k~T. Although in sufBciently
large magnetic 6elds this term may be observable it is
expected to be smaller than the terms proportional to
Tg 'J . We shall neglect this term in deriving the cur-
rent. This term arises because the impurities are as-
sociated speci6cally with metal 2: if our junction
were symmetric, that is metal A=metal 8, this term
would vanish identically.

As we did with j&'&, we split j&') into j,f&'& and j,f&'&
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A simple interpolative approximation to F(x) used
previously by the author is
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FIG. 5. Drawn above for comparison is —F(w), evaluated
numerically, and p inLE()/(kg)T+ ~w ~)g, an interpolative approxi-
mation to —F(w), for E(g 10 MeV——and kggT=O 1MeV..

Substituting (51), (52), and (53) into (58),

j.g t &'& = P (—4rre/)&r) Tz.'J,(S(S+1)—(M'). )

X(g (e~t —~)+g (s»)Xf(e») —f(e'e))

X8(e), t e), a —6)+(4—7re/k) Tg.'J,(M).v

X & 9 (e~'t ~)+g (e»')jI f(s~t)(1 f—(s'~))

+f( )(1-f( ))]B(

If we replace P&, ,(,
~ ~ by ffdede'p'(c)p'(e') ~, per-

form the integral over e' and then take the derivative
with respect to V of j,f&" we obtain

4xe'
g.(t =- T..'J.I.S(S+1)-(M'),3'(")"(")

8 4me'

X «g'& —~ g'~ ——~—~ eV
86

xrp v (gg) p (ap)p'( .p)f.d (g. ('p gg)+g (p)]'— '

8
X tanh f(e—6+eV) . —(61)

2k~T Bt.

Although (B/Be) f(e) c—an ordinarily be replaced by
8(e) for small keT, because of the singular nature of

g(c) this is not done. We may, however, remove
tanh(e/2kn T) from the integral, replacing it by
tanh(( —ev+6)/2k»T). We have then,

4xe'
Tg.'J.p'(er )p'(er )

6—eV
X S(S+1)—(M'). +(M),„ tanh

2/+ 7
X(F(eV)+F(ev 6)) g

(62)—

6+ev
X S(S+1)—(M'). +(M), tanh

X(F(ev)+F(ev+6)). (65)

Likewise, we obtain for g,g&'):

See'
g ("=- J Tg '(M') p'(s&)p'(e&)

h

X(F(.V—~)+F(eV+~)). (66)

Combining g&') and g&'), and multiplying the terms
proportional to Tz, or T, by E„we obtain for the total
conductance G,

G —G(s)+G(»

4xe'
G(»= p'(es)p'(e&) T'+N.

I
2TT,+T.'

h

(M),
+S(S+1)Tg.'+Tg,s

2

ev+d, 6—eV
X tanh — tanh, 68

2keT 2keT j
G(3)—Gr(())+Gs(»+Gs(s)

(M ), (M)..
G,(s)=c 1

S(S+1) 2(S+1)S

(69)

l 6—eV 6+ev
xI «~ +t»h xF(ev), (70)

2kgg T 2kI)T

C (M'). (M),
G &'&=—1+ +

2 S(S+1) S(S+1)

XF(eV+6), (71)

A comparison between this approximate form for F(x)
and the numerically evaluated F(x) is shown in I'ig. 5.

Similarly we obtain for g,gg
t')

4xe'
g,(g &'& =— Tg.'J.p'(s& )p'(s& )

h
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C (M'), (M), A—eV
Gs &s& =—1+ + tanh

2 S(S+1) S(5+1) 2keT

where

&&P(e V—5), (72)

(8~e'/&1&')5(5+1)p'(eF) p'(ep)N. TZ.'A (73)

V. DISCUSSION

In zero magnetic 6eld G can be written as

G(V, T)=G"'+G"'(V,T), (74)

4me'

p (e~)p'(e~)
It

X$T'+N, (2TT,+T,'+$(S+1)Tz.')j) (75)
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FIG. 7. The voltage-
dependent part of G is
plotted for different
Zeeman energies
and fol S= g, k~T
=0.12 MeV (1.4'K),
and E0= 10 MeV. 6 is
measured in units of
0.01 MeV.

G&'&(V, T)=—es'165 (5+1)
p'(e p)p'(e& )N, Tg.'J&(eV) .

It
(76)
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FrG. 6. The voltage-
dependent part of G is
plotted for different
Zeeman energies
and for S= —,', kaT
=0.12 Mev (1.4'K),
and E0= 10 MeV. 4 is
measured in units of
0.01 MeV.
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The temperature and voltage dependence of G&"(V,T)
is the same as that found by Wyatt for the anomalous
part of the conductance. In fitting Wyatt's data as well
as Rowell and Shen's we must choose for the cutoff
parameter Eo 10 MeV. This is considerably smaller
than the 100 MeV we might have estimated based on
the strong variation of the density of states of the transi-
tion metals near the I"ermi surface. The smaller value

12 36 60 84 108 132

V (lO x eV)

of Eo may be due to renormalization effects similar to
those discussed by Abrikosov" for the Kond«&ect.
There remains finally the question of whether G"'(V,T)
can be large enough to account for the observed size
of the anomalies. The difFiculty involved in answering
this question can be best appreciated by recalling that
the conductance peaks vary in size by several orders of
magnitude, depending on the metals used and impurity
contaminants present in fabricating the junctions. All

we can hope to do at present is to make some general
comments which will at least indicate that the anomalies
can be large enough to agree with experiment.

We consider the most unfavorable case, Ta-(Ta Oxide)-
Al, where the anomaly is largest ( 10%). G&s&(V,T)
must be smaller than the term in 6(') proportional to
Tg,' if our perturbation approach is to be valid. We
assume" that G&'&(O, T) is 40/o of G&s& for T=1.4'K.
This implies that J p 0.01, a not unreasonable value.
Notice that J,&0, implying antiferromagnetic coupling
between the conduction-electron spin and the localized
spin.

Our contention that G"&(V,T) can be large enough
will be established if the term in 6"' proportional

"A. A. Abrikosov, Physics 2, 5 (1965); 2, 61 (1965).
'For suSciently small temperature G(') will become larger

than the Tg ' terms in G(2), indicating a breakdown in our pertur-
bation expansion. This has been discussed extensively for the
Kondo e6ect by Abrikosov (Ref. 21), Nagaoka LY. Nagaoka,
Phys. Rev. 138, A1112 (1965)j, and Suhl LH. Suhl, Phys. Rev.
138, A515 (1965)j, among others. For our assumptIon that G&'&

is 40'%%uo of G&'& at 7=1.4'K, this breakdown will not occur at
readily obtainable temperatures.
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dependent part of 6 is
plotted for different
Zeeman energies b, ,
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=0.12 MeV (1.4'K),
and E0= j.0 MeV. 6 is
measured in units of
0.01 MeV.
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to Tg ' can be shown to be a substantial fraction
of G~'& (20%). We begin by remarking that

(T.'+S(S+1)Tg.')E.
may predominate over T' even for spin concentrations
of a few percent. This is because (as noted by Ander-
son") the localized states act as a bridge between the
exponentially tailing wave functions of the conduction
electrons on opposite sides of the junction, effectively
decreasing the size of the barrier for those electrons
which tunnel across the junction by means of the
localized states. Because the coupling constants vary
exponentially with junction thickness, a decrease in the
effective thickness of the junction by a few angstroms
could make T,'+S(S+1)Tg,' suKciently greater than
T' to compensate the factor E,.

In a magnetic field we must use for G the rather com-
plicated expressions given in (67)—(73). The effect of
the magnetic Geld on G&') is to split the peak into three
peaks, one centered on zero-voltage bias (70) and the
other two displaced symmetrically to either side of
zero bias by A. The coeKcient of F(eV) in (20) is the

same as those of F(8V d—,) and F(eV+6) as 6~0.
As 6 becomes large the coeKcient of F(eV) tends to
zero while those of F(eV 6—) and F(eV+6) do not
change greatly, which has the effect that one never sees
the center peak, but only the two displaced peaks.

The magnetic Geld also affects G&2) through the last
term in (68). The effect of this term is to decrease G'2'

near zero voltage. The smaller the spin of the localized
state, the greater the change. The combined effect of
the destruction of the central peak in G&'& and this de-
crease in G&'& can, somewhat surprisingly, cause G to
dip below background near zero voltage for large enough
fields (see Fig. 8). This is because the background cur-
rent contains contributions from Tg ' as well as T'.

The effect of the magnetic field on G is clearly re-
vealed in Figs. 6, '?, and 8. We have plotted the con-
ductance versus voltage at fixed temperature for
various values" of 6 and for different choices of the
spin. We have assumed as above that G&'&(O, T) is 40 jo
of G~" for T= 1.4'K (6=0) and that Fe 10 MeV-—.

Some preliminary data taken by Rowell and Shen
on the magnetic Geld dependence of G exhibits the same
functional dependence of G on magnetic Geld as shown
in Figs. 6, 7, and 8. Because of the complex character
of the paramagnetic centers, the effective g and 5 values
which may be needed to Qt experiment vary depend-
ing on the particular A-O-B junction studied, '4 but in
all cases where the anomaly is small the theoretical
functional dependence is in good agreement with the
observed Geld effects.
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23 6 has been used as a parameter instead of H because of the
difhculty of estimating the g value of the localized states.

'4In the Ta—Ta olde-Al junction, f'or example, ag interstial
Ta atom could have a g value between 0.4, its free atom L-5
coupling value, and 2, which would correspond to complete
crystal-Geld quenching of the orbital angular momentum.


