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migration of either the crowdion or normal interstitial
takes place below stage III, although both are created
by low-energy electron irradiation in copper and
aluminum. In the stage-I region the recovery is due to
the correlated recombination of (100) displacements
(normal interstitial) and defocused (110) long-range
(LR) sequences (crowdions). The dose effects found in
copper and aluminum at the end of stage I are due to
the recombination of secondary pairs, where the inter-
stitial created by an LR sequence recombines with the
vacancy of another Frenkel pair, (or in a prequench
case with the quenched-in vacancies). Experimentally
the dose and prequench effects take place in a relatively
narrow temperature range. This is explained by von Jan
by assuming that the crowdion produced by a LR se-
quence converts into a normal interstitial, with an ac-
tivation energy near 0.1 eV in copper for example, before
it can migrate. After conversion the normal interstitial,
of course, recombines with a vacancy if the recombina-
tion energy is less than the conversion energy. Vncor-
related or free migration of the normal interstitial takes
place in stage III. The data presented here are qualita-
tively consistent with the model proposed by von Jan.

von Jan explains the relatively small stage-I recovery

in gold as being due to the absence of (110) displace-
ments. Consequently in light of the above discussion
one would expect the displacement processes in plat-
inum and gold to be diferent. From the results of
the previous paper we see that this does not seem to be
the case for 45 eV (T (70 eV. On the other hand the
comparison of the gold and platinum damage rates in
the preceding paper may not extend to sufficiently
large values of T to permit a conclusive comparison on
this matter. Clearly higher energy irradiation of gold is
desirable.

In conclusion, the data presented here do not lead to
an unambiguous choice between the various recovery
models discussed in this paper.
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The Anderson extra-orbital dilute-alloy model is shown to lead to the same type of anomalous conduction-
electron scattering found by Kondo from the s-d exchange model. This is accomplished by evaluating the
d-state Green's function to fourth order in the s-d' mixing potential and in the limit of large repulsion between
two d-state electrons, using equation-of-motion techniques.

1. INTRODUCTION
' 'N a recent pape (hereafter denoted I), the author
~ - showed that Anderson's dilute-alloy model' yields
a Curie-law magnetic susceptibility when the mutual
repulsion U between two electrons in the extra "d"
orbital is large, and the d-state width is small compared
with its binding energy. This result demonstrates that
a virtual bound state can display at least one of the
properties associated with a truly bound spin. It is
known, however, that a truly bound spin in a metal dis-
plays another important property —the anomalous scat-
tering of the conduction electrons found by Kondo. ' In
this paper, we extend the calculation of I to the next

' D. R. Hamann, Phys. Rev. Letters 17, 145 (1966).' P. W. Anderson, Phys. Rev. 124, 41 (1961).' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).

order, and demonstrate the existence of the Kondo
anomalous scattering term for the Anderson model.
Furthermore, the coefficient of this term is just that
given by substituting the exchange constant found by
SchrieGer and Wol64 through a canonical transforma-
tion of Anderson's Hamiltonian into Kondo's result. '

We do not attempt in this paper to reproduce the re-
sults of the more sophisticated treatments of Kondo's
model, ' ' but merely those of the perturbation-

' J. R. Schrie6er and P. A. WolR, Phys. Rev. 149, 491 (1966).
~ V. Nagaoka, Phys. Rev. 138, A1112 (1965).
6 H. Suhl, Phys. Rev. 138, A515 (1965); Physics 2, 39 (1965);

Phys. Rev. 141, 483 (1966); H. Suhl and D. Wong (to be pub-
lished).

7 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 48, 990 (1965)
LEnglish transl. : Soviet Phys —JETP 21, 660 (1965)g; Physics 2,
5 (1965); 2, 61 (1965).' J. Kondo, Progr. Theoret. Phys. (Kyoto) 34, 204 (1965).' K. Yosida, Phys. Rev. 147, 223 (1966).



DERIVATION OF EON DO ANOMALOUS SCATTERING 597

theoretic calculation. ' Thus our result is valid only for
temperatures well above the critical temperature T,= ey

exp( —1/I J I p), where es is the Fermi energy, J the ex-
change constant, and p the Fermi-surface density of
states. ' We feel, however, that this is the necessary next
step towards understanding the behavior of the Ander-
son model. Only by studying the basic Kondo effect
above T, can the key contributions be singled out to
Gnd the path to follow towards obtaining a valid solu-
tion below T,. In this sense, our calculation parallels
the first half of Nagaoka's' (both using double-time
Green's functions), "and it is possible to draw a number
of correspondences between the two.

A type of anomalous scattering for the Anderson
model signi6cantly different from the Kondo effect has
recently been reported by Kim."This result arises from
the fact that after decoupling his equation of motion
(2.13), Kim retains the expectation value (as tas ) and
neglects (us tus ). (The as, and as, are the annihilation
operators for the band and d states, respectively. ) It
may be seen from I, Eqs. (5) and (6), that these expec-
tation values contribute eclat artsd opposite logarithmic
singularities to the d-state Green's function to second
order in V, the d-state mixing potential. Kim shows
that this neglect can be justi6ed when V is considered
to be of the same order as the d-state binding ener~.
However, when V is not a small parameter, it is not
clear that his low-order decoupling or his neglect of the
sum over k' of (as tas ) compared with the diagonal
term are reasonable approximations. Therefore we must
remain skeptical about these results.

Other calculations of the d-state Green's function by
Kjollerstrom et al." and by Hewson" have been con-
cerned with the magnetic properties of the d state, and
have not attempted to go to high enough order in V,
the s-d mixing potential, to Gnd the Kondo effect. A
calculation by Dworin, the published results of which

give logarithmic temperature dependencies for the sus-

ceptibility and speciGc heat. , '4 should in principle give
the correct anomalous scattering.

The philosophy of the present calculation is similar
to that of I. We consider the large-U limit, dropping all
contributions of order U ' at an early stage. This is a
physically interesting limiting case which is, in a sense,
halfway between the Kondo and Anderson models. The
d state can be singly occupied or empty, so that it is a
virtual state with a spread in energy, but it cannot be
doubly occupied. Since the impurities which actually
display magnetic moments are transition or rare-earth
elements, the nondegenerate Anderson model can only
give a qualitative picture of the physics of real systems,

ia D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) PEnghsh transi. :
Soviet Phys. —Usp. 3, 320 (1960)j."D.J. Kim, Phys. Rev. 146, 455 (1966)."B.Kjollerstrom, D. J. Scalapino, and J. R. Schrieffer, Bull.
Am. Phys. Soc. 11, 79 (1966), and private communication.

~~ A. C. Benson, Phys. Rev. 144, 420 (1966)."L.Dworin, Phys. Rev. Letters 16, 1042 (1966).

and we feel that the large-U limit does equally well in
this respect. A Gnal reason for exploring this limit is that
it reduces the number of equations of motion which
must be studied to obtain the Kondo effect by an order
of magnitude and brings the prospect of qualitatively
understanding the results within the realm of possibility.

A feature of I which the present calculation does not
contain is the self-consistent solution for the d-state
occupation numbers in the presence of a magnetic Geld.
This omission simplifies the computation considerably,
but prevents an evaluation of the susceptibility. It is,
however, in keeping with a program of attempting to
Gnd a solution of the Anderson model valid below T,
by analogy with solutions of the Kondo problem.

In Sec. 2, the method of obtaining the d-state Green's
function is explained in detail and the result is given.
A relation between the band state and d-state Green's
functions is proved in Sec. 3, and some correlation func-
tions occurring in the result of Sec. 2 are calculated.
The leading terms which give the Kondo effect are
evaluated in Sec. 4.

2. THE d-STATE GREEN'8 FUNCTION

The Hamiltonian for the Anderson model is

+=+ es&sn &cte+Z es+sa rise+ ~&a+'~s

+Q(&ss~s.t~s.+&ss*~s.'~s.) (2 1)

The standard form for a Green's-function equation of
motion, after Fourier transformation to the energy
representation, is

((~ I ~))= (1/2 )((~,~))+((I~»j I ~)) (2 2)

where we have used the notation of Ref. 10, and assume
A and 8 are Fermion-like operator combinations so that
the anticommutator ( ) is appropriate in the 6rst term
on the right. All Green's functions in (2.2) have the en-

ergy argument co. In the second term, the commutator
with the one-particle diagonal part of H will give en-
ergies times the original Green's function, which may be
taken to the left. This problem has a special feature,
however. The commutator of an operator combination
like n~ u~+ with the U term of H gives Un~n~ u~
= Un~a~. Hence U times the original Green's function
can occur on the right in (2.2), and this term can also
be moved to the left. The standard result of (2.2) can
be written

G= (&o—energies) 'I (1/2')(thermal average)
+(coeKcients and perhaps sums)(new G's)g, (2.3)

where G means Green's function. The difhculty in treat-
ing the Anderson model systematically using equations
of motion is that the "coefficients" in (2.3) can be either
the small quantity Vqq or the large quantity U. There-
fore, proceeding n steps down the equation-of-motion
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FIG. 1. Diagram sum-
marizing a typical equa-
tion of motion.

permutability of the arguments of the D's should also be
noted. The final bit of notation we shall introduce is
that of parenthesized superscripts to indicate the order
in V to which a Green's function or thermal average
should be evaluated. Thus G"'(d+) and (d k )&" should
be evaluated in zeroth and 6rst order, respectively.

To introduce the graphical notation, let us 6rst look
at a typical equation of motion which occurs in the
hierarchy for G(d+),

G(d+) = ((«+ I
«+—')),

G(d+ &+)—= ((«+ I a~+')),

G(d k d~)= ((ag 'ag a—g~I ag+')),
G(k" k n d,)=((a,- ta~n, a„Ia~t)).

(2 4)

It should be noted that the operator on the right is as-
sumed to be a~~ unless the argument of G contains a
semicolon. In addition, all Green's functions are under-
stood to have the same energy argument ~. For thermal
averages:

(d k )=—(ag 'a~),
(8 k"+k k„')=—(ag 'ap" 'al, ay ~).

For energy denominators:

D(d) = ((u—eg)

D(dkk') = (co+ eg eI, el, ) ', — —
D(k "dk') = (su+ el," eg+ eg)—

(2 5)

(2.6)

The existence of identities such as D(dkd) =D(k) and the

Il g dc

der n

-V FIG. 2. Illustration of the rules
for constructing diagrams to
represent equations of motion.

hierarchy does not give all V" contributions to the
initial G, and the complexity of the set of equations
which must be dealt with to get even the V4 terms is
appalling.

To cope with this, we have developed a graphical
technique for representing the equations of motion
which enables us to exploit the large-U approximation
and reduce drastically the number of equations which
need actually be written down. Before explaining this,
it will be helpful to introduce the notation which will be
used in the rest of this paper by a few examples. For
Green's functions:

G(k' k d+) =D(k'kd)L(1/2~)(k' k )
—VI,.~*G(d k d+)+VI,gG(k' d d~)

+UG(k'M n d+)+P Vg-g*G(k' k k"+)j. (2.7)

Now we note that the "important" information in this
equation is contained in the arguments of the G's on
the right and their coeKcients. The arguments of D and
of the thermal average can be obtained immediately by
inspection of the G on the left. Therefore, (2.7) can be
conveniently summarized by a diagram such as that
shown in Fig. 1. The rules for drawing such a diagram
are extremely simple. One takes each argument of the
initial G in turn and applies Fig. 2. One then scans the
list of new arguments for combinations of d and e
operators which are zero (i.e., n+d+ ——0) or which sim-

plify (i.e., d+n+ ——d+, n n =n ), and either writes 0
next to or makes a correction by erasure to the appro-
priate terms. Care must be taken to add primes to new
k arguments. A new set of branches can now be drawn
from each nonzero new argument, etc. , so that the
original G forms the trunk from which a tree of branches
grows. One economy which can be achieved immediately
in this process is to write T (for terminates) next to any
argument that has occurred to the left in the tree, draw-
ing no further branches from that point.

Next we must consider the utility of the graphical
technique in making approximations. The key approxi-
mation is based on considering U large compared to
other energies in the problem. Figure 3 shows the two
possible configurations involving U that can occur in
the tree. In both, the argument list 8 is connected to
itself by a U line, forming a terminating branch. The
equation for G(B) will contain UG(B) on its right, so
this term will be moved to the left and U will be taken
into the energy denominator. Since U is large, we may
replace the D in the G(B) equation by (—1jU). In Fig.
3(a), B is connected to A by a V line. Thus it makes a
contribution of order U ' to G(A) and everything to its
left and should be dropped. In. Fig. 3(b) on the other
hand, 8 is connected to C by a U line and makes a con-
tribution of order unity in U to G(C) and everything to

k~ d~

Y dg

FIG. 3. Possible con-
figurations in a diagram
representing a chain of
equations of motion. 2,
8, and C are argument
lists.
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FIG. 4. Diagram sum-
marizing the chain of
equations of motion
needed to obtain G(d+)
correctly to order V4.
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( k k d+
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d k d+ T k k d+ T y
V
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-Ll

d &+k k+ y .d k+d+k k+ -y k k+d+k k~

Nk n+d k+ yank"n+k k+

U

Xk n~d k~ T

its left. In this configuration, 8 must be kept. A third
con6guration, in which an argument list has a U line to
its left and only V lines or a U line to a diBerent list to
its right, cannot occur. Making this approximation as
the tree is being drawn simplifies it enormously.

In I, we noted the importance of keeping alt terms
which contribute to a given order of V in G(d+) because
of the cancellation of terms which by themselves were
singular. The diagram method makes this easy. To ob-
tain all V4 contributions to G(d~), we 6rst draw its tree
until all rightmost "leaves" are connected to the trunk
by 6ve V branches. (U branches which occur on the
path from a leaf to the trunk are not counted. ) Then
we erase all these leaves and their branches. Next, we
examine each remaining rightmost leaf and decide
whether the thermal average term in its equation of
motion contains any contribution of zero order in V.
(For example (k"' k"A'~k+) does, but (k"' k" d+k+)
does not. ) If not, we erase it and its branch and con-
tinue to examine any new rightmost leaves. For those
rightmost leaves tagged T, we 6rst count the number X
of V lines to the trunk. We then examine the tree grow-

ing from the first occurrence of this leaf, and decide
whether it contains contributions of order 4—E or less.
If not, we erase this "T-leaf" and continue. After the
tree has been pruned in this manner, we examine argu-
ment lists on the same vertical line. If any are identical,
it is then possible to condense the diagram, perhaps re-
labeling some k arguments. The redrawn diagram will

then have several lines entering some of the argument
lists from the left.

This program was carried out to order V4, and the
result is shown in Fig. 4. It should be noted that the
word "decoupling, " so common in most calculations
using double-time Green's functions, was never used in
the preceding discussion. We abandoned this usual
method of terminating the hierarchy of equations after
observing that it often led to erroneous results due to
the presence of the large parameter U in the Anderson
Hamiltonian. In some cases, decoupling does give the
correct result. In particular, the zero-order contributions
to each Green's function represented in column 7 of

G"'(d+) =G"'(d+)+D(d) Z A~. (2.8)

where

1
At= —Q D(k)Vkd~(d k )&'&,

2' ~
(2 9)

Ak= —Q D(k)D(k"kd) Vkd*Vk"d

XL(k"M-d-d-) t'~ —(k" d+dM+) &'&j, (2.10)

Fig. 4 are given correctly by decoupling. It is for this
reason that we have omitted columns 8 and 9, which
are present in the original diagram drawn according to
prescription.

To evaluate G&+(d+), we write an equation of motion
for every 6 represented in Fig. 4 which has a line going
to its right, working from right to left and substituting
as we go. As in I, we avoid placing self-energies in de-
nominators for two reasons: First, the behavior of G(d+)
near its unperturbed pole at co= e~ is not important. For
the Kondo eGect, as in the Curie-law calculation, ointly
the behavior of G(d+) near &o=O is important. Second,
as in I, cancellations of discontinuous and singular func-
tions are important, so we must keep our expansion in
powers of V a strict one. For example, we might observe
that the equation of motion for G(d k d+) from column
3 will contain the same 6 on its right from column 5, and
that we could combine this term with the energy de-
nominator. In keeping with the strict expansion prin-

ciple, however, we should treat the terms in question as
G&'&(d k d+) in column 3 and G&'&(d k d+) in column

5, that is, as different functions. When this is done, we
6nd that other terms containing G&'&(d k d+) enter
column 5 from columns 6 and 7, leading to some impor-
tant cancellations.

The methods of evaluating the thermal averages
which occur in the set of equations of motion will be
discussed in the next section. The result is
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A =G"'(d )Q D(k) i V

A~=D(d)Z (1+&~-) I V~el'D(k) V~ e*
kk'

X)VI, eD(k')G&" (d+) G"'—(d k' d+))

Ae ———P (1—np" ) ~
Vg, "g~'LD(k"kd)

+D(dkk"))D(k) Vpe*G&'&(d k&+),

Ar ———Q (1—Np+) |Vga~ 'D(dkk')

(2.12)

(2.13)

(2.14)

XD(k) Vg a*G&'&(dD' d+), (2.15)

As= P equi ( Vg»e) LD(k dk)
kk"

+D(dkk"))D(k) VI,e*F(k+), (2.16)

AQ ——Q ep i Vpei'D(dkk')D(k)Vp e*F(k'+). (2.12)

The following notation is used in the above:

Np. ——(k.k.) to&,

G"'(d+) = «/2 )D(d)u —( -)),
G&"(d k dy)=D(k)P(1/2 )(d k )('&

—mI, VI,gG(0&(d+)),

F(k+) =D(k) P(1/2m)(d~k~) &'&

+«-. )V-G (d.)).

(2.18)

(2.19)

(2.20)

(2.21)

In the above equations, spin indices have been retained
and the effects of a magnetic Geld 3'. can be included
simply by adding p&K to each energy denominator D ',
where p~ is the Bohr magneton. The terms in G&'&(d+)

will be discussed in Sec. 4, and those giving the Kondo
effect will be approximately evaluated.

3. BAND-STATE GREEN'S FUNCTION AND
THERMAL AVERAGES

To relate the result for G(d+) to the Kondo effect and
to evaluate some of the thermal averages which appear
in it, we will prove an exact relation for the band-state
Green's function G(k+, k'+). The equation of motion for
this G is

G(k+' k'+) =D(k)H&/2~) o» +V~«(d+' k'+)). (3 1)

If we now form an equation of motion for the new 6
which appears in (3.1) by taking the time derivative
with respect to the time argument of the operator ol the

right, we obtain

G(d+; k'+) =D(k') VI, g*G(d+) . (3.2)

I1
A g=—Q (D(k)+D(k'))D(dkk')

X VI,e*Vg;e~(d 8+k&' )'~& (2.11)

Z&, (co) =2mci Vpe('G(d+). (3 5)

The theory of impurity averaging of Green's functions
is a more satisfying way of reaching this reuslt. "The
similarity in form between Eqs. (3.3) and (3.4) and
Nagaoka's results using the Kondo Hamiltonian'
should be noted. We see from (3.5) that the Kondo
anomalous scattering, ' which produces a logarithmic
singularity in the imaginary part of Zq (o&) as o& ap-
proaches 0, should appear in a similar way in ImG(d+).

In many of the equations of motion represented in
Fig. 4, a thermal average occurs on the right. According
to the general formalism of double-time Green's func-
tions, " thermal averages are evaluated by using the
prescription

{BA)= t )G(o&+irt) G(o& i—g))f(o&—)do&

=SAG), (3.6)

where the G on the right is G(A; 8), rt is a positive in-
finitesimal, and f(o&) is the Fermi function if A and 8
are Fermion-like operator combinations. Using

&E(1/2m) (o&
—e)

—')= f(e), (3.2)

the evaluation of thermal averages is extremely easy if
the relevant G can be expanded in partial fractions in
M.

One difficulty attendant to the evaluation of more
complicated thermal averages is the freedom possible
in dividing the operators into A and B.Each choice calls
for a different 6, and it is not clear that approximate
forms of these 6's will all give the same result for the
thermal average. Lacking a general answer to this diK-
culty, we proceeded according to the following principle:
8 was always chosen to be d+, so that G would be one of
the Green's functions occurring in the set of equations
of motion for G~ &(d+). This choice is based on consist-
ency and simplicity.

Substituting (3.2) in (3.1),

G(k~; k'+) = (1/2') 8» D(k)
+V&,eV&. e*D(k)D(k')G(d+). (3.3)

This is an exact result; any approximate evaluation of
G(d+) will give the corresponding approximation for
G(k+, k'+) directly using (3.3).

The quantity of interest in the Kondo effect is the
self-energy of the diagonal Green's function G(k+, k+).
By using (3.3) and the fact that

~
Vzz

~

' is inversely pro-
portional to the system volume (which is unimportant
everywhere else since

~
Vq~ i

' appears in k sums), we can
show

L27rG(k+,' k+)) '=o&—eI,—2%.
~

V&,e~ 'G(d+) i (3.4)

which is valid for complex co and may thence be con-
tinued to the real axis. For a Gnite concentration of im-
purities c, the self-energy is
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In the equations of motion from column 6 of Fig. 4,
thermal averages such as (k" d+k k'+) &'& occur. As can
be easily verihed, the obvious factorization is correct to
this order, so

for the Fermi function enables us to show that

ei"(1—np) 1-f(ea+ ee e—e-)
(k"M+k k'+) = —(k" k )&'&(d+k'+) &'&

=—
8&, geI (d„k'+)&'&. (3.8) so

= (e& « —ey) f(eg) i (3.13)

Such factorization was used in all first-order 4-operator
averages, and is already present in the result of the last
section.

The thermal average (d+k'+)&'& is easily evaluated
fl om

G&'&(k+) =D(k) V&,eG&'&(d+) . (3.9)

Using (2.19), expanding in partial fractions, and apply-
ing (3.7), we find

(8+k )&"=FAG&'&(k )j
&d &Io= V~~L1—(n-)j (3.10)

In general, we may replace f(eq) by 1 in this and similar
expressions.

It is clear that averages such as (k" d+d k+) &" which
occur in column-5 equations of motion are not likely
to be given correctly by factorization. Physically, this
average represents the amplitude for a conduction elec-
tron and the local electron mutually Gipping their spins,
and Nagaoka found that such an average gives an im-
portant contribution to the anomalous scattering for the
Kondo Hamiltonian. ' %e may evaluate this average
from G(k" d k+), which occurs in column 4 and is given
by

G&'&(0" d k~) =—D(k"dk)I (1/2m)(k" d„d k+)&'&

—np~~ Vg«e*F(k+)j~ (3.11)

where F is defined in (2.21). Since the desired thermal
average appears on the right in (3.11),using (3.6) yields
an algebraic equation for it:

(d+k" d k+)= f(ed+e&, ee-)—
X(d+k "dM~)+Vi"g*VidL1 —(n )j

eg,"(1—e&,)
XU(«) f(«+" e'—)1 — (3 12)

&d —~1

Using ni ——f(eq) and substituting the explicit expression

G&'&(k" k d+)=t&1, I,nj, D(d)p Vi g*LVi.dD(k')G&'&(d+)—

(d+k" dA+)&2&= Vv a*Via
ÃIs& & S7g

where we set f(eq) = 1 on the right in (3.13). It clearly
would have been unwise to make this approximation in
(3.12). The singularity in (3.14) at e~= eq is introduced
by making the approximation f(eq) =1 in evaluating

(4+k+) "& which is contained in F in (3.11).This step
causes no diKculty in evaluating the leading terms in
G"'(d+).

The average (k" k d d ) "& which appears with (3.14)
in (2.10) cannot be dealt with so easily. Examination of
the arguments in Fig. 4 shows that it cannot be obtained
from any of the 6's which appear in the hierarchy. In
order to evaluate this average let us write the identities

(k" k dM )&'& = (k" k )&'&—(k" k e )&2& (3.15)
and

(k" k n )&'&=-', (k" k (e++e ))&'&

—-'(k" k (n+—e ))&'&. (3.16)

To evaluate the second term in (3.16) we must use the
invariance of the Anderson Harniltonian, (2.1), under
spin rotations. Doing so enables us to use the relations
among thermal averages pointed out by Nagaoka for
the Rondo model /his equation (2.13)j,' in particular

—-', (k" k (n+—e ))=—(k" kate, )
=-;(k" k+Se+)

', (k" k+d~d ), - (3.17)

where Sq is the d-state spin operator. The last line in
(3.17) is just the average evaluated previously. We
note that it is only at this poiet that we abandon the
possibility of including a magnetic 6eld and calculating
the susceptibility as in I.

To obtain the first term on the right in (3.16), it
would be physically reasonable to factor the average.
However, we can do better. Let us consider

G&'&(dD' d )j
+D(k"kd)L(1/2s. )(k" k dM )&'&—(1—np. )Vg. g~G&'&(d k d+)j. (3.18)

It can be seen from I that the first term on the right in (3.18) is t'»-hei )G&2&(d+) —G& &(d+)j.Applying the operator
& to (3.18), we lnd

(d/" k dy)& &=f(ee+e&, ey )(k" k d d —) & &+"t&ikiLe( )n& —&(e)& &$

(1.—e&, ) nl/f(eg) f(eg+ep eI")j—f(ek) f—(eg+eI e,-)— —
+(1—(e)) V& i a*VI,~ (3.19)

~1"—~I
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where we have dropped the spin indices on ni and (n)
in keeping with setting the magnetic 6eld equal to zero.
By considering carefully the various Fermi functions in
the last term on the right in (3.19), we see that it is
small at the "suspicious" points ek=~d, ek"=ed, and
ei, = ei" [corripared to, say, (3.14) for small ei, and ei, ).
Since one of the thermal averages we are investigating
is large for these values of the argument, it is reason-
able to take e~ and ei" to be small in (3.19). Then
f(eq+e&, ei, .—)=1, and we obtain

(d+k" k d~&&'&+(k" k d d &i'&=(k" k (n~+n )&i'&

—(k k )i &+8y«any[(n&! & —(n&i &j. (3.20)

This is close to the result we would have obtained by
decoupling. From (3.3), we find

(k" k )"'=r[G"&(k;k" )]=Bi&;n&,

4. LEADING TERMS AND THE KONDO EFFECT

As pointed out in the discussion following (3.5),
we expect the Kondo eRect to manifest itself as a incr

singularity in the imaginary part of G(d+). Since
SchrieRer and WolR have shown that the Kondo model
J=2I Vi~qI'/eq at the Fermi surface in the Anderson
model4 and the lnor singularity appears with a J' coeK-
cient in Rondo's calculation, ' we expect from (3.5) a V4

coeflicient multiplying the ln~ term in ImG(d+). With
this in mind, we shall examine the fourth-order contri-
bution to each terin in Gi'&(d+). (We showed in I that
second-order terms give no anomalous contribution. )

The first term in the list of A's following (2.8) is
evaluated using (3.24):

A, = ——2(1—(n))—
2' 6d

~kd ~k"d +k" +k—(1—(n&), (3»)
~k"—~k kk I

Rk SkI

I
UQg I I

VQ,'J
I
'D(k) —. (4.1)

where the = sign indicates we have kept only the large
second-order term. Equation (3.21) substantiates our
neglect of the last term on the right in (3.19), since it
shows that the first term contains a much -larger
contribution.

Combining (3.17) and (3.21), we obtain for the com-
bination of thermal averages needed in (2.10)

The k' sum in (4.1) is not singular; it is well defined with-
out adding an in6nitesimal imag;inary term to the de-
nominator (ei—e&, ) because of the presence of the
numerator (ni —ni ), and is real. However, assuming a
constant Vk d and a constant density of states p from
—e~ to e~, we find that at temperature T=O,

+k +k~

(k" k d d )&2&—(k" d+d k+&&'&=-,'(k" k ) "&

2(k" k—+d+d )+,'Bi, &n&, [—(n)&'& (n&&'&$—. (3.22)

=pP' ln
~k ~S

Substituting (3.21) and (3.14) (for small ei, and ei,")
yields the explicit result

(k" k d d &&2&—(k" d+d k~&&'&

1 Skr I Sk= (1—(n)) Vw Va-~*—
~d &k ~ —&k

+~4 &,ni[1+(n&& & —(n)i'&j. (3.23)

The third 4-operator second-order thermal average
entering Gi4&(d+) is (d d+k k'~)i2&, which appears in
(2.11).We expect it to be small in our large-U limit. It
can be calculated directly from G&2&(d k k'+) and is, in
fact, small.

The remaining thermal average is (d k &
&'&, which can

be computed in a straightforward manner:

(d k ) ' =P[G ' (k )]
=P[U&gD(k)G"'(d+)] = (dgk~& &'&

~kd Ikj +k
+2(1—(n&), 2 I V~'I' —, (3 24)

~d k &k~ —&k

where the leading term has been extracted as before.

=pV' lnI ~„/~&;I . (4.2)

From (2.8), it is clear that for small ~

9 9

ImG "&(d+)=ImD(d) P A, =——P ImA, . (4.3)
6d &=1

We will consider the retarded Green's function, so that
cv is replaced by ca+i i&,where i& is a positive infinitesimal.
Then the only imaginary part of (4.1) is

ImD(k) = —s 8(cv—ei,) . (4 4)

Therefore

ImA i= (1 (n)) (p'V—'/eg') ln
I
a)/e& I, (4.5)

where the only approximation involved is that of ex-
tracting the leading term for small ~. We note that only
small values of ek and ek are involved in producing this
Kondo-effect term, as in Kondo's calculation. ' Terms
which are slowly varying for ~, ek, ek =0 are not im-

portant. Therefore in A2, we may set D(k"kd) =—1/eg,
since it is slowly varying for the "sensitive" values of its
arguments, while other terms, such as D(k) and the
thermal averages give rapidly varying contributions.
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Using this approximation and (3.23), In the summand for A 8, the function F(k+) defined in
(2.21) appears. Substituting (3.10) in (2.21) yields

1 1
A g ———(1—(n))

2x (—«')
~I.d 1 SJg

F(k+) = (1—(e )) D(d),
2' 6g—6lc

(4.12)

~I —~a ~

Examining A3, we see that only one term, [D(k)
+D(k')] is rapidly varying in the critical region (the
thermal average is small and slowly varying). Therefore
A3 does not contain a inca term, and is negligible com-

pared to A~ and A2.

A4 is a second-order term, and makes no anomalous
contribution.

In A5, the leading terms in the summand are D(k)
and

so that F(k+) is not singular when its arguments are
near the Fermi surface. The rest of the integrand has no
singularity in this region either because of (4.10).There-
fore As is negligible.

The summand for A9 looks as if it may be singular
enough to yield an imaginary incr term. However, if we
note that

D(dkk')D(k) = [D(k)-D(dkk')3/(. .—..), (4.13)

and, from (4.12), that F(k'+) ~ (1—44', ), we see that it
does not.

Summing up, the leading contributions to the imagi-

Substituting,

[Vi,.dD(k')G&'~(d+) —G "&(d k' d+)$ nary part of G'+(d+) are

=—(1/~)(1—(~))(Vk d/«) D(k') . (4.7) ImG «~(d, )= —(1/«) Im(A, +Am/A4+ A,)
+ (second-order terms) . (4.14)

A 5——(1/7I tp) (1—(e))

XZ IV.I'IV'. I'(1+ )D(k)D(k') (4g)

In this term, there are two imaginary contributiolis
since both the k and k' sums are singular. The presence
of the n~ term causes the real part of the k sum (the
principal value) to have a in'& dependence, which is
absent from the k' sum. The leading term is thus

Since we are not performing a self-consistent solution
for (N.), we will use the lowest order value (e)=-,'. Then
taking the second-order terms from I and the leading
fourth-order terms from the preceding calculations in
this section, we obtain

ImG'+ (d+) = —(p V'/2«')
X[1+(3&V'/«)»l~/~~I j (4 15)

This is the zero-temperature result. At finite tempera-
tures, ln~~/e~~ is replaced by

ImA, =(1/m «')(1—(n))

X [1m P ) V, , )
D(k') j[Re P ) V,.) ~,D(k)j

'~ f(e)de
(4.16)

=(1—
& ))(~'V4/ ")»l~/«I, (49)

A7--, A5,

and therefore gives a ln~ contribution.

(4»)

which is identical to ImA~.
The contribution A6 requires special consideration.

Its summand contains the product D(k)G'"(d k d4.)
which is proportional to [D(k)$'. However we can show

through simple algebra that the factor

D(k"kd)+D(dkk") = 2D(k"kd)D(dkk") [D(k)j '. (4.10)

Therefore the entire summand contains only a single

D(k) singularity in the region of interest, and the sum

gives no inca term. If we had replaced the D's on the left
of (4.10) by their Fermi-surface values, we would have
obtained A6=0, but this would have been an incorrect
oversimplihcation.

In A7, we set D(dkk') = 1/«, and find that

where f(e) is the Fermi function, an integral which can-
not be expressed as an elementary function.

From (4.15) and (3.5), we obtain for the imaginary
part of the band-electron self-energy

Im ZI, (44) =—(4rp V4/«')

X [1+(3pv'/«)ln ) o)/cz
i g. (4.1/)

The scattering rate for band electrons may be computed
from the Schrieffer-WolB transformation of the Ander-
son Hamiltonian, which contains ordinary and exchange
scattering terms, plus terms which change the d-state
occupation by two electrons, and should be negligible
according to the authors. ' If the coeS.cients in the for-
mer two terms are treated as constants (evaluated at
the Fermi surface and in the large-U limit), the ordinary
term may be easily treated in the 6rst Born approxima-
tion, and Kondo's calculation' may be used for the ex-
change term (evaluating his k sums for the square
density of states under consideration). (One must note
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that the J defined in Ref. 3 equals half the J defined
in Ref. 4.) Carrying this out, and noting that the relaxa-
tion time r& is related to the self-energy by 1/2sI,
=—ImZ& (e&),"we reproduce (4.17) exactly.

S. CONCLUSIONS

Finding a manifestation of the Kondo effect in G(d+)
for the Anderson model comes as no real surprise. The
coeS.cient found for the singular term provides inde-
pendent confirmation of the arguments given by
Schrie6er and Wol6 to establish that their transforma-
tion extracts the leading term contributing to anomalous
scattering. 4

Our chief goal in carrying out this calculation was to
lay firm foundations for a solution of the Anderson
model valid below the critical temperature T, of the
Kondo model. The importance of this arises from the
fact that the Anderson model preserves the symmetry
between the electron producing the local spin and the
electron presumed to be bound to it at low tempera-
tures. "One can expect to gain a qualitative under-
standing of the behavior of dilute alloys at these tem-
peratures only through such a model.

Several conclusions may be drawn immediately from
the present calculation. First, it is clear that no single
"path" down the hierarchy of equations of motion is
alone responsible for the Kondo eGect. There are a
great many contributions from various Green's func-
tions; very little of Fig. 4 can be deleted if all the leading
V4 terms are to be retained. Second, we have shown that
off-diagonal thermal averages such as (k" d+d k+)t'&

contribute exactly half of the Kondo anomaly, through
expressions such as

Sk—gkei

while diagonal averages (k~k~) & & contribute the other
half through

This is an exact parallel with Nagaoka's high-tempera-
ture solution of the Kondo model (see his Pote added in
proof). ' Third, we point out that a solution valid below
T, may be possible without introducing any further

"A. A. Abrikosov, L. P. Gorkov, and I. K. Dzyaloshinsky,
Methods of Quantum Field Theory in Statistica/ Physics, translated
by R. A. Silverman (Prentice-Hall Inc. , Englewood Cliffs, New
Jersey, 1963), pp. 327—334.

equations of motion than those used here. This conjec-
ture is supported by comparison with Nagaoka's work,
since his equations of motion are carried through only
to order J', which corresponds to our V'. Such a solu-
tion, of course, would be based on a carefully considered
decottplimg approximation rather than the strict-expan-
sion procedure used here. The latter should provide both
a motivation for and a check of the former. Fourth, this
calculation supports the interpretation of tunneling
anomalies given by Appelbaum" and Anderson. '~ It does
this by verifying the logarithmic peak in the density of
states of the impurity-plus-nearer-metal combination,
which can be used in an ordinary tunneling formula. '7 It
also supports the utility of Anderson's derivation'~ of
Appelbaum's Hamiltonian, ' which is performed by
applying the Schrieffer-Wolff transformation4 to a gen-
eralized form of (2.1), by demonstrating the correctness
of the tranformation in describing Kondo scattering.

The problem of a self-consistent solution in an applied
magnetic field, and hence calculation of the susceptibil-
ity, should be deferred until the complete solution in the
absence of a field is understood. As we saw in I, such
a solution costs V' in accuracy, so that a V' "strict-
expansion" calculation would have been necessary to
obtain the proper V4 correction to the susceptibility.

Pote added in proof. In evaluating the various terms
in G(d+), attention was focused on contributions to the
various k integrals from near the Fermi surface. It has
come to the author's attention that anomalous contri-
butions can arise from certain of the terms when one
ek is near e~. In these terms, energy denominators such
as D(did') were heretofore approximated as ea '. Keep-
ing the contributions isrh(co+—ea e~—ej,—) from such
denominators gives additional imaginary log terms of
the order kept. However, all such additional contribu-
tions cancel, leaving the result unchanged. Inclusion of
these terms does re-arrange the sources of the Kondo
scattering. The total singular contribution of each of the
terms A2 and A~ goes to zero, and A8 makes a com-
pensating contribution. Other individual terms are
unchanged.
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