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A theory of the effect of solutes on solvent self-diffusion in dilute fcc alloys is given, based on the model of
nearest-neighbor interactions between solute impurities and vacancies. The parameters of the theory are the
four vacancy-jump frequencies in the neighborhood of an impurity and the vacancy-jump frequency in the
pure crystal. No assumptions are made about the relative magnitudes of these frequencies. This distinguishes
the present theory from previous theories based on the same model. The theory is used to deduce for each of
nine dilute Ag-based alloys sets of jump-frequency ratios (and corresponding impurity correlation factors)
that are consistent with measured values of the solute enhancement coefficient and of the impurity diffusion
coefficient. The desirability of isotope-effect measurements to determine the impurity correlation factors is

emphasized.

1. INTRODUCTION

HE effect of impurity additions on solvent self-
diffusion has been measured in recent years for
several Ag-based alloys (see Table ITT and the references
given there). For small impurity concentrations
(<~29%,), the change in the self-diffusion coefficient
is linear in concentration:

Dr(c)=Dr(0)(1+bc), ¢Y)

where ¢ is the molar concentration of the solute im-
purity, Dr(c) and Dr(0) are the diffusion coefficients
of a solvent tracer in the alloy and in the pure solvent,
respectively, and b is the factor that measures the en-
hancement (or diminution) of the tracer diffusion
coefficient. In some cases, the enhancement can be
very large. Thus, adding about 19} of Pb to Ag doubles
the Ag diffusion coefficient.

In this paper, we calculate the enhancement factor
b on the basis of the nearest-neighbor model of impurity-
vacancy interactions.! That is, we attribute the en-
hancement effect to changes in vacancy jump fre-
quencies in the immediate neighborhood of impurities.
There have been calculations, on the nearest-neighbor
interaction model, of impurity diffusion coefficients.?*
There have also been calculations of the enhancement
factor & on this model,* most recently by Lidiard.?
However, in earlier calculations of 4, assumptions are
made, in addition to those inherent in the model, in
order to simplify the computations. We avoid such
special assumptions in the present calculations.

We describe the calculation of 4 in Secs. 2 and 3. We
find that b is a function of the same three jump fre-
quency ratios as are D;/D7(0), the ratio of the impurity
diffusion coefficient to that of a solvent tracer, and f;,

1See, e.g., R. E. Howard and A. B. Lidiard, Rept. Progr. Phys.
27, 161 (1964).

2 A. B. Lidiard, Phil. Mag. 46, 1218 (1955).

3 J. R. Manning, Phys. Rev. 136, A1758 (1964).

¢R. E. Hoffman, D. Turnbull, and E. W. Hart, Acta Met. 3,
417 (1955); E. W. Hart, R. E. Hoffman, and D. Turnbull, 7bid.
5, 74 (1957); H. Reiss, Phys. Rev. 113, 1445 (1959).

§ A. B. Lidiard, Phil. Mag. 5, 1171 (1960).
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the impurity correlation factor. Certain “partial cor-
relation factors” that enter 4 are calculated numerically
as a function of these ratios. Using these calculations,
we derive in Sec. 4, for each of nine Ag-based alloy
systems, sets of jump frequency ratios and associated
values of f; that are consistent with the measured
values of & and D;/Dr(0) for these systems. We com-
pare our sets of values with those obtained by LeClaire
from Thomas-Fermi calculations, and with those ob-
tained by Lidiard from an analysis of experiment using
a ‘“weak-binding” approximation for 5. Finally, we
discuss what information could be obtained from
experimental determinations of f; via isotope effect
measurements.

2. FORM OF b ON THE NEAREST-NEIGHBOR
INTERACTION MODEL

In the nearest-neighbor interaction model as applied
to diffusion in fcc lattices, we distinguish five vacancy
jump frequencies, wo-w,, which are defined as follows
(see Fig. 1): wy is the jump frequency of a vacancy
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between one nearest-neighbor site of an impurity and
another nearest-neighbor site, and w, that for an im-
purity-vacancy exchange; ws and w, are, respectively,
the frequencies for jumps from nearest-neighbor to
non-nearest neighbor positions and for the reverse
jumps. The frequency w, describes all other vacancy
jumps, i.e., those between sites neither of which
neighbors on an impurity, and is assumed to be the
same as for vacancy jumps in the pure metal. We
calculate the enhancement factor 4 as a function of
these five vacancy jump frequencies by calculating Dr,
the tracer diffusion coefficient, to first order in the
impurity concentration c.
We begin with the formula [see, e.g., Refs. 6, 7].

Dy=lim (3 «:))/24(n), @

=1

where «x; is the projection of the 7th jump of a tracer
along the x axis (taken in a (100) direction); #(») is the
time (on the average) for a tracer to make » jumps.
We may write Eq. (2) in the form

Dr=lim (S 22)/2(n) @)

=1

where

fr=142 i (FZip1F T ®ipot- - >/§: (x2) (4

i=1 ) §=1
is defined as the tracer correlation factor. Since two-
thirds of all tracer jumps have a nonzero projection
(all of these of the same length, a) along the x axis, we
may write

@oé xﬁ)/Zt(n)z%— lim /1(r). )

The quantity lim,-, 7#/¢(z), the average number of
jumps per second made by a tracer, is given by the
expression® (correct to first order in the concentrations
of free vacancies and of impurity-vacancy pairs)

x 7
lim n/t(n)= IZ[x,,’(l— 7xf)wo+§w1+1—2—xpw3
+7x,,xfw4:| . (6)

Here x, is the (molar) concentration of free (unasso-
ciated) vacancies, and x; and «x, are the concentrations
of unassociated and associated impurities, respectively
(¢c==xs+=,). The quantity «,” is the probability that
an unassociated vacancy is at a particular site neigh-
boring a tracer, given the presence of tracer. On the
present model of impurity-vacancy interactions it

6§ R. E. Howard, Phys. Rev. 144, 650 (1966).
7 J. G. Mullen, Phys. Rev. 124, 1723 (1961).
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follows that5

%= (1—12¢)x,(0), @)
2,/ = (1—11¢)x,(0) (8)
and also that
XpW
Tty = — | )
12 Wy

In Egs. (7) and (8), »,(0) is the concentration of
vacancies in a pure crystal. Using Eqs. (7)-(9), we
may write Eq. (6) as

lnlinw n/t(n)=12[x,(0) (1—18¢)wo+ (x,/3)

X (wit3ws)], (10)
where we have neglected terms of order x,x,(0), since
we expect x,<Kc.

We now calculate an expression for fr, the tracer
correlation factor. To do this we distinguish “‘types”
of tracer jumps in the sense defined® in Ref. 6. In the
present case there are thirteen types of tracer jumps:
one type with frequency w,,® two with frequency w;,
five with frequency w;, and five with frequency ws.
Table I gives examples of jumps of each type along with
the relative probabilities ¢, (¢=0---12) that any
particular tracer jump having nonzero x projection is
of type a. We write Eq. (4) for the correlation factor
fr as®7

12 ©
fr=142 L ca ¥ (takayi)/a?, (11)
a=0 7=l

where the subscript «, 7 denotes the ith jump following
an initial jump of type a. We define partial correlation
factors f, by the equation

fa=1+2 i (X olle,i)/ a2, (12)
Then
fT=IZ:0 Cafa. (13)

8 Two tracer jumps 4 and B with x projections x4 and xp are
of the same “type” if

€Y iji (xAxA,¢)=g; (xpx8,:),

and
(2) pisf=piF, (all types B, all 7).

Here the subscripts 4, 7 and B, ¢ refer to the 7th jumps following
the jumps 4 and B, respectively. The quantities p;,4# and p;, 3
are the probabilities that the 7th jumps following 4 and B,
respectively, are of type 8 with x projections in the same (4) or
in the opposite (—) directions as the initial jumps.

? In principle, there are many types of wo jumps depending on
the position of the impurity relative to the vacancy. To simplify
the discussion, however, we have designated all wo jumps as being
of a single type. This is consistent with the assumption to be made
later that all wo jumps have the same partial-correlation factor fo.
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TasrE I. Examples of each of the 13 types of tracer jumps. In each example, the tracer makes a jump from the origin into the vacant
site at ¢ (1,1,0). The position of the impurity relative to the tracer and vacancy determines the type of jump. Frequencies appro-
priate to each type of jump are listed. The quantity ¢, is the a priori probability that a tracer jump (with nonzero x projection) is of

the type .
Tracer Jump Vacancy Type
position frequency position Impurity position a Cay®
(0,0,0) W a(1,1,0) Not nearest neighbor 0 %4(0) (1—18¢)wo
of tracer or vacancy
(0,0,0) W a(1,1,0) a(1,0,1) 1 x,w1/6
(0,0,0) w1 a(1,1,0) a(0,1,1) 2 %,w1/6
(0,0,0) w3 2(1,1,0) a(2,0,0) 3 *pws/12
(0,0,0) w3 a(1,1,0) a(2,1,1) 4 X,w3/6
(0,0,0) w3 a(1,1,0) a(2,2,0) 5 xpws/12
(0,0,0) w3 a(1,1,0) a(1,2,1) 6 %,w3/6
(0,0,0) w3 a(1,1,0) a(0,2,0) 7 xpws/12
(0,0,0) w4 2(1,1,0) a1, —1,0) 8 xpws/12
(0,0,0) w4 a(1,1,0) a(0, —1,1) 9 2pws3/6
(0,0,0) w4 a(1,1,0) a(—1,—-1,0) 10 2pws/12
(0,0,0) Wy a(1,1,0) a(—1,0,1) 11 %pw3/6
(0,0,0) Wy a(1,1,0) a(—1,1,0) 12 xpw3/12

a 5 ca=1; vy=x5(0)(1—18c)wo+(xp/3) [w1+(7/2)ws].

a=0
Combining Egs. (3), (5), (10), and (13), we write for Dr

Dr=4q? (‘E Cafa)[%:(0) (1 —18¢)wo
a=(
+5%5 (w1 t+Fws)].

Substituting the expressions for the ¢, given in Table I,
we have finally

Dr=4a%x,(0) (1—18¢) fowo

(14)

+3 (4ar,) (Xqwi+3Xows) ,  (15)
where
X1=3(frtf2), (16a)
and
Xo= (1/14) (fs+2fs+ fs+2fs+ fi+ fos+21s
+ fro+2f1+f12).  (16b)

We assume that fo is the same for all wo jumps and equal
to the tracer correlation factor in the absence of im-
purities. (It may be shown that this assumption intro-
duces only small errors, of the order of 19, in ). To
two significant figures, fo=0.78. The quantities X; and
X, are functions of the partial correlation factors fi—fis.
In the next section, we show that these may be calcu-
lated as functions of the jump frequency ratios ws/w,
we/w1, and w3/w;.

We are now in a position to find an expression for b.
From Eq. (9)

2p=12%,% ;ws/ws=[12x,(0)cws/ws ][1+0(c)]. (17)
Substituting into Eq. (15), we find
DT= DT (0) (1+b6) s
where
Dr(0) =4a%,(0) fowo, (18)

the tracer diffusion coefficient in the absence of im-
purities, and where

b=— 18+ (4:‘104/f0‘100) (Xlwl/ZU3+7X2/2) . (19)

If we assume that X;=Xp= f,;, we obtain the same
expression for b as found Lidiard in the “weak-binding”
approximation®

= —18+4(ws/wo) (wy/ws+3), (Lidiard). (20)

The next section shows, however, that the assumption
X1=Xs= fo is usually not valid.

3. CALCULATION OF THE f.

We calculate the partial correlation factors f, by
the method described in Ref. 6. This involves calcu-
lating numerically the quantities

(21)

where p.%f is the probability that, given a tracer jump
of type «, the next jump of the tracer (with nonzero
projection along the x axis) is of type 8 with an x-dis-
placement parallel (+) or antiparallel (—) to that of
the initial jump. The matrix T whose elements are the
t8 and the column vector f whose components are the
f« are related by the expression®

f=14+2T(1—T)1, 22)

where 1 is the thirteen-component unit column vector
and I the unit 13X 13 matrix.

In calculating the ¢*f, we follow the procedure given
in Ref. 6. A tracer jump of type « is assumed to take
place. The path of the vacancy responsible for the jump
is followed until it again gives the tracer an x displace-
ment or until it wanders outside a certain specified

(o6 p 2 —p o8,
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region. In the latter case, it is assumed that the vacancy
returns to the tracer only randomly and thus makes no
contribution to the #*f. The region that we choose
within which correlations are considered explicitly
contains all configurations where at least one of the
particles (impurity, vacancy, or tracer) is the nearest
neighbor of the other two. In addition, the region
contains all other configurations that can be obtained
from these by one jump of the vacancy. As in Ref. 6,
we distinguish sets of configurations such that all
members of a given set are equivalent (in contributing
to tracer diffusion in the x direction). All configurations
which are obtained from each other by #z-fold rotations
around the x axis or by reflection across a mirror sym-
metry plane containing the x axis are equivalent in
this sense. Also, configurations which are obtained by
reflection across a mirror symmetry plane passing
through the tracer normal to the x axis are negatively
equivalent. The latter configurations can be included
in a set if their occupation probabilities are weighted
by the factor —1. All configurations that lie in the
plane containing the tracer normal to the x axis can be
neglected since they lead to random motion of the
tracer along the x axis. Combining and omitting con-
figurations in this manner leaves 21 sets where one
particle is a nearest neighbor of the others, and 98
additional sets making a total of 119 sets. It is easy to
see that %%, and hence the f,, are functions only of the
ratios ws/w1, we/w1, and ws/w,. This is because the 28
depend only on the relative probabilities of the several
kinds of jumps a vacancy can make at each point of its
trajectory. If the vacancy is a nearest neighbor of an
impurity, it can make jumps of frequency w;, ws, and
ws. Hence, the relative probabilities of any particular
jump in such a configuration are functions of the ratios
ws/w, and wy/ws. If the vacancy and impurity are at
next-nearest neighbor distances, then the vacancy can
make jumps of frequencies w4 or wy. The relative proba-
bilities of jumps here are functions only of the ratio
ws/wo. If the vacancy and impurity are still more widely
separated, only w, jumps are available and the relative
probability of any particular jump is independent of
jump frequency.

We have found the f, numerically as a function of
the ratios ws/wo, ws/w1, and we/w; making use of an
electronic computer. The values of X; and X found
from the f, via Egs. (16a) and (16b) are listed in Table
II. We note that X; and X; are, respectively, increasing
and decreasing functions of w;/w; and of ws/w;, when
the ratios are varied separately. Both X; and X, are
decreasing functions of ws/w,. In general, X; and X,
are larger or smaller than f,=0.78 depending on the
particular set of frequency ratios. We note the strong
dependence of X; on ws/w; for small w;/w;. In the tight-
binding limit (ws/w:1=0), X; vanishes with vanishing
'W2/ wW1.

We may compare our results in certain special cases
with those of more accurate calculations. Thus our

R. E. HOWARD AND ]J.
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values of X; for ws/w1=0 agree within two significant
figures with the calculations of Compaan and Haven.!
(They also agree within a few percent with the values
computed in Ref. 6 where a somewhat smaller region
surrounding the tracer was chosen within which corre-
lation effects were considered.) For the case w,/wo=ws/
wi=ws/wy=1, X1=X;=0.79. This is closely equal to
the more accurate value of 0.78. On the basis of these
comparisons we estimate that our results are meaningful
to two significant figures.

4. ANALYSIS OF DATA ON Ag ALLOYS

Table III lists measured values of D;/Dy(0) (the
ratio of the impurity diffusion coefficient to that of a
solvent tracer in the pure metal) and of & for nine Ag-
based dilute alloys. The values are for the temperature
T'=1000°K. The table also lists, for each alloy system,
sets of the ratios ws/wo, ws/w;, and wy/w; that are
consistent with the measured values of D;/Dz(0) and
b. A range of values of these ratios are consistent with
the measured values of 4 and of D,;/D7(0), and we have
calculated a few sets of values for each alloy system to
illustrate trends. To find such sets of ratios we have
used Eq. (19) for b, together with the calculated values
of X; and X, given in Table II. For the ratio D;/D+(0)
(also a function only of w/wy, ws/w1, and we/wy), we
have used the formula!

D;/Dr(0)= fawaws/ fowews (23)
where f;, the impurity correlation factor, is given by
the expression

1+ZFws/w,
' 1+ wo/wi+EFws/wy )

(24)

The factor F is a function of ws/w, and is calculated
numerically in Ref. 3. The values of f; in Table III
are computed for each set of ratios from Eq. (24).

We note that for each alloy the allowed values of
w4/wo and also of f; are bounded, the bounds becoming
very narrow for the slow diffusing impurities. For fast
diffusing impurities, a wide range of f; values are con-
sistent with the experimental values of & and D;/Dz(0)
(e.g., for Ge 0L £;<0.71 depending on the particular
set of frequency ratios).

Under certain physical assumptions! (which appear
to be valid for diffusion by vacancies in fcc crystals),
the correlation factor f; can be found from experiment
by measuring the difference in the diffusion coefficients
of two isotopes of the given impurity (isotope effect
measurements). The only system for which experimental
values of all three quantities 4, D;/Dr(0), and f; are

0K, Compaan and Y. Haven, Trans. Faraday Soc. 52, 786
(1956).
11 See, e.g., the discussion on p. 656 of Ref. 6.
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TaBLE III. Jump-frequency ratios ws/wo, ws/w;, and ws/w; for impurities in Ag at 7'=1000°K. These are found from Eqs. (19) and
(23) with values of b and D;/Dr(0) for T=1000°K as interpolated from experimental results. The values of f; are deduced from Eq.
(24) for each set of frequency ratios. LeClaire’s calculated ratios (Ref. 14) are given for certain of the impurities, with the corresponding
fi calculated from Eq. (24). Also given are values of f; in Lidiard’s “weak-binding’’ approximation (Ref. 5) and the value of f; for Cd
deduced by Schoen (Ref. 13) from isotope effect measurements.

ws/wo ws/w1 ZU2/ w1 fi
0 0 0.075 0.93
Sb 1.0 0.03 0.22 0.83
b=65.72 2.0 0.09 0.34 0.78
D;/D7(0)=17.60P 5.0 0.69 1.32 0.62
6.0 1.35 2.30 0.58
8.62 o (wy/w;=1.34) o 0.51
2.2 1.35 714 0.05 (LeClaire)
0.64 (Lidiard)
Pb 0 0 0.10 0.91
b=87c 1 0.02 0.23 0.82
D;/Dr(0)=11c 2 0.06 0.33 0.78
11.0 o (wo/w;=2.0) o 0.40
0.65 (Lidiard)
Ge 0 0 0.42 0.71
b=27° 1 0.09 14 0.48
D;/Dr(0)=9.44 2 0.39 6.2 0.23
3.1 24 ) 0.00
0.39 (Lidiard)
Tl 0 0 0.24 0.81
=374 1 0.06 0.63 0.65
D;/Dr(0)=8.44 2 0.22 14 0.52
4.87 o (wy/w;=69) o 0.19
0.50 (Lidiard)
In 0 0 0.21 0.82
b=18e 1 0.13 0.95 0.59
D;/Dr(0)=5.3¢ 2 0.81 4.3 0.39
2.95 o (wy/w3=5.3) 0.26
1.6 1.2 1 0.16 (LeClaire)
043 (Lidiard)
0 0 0.17 0.85
Cd 0.5 0.067 0.57 0.68
b=9.2¢ 1.0 0.26 14 0.54
D;/Dr(0)=3.7¢ 1.5 0.9 3.9 0.45
2.0 7.0 27 0.38
2.13 o (wy/w;=3.8) 0.36
1.3 1.1 0.36 (LeClaire)
0.52 (Lidiard)
<0.1 (Schoen, isotope
effect)
Au 0 No solution
b=—12s 0.13 0  (w2/w;=1.6) O 1.00
D;/Dr(0)=0.268 1 1.5 0.31 0.94
1.3 o  (wo/w;=0.17) 0.94
Cu 0 No solution
b=8.1° 0.2 0 (wy/wz;=43) O 1.00
D;/Dr(0)=1.1k 1.0 0.29 0.29 0.86
2.0 12 10 0.82
2.14 o (wy/w;=049) 0.81
0.86 (Lidiard)
Pd 0 No solution
=—82i 0.08 (wa/w;=04) 0 1.00
D;/D7(0)=0.040i 0.73 o (wy/w3=0.04) o 0.98

s E. Sonder, Phys. Rev. 100, 1662 (1955).
b E. Sonder, L. M. Slifkin, and C. T. Tomizuka, Phys. Rev. 93, 970 (1954).
¢ R. E. Hoffman, D. Turnbull, and E. W. Hart, Acta Met. 3, 417 (1955).
d R. E. Hoffman, Acta Met. 6, 95 (1958).
e A, H. Schoen, Ph.D. thesis, University of Illinois, 1958 (unpublished).
R f C.1 (’)1‘3 ’{ggnziz(lil;génd L. Slifkin, Phys. Rev. 96, 610 (1954). Note: The Dr(0) value used above is taken from C. T. Tomizuka and E. Sonder, Phys. -
ev. . .
¢ W. C, Mallard, A. B. Gardner, R. F. Bass, and L. M. Slifkin, Phys. Rev. 129, 617 (1963).
b A. Sawatsky and F. E. Jaumot, Trans. AIME 209, 1207 (1957).
‘g. H. Nachtrieb, J. Petit, and J. Wehrenberg, J. Chem. Phys. 26, 106 (1957).

i L. Peterson, Phys. Rev. 132, 2471 (1963).
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available is the alloy Ag-Cd.? Referring to Table III,
we see that the three experimental values for this system
are inconsistent: The measured value of f;¥(<0.1)
lies well below the smallest value (0.36) that is con-
sistent with the measured values of & and D;/Dz(0).
It is important that the isotope effect measurement
(which is a difficult one) be repeated for Ag-Cd. If the
isotope effect result is confirmed, then either the nearest-
neighbor model [upon which Egs. (19), (23), and (24)
are based] is inadequate, or else the theoretical inter-
pretation of the isotope effect measurement to yield fs
is incorrect. It is very desirable that isotope effect
measurements be made for other impurities. For slow
diffusers (such as Pd) the correlation factor is closely
predicted from the known values of b and D,;/D7(0).
In such cases, isotope measurements would provide a
good test of theory. For the case of fast diffusers, isotope
effect measurements (if they reliably yield f;) could
specify which of the allowed correlation factors, and
hence which set of jump frequency ratios, is correct.
LeClaire' has calculated jump frequency ratios for

12 There is a measurement of the isotope effect of Fe in Ag and
in Cu [J. G. Mullen, Phys. Rev. 121, 1649 (1961)7]. However, no
measurements of b for these systems are available. Footnote added
in proof. S. J. Rothman and N. L. Peterson [ this issue, Phys. Rev.
154, 552 (1967)] have recently made measurements of f; and
D;/Dr(0) for zinc impurity diffusing in silver and of b for silver
diffusing in dilute silver-zinc alloys. Their experimental values of b
and D;/Dr(0) yield an allowed range of f; similar to that for Cd in
Table ITI. Their experimental f; values lie comfortably within
this range (in contrast to the case for Cd). From the three meas-
ured quantities [, D;/Dr(0), and f;] and the three equations
(19), (23), and (24), the three jump-frequency ratios [ws/wo,
ws/wi, and we/w, ]| for zinc in silver can be calculated. The results
(explicit values are quoted in Rothman and Peterson’s paper)
indicate that ws/wo and ws/w; in the range 747-880°C are some-
what larger than unity, while ws/w; is smaller than unity.

18 A, H. Schoen, Phys. Rev. Letters 1, 1662 (1955).

14 A, D. LeClaire, Phil. Mag. 7, 141 (1962). LeClaire calculates
- the differences in activation energies for jumps of the various
frequencies and finds the ratios ws/w; and ws/woe from such
differences in energies by assuming that the pre-exponential
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impurities in Ag on the basis of a Thomas-Fermi model
of impurity-vacancy interaction. In cases where the
impurity is in the same row in the periodic table as Ag,
LeClaire’s values are consistent with measured values
of D;/Dr(0). We list the calculated jump frequency
ratios for such impurities in Table III, and values of
fi computed from these ratios. We note that for im-
purities of valence greater than one, LeClaire’s values
of ws/w; and ws/w; are too large, given his calculated
value of wy/wo. The discrepancy between LeClaire’s
values and those consistent with the measured values
of & and D,;/Dr(0) become larger, the larger the im-
purity valence. The fact that LeClaire’s calculations
may underestimate impurity-vacancy binding (making
w; too large) and overestimate the frequency of im-
purity-vacancy exchanges (making w. too large) has
been pointed out by Corless and March.15

We have also listed in Table III the values of f; as
computed by Lidiard, from the experimental data on
b and D;/Dy(0), in the weak-binding approximation
[using Eq. (20) for & and Egs. (23) and (24) in the
approximation F=1 for D;/Dr(0)]. These fall always
within the allowed range of f;.
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factors for the frequencies w;-w, are the same (all these jumps
involve normal ions). LeClaire allows that the pre-exponential
factor for the frequency w. may be different and finds the ratio
of pre-exponentials »5/»o from Eqgs. (23) and (24) making use of
calculated values of activation energy differences and experi-
mental values of D;/Dr(0). LeClaire makes the assumption,
however, that F=1in Eq. (24). In deriving ws/w; from LeClaire’s
activation energies, we do not make this assumption but use the
accurate values for F given in Ref. 3. Therefore the values ws/w1
(and also those of f;) that we attribute to LeClaire are different
from those given in LeClaire’s paper.
15 G. K. Corless and N. H. March, Phil. Mag. 7, 1765 (1962).



