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Electron Transport in Anmryhous Materials. I
BERNARD SPRINGER

University of SonttMrn California, Los Angeles, California

(Received 25 March 1966)

It is shown that, when scattering from uncorrelated sets of scatterers is properly considered in a one-elec-
tron plane-wave representation, the expectation value of the electron velocity is expressed as an infinite
hierarchy of time-dependent exponentials. The lowest-order correction to the free-electron Hall constant,
which was incorrectly derived in a recent paper, is rederived and the error corrected.

I. INTRODUCTION

N a previous paper, ' hereafter referred to as A, an
- - expression for the Hall constant E of liquid metals
was obtained as a perturbation expansion in powers of
the potential. I have recently realized that the deriva-
tion of A contains an error. It is the purpose of the
present paper to present the correct derivation. The
numerical results presented in A are unchanged but
extra terms appear in the expression for E.. These terms
come from the expansion of the distribution function in
powers of the scattering potential.

Throughout this paper it will be assumed that we are
dealing with a rectangular parallelopiped of liquid
metal with its principal axes along x, y, and s, that a
constant magnetic Geld H is applied in the s direction,
and that a constant electric Geld E is applied in the x
direction. We set A= 1, denote the electronic mass by m,
the charge by e, and the density by e. We assume that
the system has unit volume and that the ions are station-

ary classical particles. This last was justified in A.
The total electronic Hamiltonian in the absence of

the external electric field will be denoted by K and is the
sum of Ko', the kinetic energy in the presence of the
magnetic field, and 3.'~, which is the sum of electron-
electron and electron-ion interactions.

Denoting the conductivity tensor for frequency co

for arbitrary H by a (co), R is given by

where o,v~(0) is the x—y component of the static con-
ductivity tensor linear in H, and o.„„(0)is any diagonal
component of e(0) for H=o.

Using the Kubo expression for the conductivity'

obtain

trav (0)= tri+o's
p

0'i= a 11I10'» (co~) q

02= Z tdt(TrpLJ„, U ~(t)J,7)s, (2)

II. DERIVATION OF o»'(ta)

where co, must be small enough so that to,r,«1, (r, is
the electronic relaxation time for H=O), p is the many-
electron distribution function, J„is the current density
in the y direction, and J and J„are assumed indepen-
dent of H. U ~(t) is defined by

U ~(t)a= e xp(itX"7 expL —it's'"7i,
where

expLAx7B= exp(A7B expL —A7, AxB= [A,B7.

The gauge used in obtaining Eq. (2) is

A„=-,'Hx, A, =——,'Hy.

The curly brackets in Eq. (2) represent an average over
the scatterer ensemble, and or, is the free-electron cyclo-
tron frequency.

Starting from an exact expression for the conductivity
tensor for arbitrary frequency and magnetic field due to
Kubo, we obtain in Sec. II explicit expressions for the
lowest order terms of the zero-magnetic-Geld frequency-
dependent conductivity tensor. In Sec. II we also show
that inclusion of the scattering from uncorrelated sets
of scatterers causes the electron velocity to vary with
time as a hierarchy of time-dependent exponentials.
In Sec. III we obtain the lowest order correction to the
free-electron Hall constant.

o,„(0)=—ie dl rT( y"pJ (t))
The starting point in our derivation is Eqs. (5)—(10) of

Kubo's paper. '

and repeatedly integrating by parts over time we may ~» (~)= expL —icot7{Trg, P; x;„7J„(t))dt, (3)

*This work was initiated while the author held a National
Academy of Science—National Research Council postdoctoral
fellowship at the University of Tokyo.

' B. Springer, Phys. Rev. 136, A115 (1964).
s R. Kubo, J, Phys, Joe. Japan 12, 570 (1957).

where x;„is the pth component of the position vector of
the ith electron.

The calculation is done for independent electrons
interacting via a scattering potential which is the sum
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ELECTRON TRANSPORT IN AMORPHOUS MATERIALS. I

e „„p((o)=—ie' e ' 'dt{TrLf,x„7U (t)i„}, (4)

where i„is the pth component of the electron velocity
operator, f is the one-electron Fermi distribution func-
tion, and the trace is taken with respect to one-electron
wave functions. U (t) is the same as U ~(t) but with

=0
Taking the trace in Eq. (4) with respect to plane

waves gives

o„„'(I)=e' e '"'dh{4»(t)+A(t) }, (5)

of spherically symmetric terms centered on each ion.
When the magnetic Geld vanishes we may write

3.'=P; H, =g,(Hp, +V;).

Bo; is that part of B; diagonal in a plane-wave repre-
sentation and the sum is over electronic coordinates.
Eq. (3) becomes

The average of Eq. (10) is defined in Eq. (7). The sub-
script k denotes that the matrix element is taken with
respect to the wave vector k and the subscript c denotes
the cumulant average is to be taken. This is the same as
the average of Eq. (7) except that certain lower order
moments are to be subtracted. To illustrate we give the
deGnitions of the Grst two cumulant averages.

(a),=(a),
(2p4;),= (A;A;)—(A;)(A;).

In the present case (V)q ——0.
The Fourier transform of expLlt p(t)7 will always be

taken for frequencies co such that cov.,(&1. This implies
that we are not concerned with structure occurring over
times of order v,. Therefore, the time integrals in
P~(t) can be done using the asymptotic expression

dt' exp(ipt') =iP~ — +~8(e) .

yg(t) =—i gg, (fP,x„)gg(k I U (t)*'„lk),

4 (h)= —iZ ~ [f—fP,~.7 «IU-(t)*.lk),

where fP is the free-electron Fermi function.

(6)

= exp i Vx(t')dh'

The cumulant theorem3 may now be used to give

(U-(t))I = expLA(t) 7
&n-1

&I,(t) =Q =g" (i)" dt's

ddt„(h„x. . .h x) (1())

'R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

A. Evaluation of Pq(t)

From Eq. (A3) in Appendix A we have

k„' Bfl,p

4i(t) =—Z~ (U-(t)) p

m B~q

(U (t)),=Xg...„.~k„(k t
U (t)x„(k), (7)

1V '=Qy, g(. k„'.

U (t) is now expressed as an ordered exponential. From
the deGnition

dU (t)/dt=iU (t) V"(t), (8)

Vx(t) = Lexp(ihHpx) V7x

For ease in writing we will abbreviate Vx(t) by tx.
The solution of Eq. (8) is

&n-I

U (t)=Q„=p" (i)" I dh, . . . dh„h„x. . .t,x
0 0

B. Time Dependence of Qp(t)

In the eth order term of PI, (t), the ionic positions
appear as

g, e....pexpLi(k —k') x 7expLi(k' —1) xe7 ~

)&expLi(m —k) xp7,

where x, xp, ~ xq are the scatterer coordinates. We
are dealing with a disordered macroscopic system in
which Quctuations can be ignored. Therefore, we may
replace all independent sums over scatterer positions by
the average of those sums over the scatterer ensemble.
From now on we shall assume this has been done. The
curly brackets in Eq. (2) are now superfluous and can
be dropped. For a liquid only relative positions are
important. Thus in the limit of inGnite volume but
constant density, if any wave vector appears more than
twice, the scatterers factor into uncorrelated sets. For
the same reason, every independent set of scatterer
variables appearing gives a factor 0, the system volume.
Thus, as 0—&, these terms appear multiplied by 8
functions and, after the sum over wave vectors which
must be taken eventually, they appear with finite
weight. These are the terms which give factors of tP,

P) 1, and so must be treated before the Fourier trans-
form can be taken.

We expand Pp(t) in powers of V and take the matrix
elements with respect to plane waves. Each scatterer
8 function will cause the appearance of a diagonal
matrix element which does not contain all of the time
variables in the term. Such a diagonal matrix element
will be referred to as a subdiagonal matrix element. A
product of such matrix elements, all with respect to the
same wave vector and whenever the product does not
include all the time variab1es in the term, will also be
referred to as a subdiagonal matrix element. The time
variables in a given subdiagonal matrix element may
include all the subscripts from t to tp and no others and
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these will be called continguous time variables. Consider
first the highest order moment in each term of pk(t)
and, specilcally, those contributions which contain no
scatterer 8 functions. We call these terms fk~(t). Each
term of i/ik~(t) depends only on time differences and is
invariant under translation of the time origin but there
is only one free time variable. Therefore, /k'(t) is at
most linear in time and may be written

fkl(t) Q'kt+Pk

where ak and Pk are independent of time. This is seen
more explicitly in Appendix B. We may evaluate the
lower order contributions to ak and Pk from Eq. (10).
From Eqs. (10) and (C2) the term m=2 is, for large time

k. The term is now seen to cancel against one contri-
bution to that product of two lower order moments
which has the same factorization of time variables. In
fact the contributions from 8 functions of the first two
kinds to the highest order moment cancels all the con-
tributions to this product of lower order moments in
which the time dependence of the product can be
changed by the factor containing the earliest time vari-
ables. The remainder of this product can then be treated
just as the highest order moment. This same procedure
can be used for all terms in the cumulant.

We have still not treated the contributions from 8

functions of the third kind. Let us erst consider that
part of the fourth-order cumulant which couples t4

with t3. The result is—
( ttq y 8 p 1

&kJ ) ask &ek(1

—2m'(1 —cos8kg}8(ok~) . (12)

=Zz
f
Vkz['I —leos@a

Eu)

8 fl)
I'~ —

~
(i)' dt's

~~kl~ 0

XDtk"tk")k —(tk"tP) &j (14)

Using techniques similar to those in A we can show that
the time-dependent part of the m=3 term is

4~t gi„V iVkg V k(1—cos8k))8(kk))P(1/e„k). (13)

The remaining contributions to the highest order
moment in each term of fk(t) all contain at least one
scatterer 8 function, each of which will make two wave
vectors match. Some of these 8 functions will cause
wave vectors to equal k, some will cause wave vectors
to equal k'Ak, but there will be a 8 function from the
time integrations making ~~~ ——0, and some will cause
wave vectors to equal k' with kkk WO. The first thing to
notice is that the maximum time dependence of a given
term depends on the number of free time variables in
that term. For the time dependence to be greater than
linear, the time variables must factor into at least two
independent sets. Otherwise the term is at most linear
in time and will be denoted by fk&(t). This is shown more
explicitly in Appendix B.

Consider the highest order moment in each term of
gk(t). From what has been said we can restrict consider-
ation to those sets of scatter 8 functions which cause a
separation into independent sets of contiguous time
variables and from now on we will assume this restric-
tion. Suppose all scatterer 8 functions of the Grst kind
and only such 5 functions are used explicitly. In this
case, the variables break up into independent sets in
terms of the average defined by Eq. (2) and, by the
cumulant theorem, such terms must cancel against
contributions to the lower order moments. Now con-
sider what happens when all 8 functions of the second
kind are explicitly used. The highest order moment
factors into two parts, one of which is a subdiagonal
matrix element with respect to the wave vector k'.
From Appendix C, (k'~ U (t)i

~

k') has angular depend-
ence k,' so the subdiagonal matrix element can be
transformed into one with respect to the wave vector

plus some time-independent terms. The part of Eq. (14)
containing (tPtP)~ is one term in the expansion of
(U (t))~. In the general-order cumulant, the largest
subdiagonal matrix element containing all time variables
from some t to t~ and no others and which arises from a
8 function of the third type is plainly a term of (U (t)) &

and as we go term by term through fk (t) we will eventu-
ally obtain all terms of DU (t))~—1j multiplied by a
complicated time-independent coeflicient. These terms
may be written

The lowest order contribution to F» is given by Eq.
(14).

This exhausts the contributions to the highest order
moment in each term of gk(t). Except for /k'(t) we
denote by f»(t) all terms at most linear in time.

The part of Eq. (14) containing i'tptp)k comes from
one of the subtracted lower order moments. Ke have
seen that, in the general term of pk(t), the lower order
moments which have not cancelled against contributions
to the highest order moment may be treated in a manner
identical to what is done above. These terms may be
incorporated into the previous results in an obvious
manner depending on the number and type of scatterer
8 functions they contain. We get finally

fk(t) =ski(t)+Pkk(t)+gk( Fk(L(U (t)))—1j. (16)

The leading term of Fk& is given by Eq. (14) and is
quadratic in V. The leading term of ipkk(t) is quartic in
V. The same procedure is now applied to (U (t))~ to
give the result that elimination of the scatterer
functions from (U (t))k causes it to be expressed as an
infinite hierarchy of exponentials. From Eq. (6) we
will want

dt expLpk(t) —icot),
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which may be evaluated as a power series in V if we
treat gtF»(U (t))~ as a perturbation. The leading
terms are

em' (t)7=emL4 (t)+4 (t)—Z F.7
+P) Fg) expl P»(t)+g u(t)7, (18)

which is accurate enough to obtain the three leading
terms in the expansion of Eq. (1/) in powers of V and
the lowest order correction to the free-electron Hall
constant.

From a physical point of view these results are quite
straightforward. Energy-conserving scattering from un-
correlated sets of scatterers is given by 8 functions of
the first two types and these terms are responsible for
the initial exponential form of (U (t))q. It is also
possible, however, for the electron to be scattered into
a virtual state by one scatterer, then to undergo energy-
conserving scattering by scatterers uncorrelated with
the erst set and 6nally to scatter back. into the initial
state by a scatterer in the initial set. When scattering
in the virtual state is con6ned in time by the initial
and 6nal states, the Qnite lifetime of the virtual state
restricts the time dependence to a linear one. This is the
case when noncontiguous time variables are coupled by
a 8 function of the third type. When contiguous time
variables are coupled by a 8 function of the third type,
scattering in the virtual state is not restricted in time
and higher order time dependences can appear. How-
ever, this is inconsistent with the 6nite lifetime of the
virtual state unless all terms of this type sum to give a
contribution which becomes less important as time
increases. Thus the form of Eq. (14).

III. THE HALL CONSTANT

From Eq. (2) we must still calculate

02= Z tdt Trp[J„,U "(t)J.7. (21)

In terms of one-electron operators and in a plane-wave
representation this is

(pe 2)
co

«t 2~~ f~~"(4—tw)«IU-"(t)*lk&, (22)
hami

where f~ is the Fermi function for nonzero H. Only
terms of Eq. (22) to 0(V ') are required.

A. Expansion of U ~(t) in Powers of ~,
It is not hard to see that, to first order in co„

expLiH't7= expLiHt7 —is&,I(t,II)expLiHt7

where
t

I(t,H) =- dt' expl it'H&&7(p„x —p,y) .
2 0

Therefore

U "(t)x=U (t)*'

In the limit of zero temperature the two lowest order
terms of 0.»'(o&) are the same as were obtained in A
because Pz(t) may be replaced by P»(t). The numerical
results of A are unchanged.

C. Evaluation of P~(t)

We will only need the lowest order term of &2(t)
because it is already of order V'. From Appendices A,
C, andD

U (t') V (t')I(t', Ho)dt' U (t)x. (23)
0

«' Z L(k'I U-(t') V~(t')I(t', H,) I t)

In a plane-wave representation the k', k matrix ele-

1 1 8 ment of the commutator is

A(t) =—&» I V~~ I'(U-(t))~ 2I'I —
I

4' +k.4
m' 8eg 8e~i

8' 8 8—
I
k„' +k„t„dp(, (19)

8e 8e 8ei
X(tlU (t)*'lk)+c.c.7. (24)

~~i= (fd fP)/ei. —

From Eqs. (6), (7), (10), and (19) we get

e„„'((o)=—e'gg hg

4'8f" Iv»l' r1q8'f"
++t k„'El —

I

ss 8ep tg E6»J 8eg

Here we have the old problem of time dependence.
I(t',Ho) depends explicitly on t' and thus so will many
matrix elements. We will show that, apart from U (t)i,
there is no time dependence and any additional factors
of time which appear can be transformed into energy

expLP~(t) —icat7dt derivatives. This transformation will be possible when-
ever there is some time exponential expLiet'7 present in
the matrix element containing I(t',Ho) and such an
exponential is always present unless I(t',Ho) is included
in a subdiagonal matrix element containing time vari-

1)/8 8 ables contiguous with tq Lsee Eq. (10) for the definition

+k t pl II + g~, (20) of t~7. We must show that such terms vanish. The
(egg) (86' 8e[ technique used is similar to that of Appendix C.
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We have

I(t',Hp) = -,'(p„x—p.y) t'.

Since (k
~
x~ k')=i(B/pjk, )8(k—k'), any subdiagonal ma-

trix element with respect to the wave vector 1 and con-
taining I(t',Hp) will be of the form

k and I is antisymmetric under interchange of the scat-
terer positions. This is shown in Appendix E. Thus, to
0(V ') there is no contribution from U ~(t) which is
linear in ~,.

From Appendix F we can obtain the contribution
from the distribution function. We get

Z Vu.
8 t9

eS ——S
Bs& Bs

V „.. .V, lFl, , ...„, , ...,, l, (25) ~, ep p„g„~ t(U (t))l dt+ ,'Im-o„„p(lp, )

( 8 8 tt' 8
X 14 —4

Big Bly Bpl

where F~,...„,„,..., l is only a function of the magnitudes
of the wave vectors and the time variables and we sum El,= pl P~ —~(l„—k„)k~
over all wave vectors but I. 2m' &p„i

Now V„„=p exp)i(m —n) x $p„where ill„de
pends only on ~n —m~ because p is spherically sym-
metric. Thus we have

( 8 8 )
I

&*—nw
—IV.

I *a~„"ae.i
f 8 8 t' 8

+I k. —
kw I I

Vill' ~~l
/

. (27)
Bky Bk~ Bpyg

exp/ —i(n —m) x 7
z g/ 1t z Finally, from Eqs. (2), (20), and (27) we get the results,

/n —mi valid only for the term linear in lp„

+P i(N,y —e„x ) expL —i(n —m) x gP„, (26)
~.„"(0)=ie' l, (Rp —~l dt exp(lPl, (t)—ipse,tj, (28)

where y is the y component of the position vector of
the ath scatterer. We use Eq. (C2) to express e, and
m in terms of /; m„and m„ in terms of /'„. The sum-
mation over interior wave vectors shows that there is
no contribution to Eq. (25) from the first term of Eq.
(26).

To deal with the second term of Eq. (26) we note that
the scatterer average may be divided into two sums,
one of which corresponds to a simple rotation of all
scatterers about the direction of I. The other sum cor-
responds to a change in angle between the scatterers
and 1 or a change in the length of the scatterer position
vectors and is invariant to the rotation about 1. We can
now treat the second term of Eq. (26) in the same way
as the first term and it also gives no contribution to
Eq. (25). Therefore, subdiagonal matrix elements in
question vanish. This cancellation only works for sub-
diagonal matrix elements containing I(t',H p) and
operators which do not correspond to the presence of
other preferred directions. The inclusion of other
operators corresponding to the presence of preferred
directions destroys the phase relations necessary for
the cancellation.

The lowest order in V we have

and from Eqs. (1) and (20)

&=i Zp (I4—~l)

exPLlPl, (t)—iPP, tfdt

e'H Pl, 4, expLlPl, (t)ddt . (29)

Vsing Eq. (18) to perform the time integrations, ex-

panding in powers of V, and denoting the free-electron
Hall constant by Ro we get

Z/Rp ——1+Rp,

Rp p l F~lp~l'/(~s——+~l)'—P~+ (lit/lp) ill'

Xpl pl +lp)/lrl +2(lit/lp)ll~ Zl ~l&!&& k=&f 1 (3o)

where eel, nk, and p& are given by Eq. (12), Rl is given

by Eq. (27), 6l& is the second-order term of 6l as given
in Eq. (20), and Fzl p is

dt'(k'i V~(t')I(t', Hp) i k)

, /i& ~ t'1 lFpip= I Vail 'I —/(cosezl)
Ekl Bpp Ep~l)

(31)

XDk~ U (t)z~k) (k
~
U (t)z~k )j The 6rst two terms of Eq. (30) represent the deviation

from the relaxation time approximation and the last
The magnetic-fi. eld-dependent part of this term vanishes two terms represent changes in the distribution
because the contribution to Eq. (22) that is symmetric in function.
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APPENDIX A: EVALUATION OF ff,x„]t,s
We start from the expression for f in terms of its

Laplace transform
1 1

f(H) = f(s)ds
27ri s—H

(A1)

Expansion of 1/(s —H) in powers of V gives the follow-
ing series:

f(&)=f'+f'+f'+ "

IV. CONCLUSION

The present work, in conjunction with A, shows two
things: 1. The relaxation time approximation is valid
only if the expansion converges rapidly, 2. An expansion
in powers of the potential does not converge sufFiciently
rapidly.

As has been noted the potential matrix elements are
not small compared with the Fermi energy for small
momentum transfer. In higher order these terms enter
in an important way when the energies of the initial
and final states become nearly equal. It is therefore
plain that some infinite series of terms must be used to
obtain agreement with experiment. Recent works by
Kdwards4 and Ballentine' have shown that these terms
correspond to lifetime e6ects. That is, in between any
two collisions the electron should be assumed to propa-
gate not as a free particle but with a 6nite lifetime in any
plane-wave state. Ballentine' used this consideration
to sum the relevant diagrams for the diagonal matrix
element of the Green's function. In the present case
we must sum an analogous class of diagrams for the
o6-diagonal matrix elements of the Green's function.
The terms to be summed are a subset of those containing
what I have called scatterer 8 functions of the second
and third kinds. This summation has been done and it
is hoped to report on it shortly.

These are the only three terms we shall need. These ex-
pressions have been obtained before by other authors. '
The derivation is included here for completeness.

dt, dt, dt, dt4
p

&&expLinr7 expLiPr'] exp[iyr"5, (81)
where

V.= t3—t4, 7.'= t2—t3, 7."=t~—t2.

Equation (81) may be transformed to

dT dr' (t r r'—r—)—
)&expLiurg expLiPr'7 expLiyr"j. (82)

When no scatter 8 functions are present, n, P, y are all
not equal and nonzero. Since the exponentials vanish
when 7, v', or v" get too large, the integral is plainly
linear in time. When scatterer 6 functions are present,
they may cause a breakup of the integrand of Eq. (82)
into sets of independent time variables. For each inde-
pendent set present, one of n, P, and y must vanish.
It is plain that the time dependence of Eq. (82) goes
up by one power of time for every one of rr, P, and y
which vanishes. It is not hard to see that it is only when
contiguous time variables are coupled that the time
dependence of Eq. (82) can increase.

APPENDIX 8: TIME DEPENDENCE OF A
GENERAL TERM OF Qs(t)

Without loss of generality, we can restrict consider-
ation to the fourth-order term of the form

1 1
f(s)ds

27ri Hp

1 1
f'= f(s)dz V

2m.i s—Hp s—Hp

Using x„=i(r)/BP„), we get

(A2) APPENDIX C: ANGULAR DEPENDENCE
OF (k( U (t)x~k)

A representative term of (k~ U (t)x~k) is

Qk't" ~n, mVsa'Vs, 'LVln' ' Vmsmg(e) y (C1)

Ip

pXp J7$/Q 2' 7

Bk

(c) r) )
t f' a~]»'= —iV»

I

— +
(8k„Bk„')

where F(e) contains the rest of the term which is only
(A3) a function of energy. It is easy to see that

~„=NP„cosa~ /k
+(1—k '/k')'t' sin[8s~[ costs j, (C2)

p p

(A4)

/r) r) ) c)

Lf',*„j»=—iZ [Vss ~'I + —

~
~s .(As)

(Bk~ Bkp 2 Deja'
' S. F. Edwards, Proc. Roy. Soc. (London) A267, 518 (1962).
L. E. Ballentine, Ph.D. thesis, University of Cambridge

1965 (unpublished).

where ys„ is the azimuth angle of n about k. The
product of the V's in Eq. (C1) is invariant under rota-
tion of all the wave vectors about any axis. There is
present in the sum a term corresponding to a rotation
of all the wave vectors by 180' about the direction of

'W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
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APPENDIX D: EVALUATION OF (tt'~ U (t)x~ 0)

By definition
tn-I

(k'( U (t)x~k)=Q„ t" (i)" Ctr. A„

X(k'lt x. . . t,x'lk)

Expand this in plane waves and substitute t„=t„~—v.
Performing the v. integration gives

k showing that the sin~8&„~ term of Eq. (C2) cancels
leaving only the angular dependence of k,.

When these wave vector relations do not hold we
simply repeat the procedure till we again hit a 8 function
making the remaining matrix element diagonal. In
doing this, factors of t will appear. These can always
be transformed into derivatives with respect to energy
of the next highest time exponential. Such an exponen-
tial always exists because all terms without at least
one higher time exponential have been put into a
diagonal term.

Therefore, the lowest order contribution to the off-
diagonal matrix element is

(k'[ U (t)*~k)= »m Vs p((k( U (t)*~k)

= lim P„=t"(i)" '
e -+0+

~ ~ ~

tn-2 —(k'~ U (t)x(k') j/(e»+is). (D3)

Xgi Lvip(k'[t. t" t, a[i) expLiei, t„rj/(ps&+is)

—(t)t„, . trxi[k)V, .&exp/'Leg (t lj/(epg+ie)j

+ lim Qt PVg, t(l( U (t)i (k)/(e(p. +ie)

—Vrp(k'~ U (t)i
~
l)/(ep(+ie)5 (D1).

Suppose I=k' in the first and fourth terms and I=k in
the second and third terms. There is a 8 function coming
from the sum over scatterers which gives this term
finite weight. ~

Then consider the first two terms. These are

tn-2

APPENDIX E: EVALUATION OF
t

(k'
~

Vx(t') I(t', H, ) ~ k)

By definition

t

I(t',Hp) =- expLiHpxt'j(p„x- p.y)dt', (E1)
2 p

.(P.& P*y-)t—

V (t)I(t,Hp)= —',t expLiHp tjV (P„x—p,y). (E2)
lim P r" (i)" '

e ~0+
Ay''' An —1Uk It:

The matrix element of Eq. (E2) is

XC (k'(t„x t x*~k')—(k(t x t xi (k)j
—,'it expLiep. pt') (k„'—k, ) —(k.'—k.) Vp p. (E3)

Xexp/isa pt rj/(e». +is) (D2). Bk Bky

We expand (k'~t„rx trxa)k') in powers of V and
take matrix elements with respect to plane waves.
This diagonal matrix element may contain 8 functions
from the scatterer sums which make two wave vectors
match. If no such 8 functions are present the term is
independent of time.

Now suppose a scatterer 8 function does exist in the
term. We take the largest subdiagonal matrix element
which includes only time variables contiguous with tj.
We may perform the time integrations for all other
time variables which will leave us with two types of
terms. One will have a time-independent coeKcient
multiplying a diagonal Inatrix element and the other
will have a coeKcient whose only time dependence is
exponential. For this latter term we may proceed as in
the above.

7 Ordinarily, these terms would vanish to lowest order in 1/0
since the scatterer average of the remaining V would be of order
1/O'". However, there are initial factors of V coming from the
distribution function. The ensemble average is taken over this
product and is Gnite.

i9 8
S» S».' (k„'—k„) —(k

'—k,) ~
V» ~'+S». 'A»'

Bk Bk„

8 8
X VI, I, (k„'—k„) —(k '-k )

&9k~ Bky-

8 8—V» (k„'—k„) —(k '—k )
Bk Bky

Vs p . (E4)

The first contribution to Eq. (E4) vanishes because

) V» (
' is only a function of [k—k'). The rest of Eq.

To get the contribution of this quantity to Eq. (22) we
note that it is there multiplied by a coefficient of the
form VI,I, S'l, q where S'I,~ =S'~ ~ and we sum over
k and k'. If we replace it exp/is& &t'j by S»+A»
where SI,I, =Sq I, and AI, I, = —A~ ~, we can combine
each contribution to Eq. (22) with the contribution
obtained by interchanging k and k'. The result of this
combination is a term of the form
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(E4) vanishes because the scatterer coordinate depend-
ence is P,p x cosL(k—k') x eg which vanishes to
highest order in 0 for a macroscopic liquid.

The contributions of zeroth order in V are

1 tr 1
f =f'+ . f(-)«I (P.X—P.*)s~'

2~i is—ek
(F2)

APPENDIX F: EXPANSION OF f~
IN POWERS OF a,

Using the Laplace transform technique of Appendix

1
f~= f(s)ds

2xi s—H'

The second term of Eq. (F2), when commuted with p„
in Eq. (22), gives a contribution of

s Im0'ss (oec)

to os. Using (k~x~k')=i(a/ak, )8(k—k'), we have for
the off-diagonal terms

(klf ~k')=fkk +o~.f kkr,

1
f(s)dz

2xz

1 Mc j.
+—— (P.s—P.*)-

s-H 2 s-8 s-H

We require only the terms up to 6rst order in V,

(F1)

fkk s=&kk &kk, & kk = (fk' fk')/—ekk, (FS)

1 ( a
fkk'1

~
ke kz

2 & "ak.'
a a

ak& ask~ )
( a a' t(-( k„—k. I( &kk ~kk

I
. (F4)

k "ak, ak„) E aek
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It is shown that an expansion of the electronic part of the conductivity of an amorphous material in
integral powers of the potential is not valid unless an inGnite number of terms of the expansion are kept.
These terms are summed and a new expansion is made in integral powers of a restricted class of potentials
for which it is possible to keep only a Gnite number of terms. It is suggested that this is the solution to several
difEculties which have arisen in the Geld in the past few years. SpeciGc attention is drawn to the case of
Hquid Na.

I. INTRODUCTIOÃ
' "N two recent papers, ' ' it was shown that a simple
- ~ perturbation expansion of the conductivity of liquid
metals in powers of the potential does not converge
su%.ciently rapidly to give reasonable agreement with
experiment. It was further shown in I therefore that
the relaxation time approximation is not valid. Lowest
order perturbation theory often gave excellent agree-
ment with experiment while inclusion of higher order
terms destroyed this agreement. Evidently, it was
necessary to sum a set of terms in the perturbation
expansion.

The way out of this dilemma was indicated by

~ This work was initiated while the author held a National
Academy of Science—National Research Council postdoctoral
fellowship at the University of Tokyo.'B. Springer, preceding paper, Phys. Rev. 154, 614 (196$)
(hereafter referred to as I).' B. Springer, Phys. Rev. 136, A115 (1964).

Edwards, ' who showed that, in between two collisions
with some initial set of correlated scatterers, the elec-
tron should not be treated as a free particle but rather
as propagating in a plane-wave state with a 6nite life-
time. This lifetime is given by the possibility of inter-
action with other scatterers not correlated with the
initial set and is a result common to materials in which
the particles scattering the electrons have only short
range order. I shall refer to such materials as amorphous
materials. We will see that, because of this special
property, it is incorrect to expand the electronic contri-
bution to the conductivity in integral powers of the
potential and to keep only a finite number of terms.
We will also see how to reformulate the problem, sum-
ming an inanite class of diagrams, to obtain a new
expansion of the magneto-conductivity tensor in which
it is valid to keep a finite number of terms.

' S. F. Edwards, Proc. Roy. Soc. (London) A267, 518 (1962).


