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The variation of the low-temperature resistivity in the presence of internal 6elds is examined for dilute
concentrations of magnetic impurities in a nonmagnetic metal host. The relaxation times are calculated in
the second Born approximation for two different internal Gelds: one arising in a system in which long-range
order exists, and another in which the magnetic impurities interact via a Ruderman-Kittel-Kasuya- Yosida
interaction. In the latter case the internal field H is a random variable whose probability distribution P (H)
can, in principle, be obtained. Using an Ising-like probability distribution, it is predicted that the change in
the very low-temperature resistivity Ap(T) is, except for a small lnT term, linear in T. This is in agreement
with experiment for Au —0.1%%uo Fe, where the experiment was performed at sufficiently low temperatures.
More generally we find that Ap (T) is approximately proportional to that part of the low-temperature specific
heat which arises from the magnetic disordering of the impurities in their internal Gelds. The "width" of the
probability distribution function obtained from the low-temperature specific-heat measurements gives the
slope m of Ap(T) in rather good agreement with experiment. This is additional evidence that the excess
speci6c heat in these alloys arises from a magnetic disordering of the impurities. The slope of the resistivity
is, from our theory, approximately independent of the impurity concentration and the exchange interaction
J at std6ciently low temperatures. For higher temperatures we obtain a resistivity maximum at a tempera-
ture proportional to the impurity concentration. This maximum arises from the suppression of the Kondo
lnT term by the presence of internal fields. For concentrations of the order of 1%, the maximum as well as
the minimum disappears, and the resistivity decreases monotonically as the temperature is lowered. The
behavior of the resistivity as a function of the impurity concentration, the strength and the sign of the s-d
interaction, the impurity spin, and the temperature is discussed. It is proposed that low-temperature re-
sistivity measurements be used to probe the behavior of the probability distribution P(H) of the fields near
II=0. The present results apply only to temperatures much greater than the Suhl-Abrikosov resonance
temperature.

I. IN'TRODUCTION

KRY dilute concentrations of magnetic impurities
~ ~

~

~

distributed in a nonmagnetic host metal exhibit
remarkable low-temperature resistive anomalies. ' As the
temperature T is decreased from very high T, these
systems exhibit a minimum in the resistivity at T=T;,
where T; is approximately proportional to c'j" and c
is the fractional impurity concentration. As the temper-
ature is further lowered, at least some of the alloys show
a maximum in the resistivity. The temperature T,
at which the maximum occurs decreases with the im-

purity concentration. For relatively high concentra-
tions (for Cu-Mn, for example, of the order of 1/~ or
higher), the resistivity does not show a minimum but a
continuous decrease with decreasing temperature.

Recently, Kondo' has explained the temperature and
concentration dependence of the low-temperature re-
sistivity minimum. He found that if one calculates the
scattering cross section for the electrons scattered by
the isolated impurities in the second Born approxima-

*Work supported in part by the U. S. Army Materials Research
Agency, Watertown, Massachusetts.' For a review of the experimental and some of the theoretical
aspects of these resistive anomalies, see G. J. van den Berg, in
Progress il I.om Temperature Physics, edited by C. J. Gorter
(North-Holland Publishing Company, Amsterdam, 1964), Vol. 4,
p. 104.' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
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tion, using a phenomenological s-d interaction with
negative exchange constant J, a negative lnT term
enters into the expression for the resistivity. This lnT
term, combined with the T' term arising from the pho-
non contribution to the resistivity, gives the minimum
in good agreement with experiment. As the temperature
is further lowered, the Kondo lnT term increases with-
out limit, showing a divergence in the resistivity and
hence indicating that the perturbation. expansion used
must fail at sufficiently low temperatures. Methods of
avoiding the diKculties of perturbation theory at the
very low temperatures have been the subject of much
recent work. ' ' For example it has been shown by
Abrikosov4 that as the temperature is suKciently
lowered the Kondo logarithmic divergence is replaced

3 H. Suhl, Physics 2, 39 (1965); Phys. Rev. 138, A515 (1965);
Y. Nagaoka, ibid. 138, A1112 (1965).

~ A. A. Abrikosov, Physics 2, 5 (1965).' K. Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto) 34,
505 (1965); S. Doniach, Phys. Rev. 144, 382 (1966).

~ Apart from obtaining a nonperturbative solution to the model
Hamiltonian with the assumed form of exchange interaction, the
more recent work is also strongly concerned with the more basic
problem of explaining the impurity state itself, i.e., the local
moment problem. Both these problems are beyond the scope of
our present work: With regard to the former we restrict our
attention to the region where we expect perturbation results to
be valid; with regard to the latter it is acknowledged that our
conclusions depend on the validity of the model Hamiltonian
and any modi6cation of this must aRect our results accordingly.
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by a resonance scattering of the conduction electrons
at the impurity site. The resonance behavior becomes
important at or below the resonance temperature4 T„,
where

T,= (ep/k&) exp(2eF)/(3Js),

where ep'is the Fermi energy, k& the Boltzmann con-
stant, J the s-d exchange interaction, and s the number
of conduction electrons per atom. For alloys exhibiting
a resistivity minimum J is negative' and is of the order
of 0.2 eV, s=1. For copper alloys, es = '7 eV, thus T„ is
of the order of 1O ' 'K.

So far, the discussion is restricted to the case when
the magnetic impurities experience no internal fields.
The variation of the resistivity in the presence of in-
ternal fields has been considered by Yosida, ~ Mikoshiba
and Voshihiro, Van Peski-Tinbergen and Dekker, 9

Iiu," Silverstein, " Harrison and Klein, " and Abri-
kosov. "Abrikosov" finds that the presence of internal
fields suppresses the increase of the resistivity at low
temperatures for the case when long-range magnetic
order is present in the solid. Silverstein" and Harrison
and Klein" discussed recently the variation of the re-
sistivity maximum with impurity concentration and
temperature.

The purpose of this paper is to examine the variation
of the low-temperature resistivity of dilute concentra-
tions of magnetic impurities dissolved in nonmagnetic
metals in the presence of internal (or external) fields.
This internal field is assumed to arise from the indirect
exchange interaction via the conduction electrons be-
tween the magnetic impurities and has been derived by
Ruderman and Kitte). " Kasuya" and Yosida' and
will be denoted as the RKKY interaction. The presence
of internal fields will quench the lnT dependence of the
resistivity at very low temperatures as was recently
discussed by Abrikosov. " Our treatment differs from
that of Abrikosov in two important ways: (1) Since we
derive the relaxation time in the second Born approxi-
mation only, our treatment is more straightforward and
transparent and thus serves as a useful comparison of
the results obtained by more complicated methods.
(The two should give the same result for terms up to
the third power of the s-d exchange interaction J.)
(2) Abrikosov" considers the case when there is long-

' K. Vosida, Phys. Rev. 107, 396 (1957).
'N. Mikoshiba and K. Yoshihiro, J. Phys. Soc. Japan 19,

2346 (1964).
Tineke van Peski-Tinbergen and A. J. Dekker, Physica 29,

917 (1963).
» S. H. Liu, Phys. Rev. 137, 1209 (1965).
u S. D. Silverstein, Phys. Rev. Letters 16, 466 (1966); Bull.

Am. Phys. Soc. 11, 237 (1966)."R. J. Harrison and M. W. Klein, Bull. Am. Phys. Soc. 11,
237 (1966). This represents a preliminary report of the present
paper.

'3 A. A. Abrikosov, Physics 2, 61 (1965).
"M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954)."T.Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).
"K.Yosida, Phys. Rev. 106, 893 (1957).

range magnetic order in the solid which results in a
fixed internal field, whereas we believe that only short-
range magnetic order exists in these systems. Because
of the random distribution of the magnetic impurities
in the nonmagnetic host, the internal field, we believe,
is a random variable with a well-defined probability
distribution. The concentration dependence of the prob-
ability distribution of the internal field in an Ising
model was previously discussed by MarshalP and Klein
and Brout ' "Our treatment and that of Abrikosov's"
predict markedly different behavior of the resistivity
as the temperature departs from T=O. Abrikosov's
model yields an increase in the resistivity p(T) which
has zero slope as we depart from T=O,"whereas our
model, using an Ising distribution of internal fields,
gives a linear increase of the resistivity with T. Ex-
perimental evidence exists which confirms this linear
dependence for 0.1% Au-Fe. An Ising distribution also
gives a slope of p(T) versus T near T=O" which is only
weakly dependent upon the impurity concentration
and the s-d exchange interaction and depends upon the
Fermi energy of the host and a geometrical factor.
Thus a precise measurement of the low-temperature
resistivity may be useful in obtaining information on
the probability distribution of internal fields near zero
fields. This information relates in an important way
to the question of what causes the large excess low-

temperature specific heat in dilute alloys and whether
long-range order exists in these materials. There are
so far at least three models presented to explain the
low-temperature specific heat. " """ Should the
experimentally measured low-temperature resistivity
agree with that obtained from the probability distri-
bution of internal fields presented in this paper, this
would be additional evidence for the validity of the
specific-heat calculation presented in Refs. 17, 18, 19,
and 23. In the analysis of our calculations, we address
ourselves to the following:

(a) Does the existence of the internal 6eld modify
the low-temperature resistance minimum? If so, what
is the effect of the concentration on this?

(b) Does the assumption of the internal-field dis-

tribution obtained from" an RKKY interaction give the
experimentally observed concentration and temperature
dependence of the resistance maximum and the dis-

appearance of the minimum for more highly concen-

trated alloys'

rr W. Marshall, Phys. Rev. 118, 1520 (1960).
» M. W. Klein and R. Brout, Phys. Rev. 132, 2412 (1963).
» M. W. Klein, Phys. Rev. 136, 1156 (1964).
"Throughout this paper whenever we refer to T near zero, we

have in mind temperatures which are quite low compared to that
of the resistivity maximum but still much greater than the tem-
perature 2', given in Eq. (1.1).That is, we assume the temperature
remains suKciently high that perturbation theory is valid.

s' J. Kondo, Progr. Theoret. Phys. (Kyoto) 33, 575 (1965).
~~ A. W. Overhauser, Phys. Rev. Letters 3, 414 (1959).
» M. W. Klein, Phys. Rev. Letters 16, 127 (1966).
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(c) Is the Kondo lnT term still observable in prin-
ciple below the temperature of the resistivity maximum)

(d) What information can one obtain about the
probability distribution of the internal field from the
measurement of the resistivity as a function of concen-
tration and temperature?

where
X=Xp+X',

X0 g &kgiikstiiks P PBPAn' Sn ~

k, 8

(2.1)

(2.2)

Thus, we assume an ensemble of noninteracting elec-
trons in the conduction band, characterized by eigen-
vectors k and spin quantum numbers s, together with
a group of independent localized spins interacting with
a set of effective fields H„ in a purely Zeeman-like
classical fashion. Thus, S is the spins operator at site
e whose expectation value in the direction of the held
H„ is M, p~ and y are the Bohr magneton and the
Lande g factor, respectively, and serve to give H„ the
proper dimensions of magnetic field. Although occa-
sionally one may want to include an external magnetic
6eld as part of H„, we shall consider the values of H
to correspond to a statistically derived random variable
resulting from the random distribution of the magnetic
impurities. The distribution function we shall use was
originally derived" "by a semiclassical argument, using
an Ising model, and involves the assumption of an
RKKY interaction. '4 The Zeeman-like interaction with
the conduction electron spins is implicitly included in
Eq. (2.2) by means of the spin dependence of the
one-electron energy terms c&,. The quantities uk, t and
ak, are, respectively, the creation and annihilation
operators for the state k, s.

The perturbation 3C' is considered to arise from two
parts; one a perturbing potential V„at site e, and the
other a spin-spin interaction involving both the electron
and localized impurity spin operators. Both of these
interactions are assumed to be strictly localized in the
sense of involving a single tA"annier function localized

II. MATHEMATICAL DEVELOPMENTS

Let the phenomenological Hamiltonian K for a sys-
tem of E magnetic impurities randomly distributed in
the solid be'4

at site e. Thus, we write

X'=X-' P exp(i(k —k') R„}

&&[V(uk+. tak+ +uk tak )
—J( (ok'+ toke —iik' —t&k—)Sea

+ak+tak S„+uk takgS +}]. (2.3)

The constants V and J represent the localized potential
and exchange constant assumed to be the same at all
sites, thus dropping the subscript m on these constants.
The spin operator for the conduction electrons has been
replaced by its second quantized form. S„S+refer to
the localized impurity spins.

The transition probability per unit time, W(a —+ b),
from an initial state u to a Anal state b in the second
Born approximation is given by'

2'
W(a —+ b) = Q—([X,p'Xb. '+ Q (X.,'X,g'Xb, '+c.c.}/

cue

(Eg 6~)]}8(tg Eg), (2.4)

where X' is given in Eq. (2.3) and e„et„and e„are the
initial, final, and intermediate energies, respectively,
and c.c. designates the complex conjugate.

The transition probabilities per unit time for E;
localized and independent spins from states k to k'
without change of spin state (nonfhp scattering) are
given by

W(ka ~ k'a)
= (27rE, /hlV') ( (VW JM)' —2 (VW JM)'h+ (ok ~)

%4MJ'(VW JM)g+ (ekg&yysH)
—2(VTJ'M) J'(SAM+1) (S+M)

Xh+(ek~W (ypiiH) }8(ok~—ek.~) . (2.5)

The term (VWJM)' represents the contribution to
scattering arising in the first Born approximation. 3E is
the quantum-mechanical expectation value of the opera-
tor S,. The functions g+(y) and h+(y) are given by

(2.6a)

(2.6b)

'4Here we introduce the RKKY interaction phenomenologi-
cally. The Hamiltonian, Eq. (2.2), may be obtained in a more
rigorous fashion by performing a unitary transformation on the
perturbed Hamiltonian as was done by Kondo (Ref. 2II.). This
transformation is more clearly exhibited by J. D. Kim, Phys. Rev.
149„434 (1966'I. Kim has shown how one can separate the Hamil-
tonian into two parts, one describing the motion of the conduction
electrons and another that of the localized spins. The part that
describes the localized spins has the form —ppgH„. S„.An alter-
native point of view on justifying Eq. (2.2) is in a perturbation-
theory approach with expansion parameter J. The term in J'
gives the RKKY potential and the first Born approximation. The
term in J' gives the Kondo effect and a modification of the RKKY
potential. The latter we have neglected. However, one should
realize that Eq. (2.2) has not been rigorously justified.

f~+' ——1/(1+exp[(e~+ —eF)/hid T]},
where

Egg= fq&| q

(2 7)

(2.8)

where f' is the Zeeman displacement of the conduction-
electron spins in the local field. It is to be noted. that t'

In the evaluation of g+(y) in Eq. (2.6) we have replaced
the Fermi function of the intermediate state by its
thermal equilibrium value f,+' of the argument
(e,~ ei), i.e., —
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does not enter into the 6nal result, provided that
{/ez((1. The function k+(y) contributes only to po-
tential scattering, and in this paper we neglect all
potential scattering terms arising from higher than the
first Born approximation. These would not be expected
to contribute appreciably to the very low-temperature
resistivity. Rewriting Eq. (2.6a) gives

a'(y) =N ' 2 f.+'/( e~+ y)—

= (3s)/(2ez) 2+ de, p( af,~—'/ae, g)

With similar approximations the spin-Rip transition
probabilities W(k& ~ k'W) with the s component of
the ion spin changing from M to 3f&j.are

W(ka ~ k'w)
= (2vrN, /kN') J2(S&1)(SAM+1){1+2Jg(eg~)

+2Jg(eky&pzzBH)}5(E&p 6j, —&ppzzH). (2.11)

The 6rst term in curly brackets again represents the
contribution from the first Born approximation.

The transition probabilities are to be introduced into
the collision term of the Boltzmann equation. The re-
laxation times r(k+) are given by Van Peski-Tinbergen
and Dekker' in terms of transition probabilities as

x»).,+—y)/«~l

where 0 is the volume of the solid and s is the number
of conduction electrons per atom.

It follows from the limits on the integral in Eq.
(2.9) that g+=g; we henceforth drop the % signs from
the g's. With this notation, and neglecting the function
k(y) for reasons described above, the transition proba-
bilities W(k& ~ k'&) become

W(l ~~ k'~)
= (2m N;./AN') {(VW JM)'W4M J'(VW JM)

Xg(e~g~vz eH)}~(e~g—e~g'). (2 10)

The result of replacing the summation over k' in
Eq. (2.12) by an integral

Q —+ 47rk"dk' —+

(2~)' 2' 2A2

k'de'

and using Eqs. (2.10) and (2.11) in Eq. (2.12) and
integrating is

1/r(k+) =P W.(ka —+ k'a)+P W, (k~ —+ k'~)/
k'

{1—fr~[1—exp(e|,y ej,p )/kzzT j}. (2.12)

= kzziflN;/(~k3N') Q P~{(VW JM)'%4MJ'(VW JM)g(e|,~&ypeH)}
~(k~) zz=—s

J2(SWM) (SAM+1) {1+2Jg(egg)+2Jg(ek+Wpp@H) }e+*

(1—f~~) exp&@/2+ f~~ expWx/2
(2.13)

In Eq. (2.13) we replaced [2m(e~~&yzieH)$"'/& by k,
except in the expression for g, since in our final result
the error due to this will be of the order of yzzeH/ez,
which we neglect. The first curly bracket in Eq. (2.13)
arises from the elastic scattering, whereas the second
from the inelastic scattering between initial and final
states. P~ is the probability of finding the ion in state
M at temperature T, i.e.,

where

M=+ PzzM and (M')..=g M'Pzz.

Note that &s(x) is an even function of g. For large
~ x(, it is proportional to e ~*i".This enters as a factor
of the inelastic scattering term in Eq. (2.13). The de-
nominator of the same term gives another factor e ~ ~~'

for large x. Thus, the inelastic scattering term for large
fields is asymptotically proportional to e ~ ~ [apart from
the slow dependence of g (ei,&yzzzzH) on xj.

The electrical conductivity O.z+ due to impurity scat-
tering is given by standard theory:

Pzz expMx/ g ex——pM'x,

where x=ypzzH/kzzT.

The following identity will be useful in evaluating
Eq. (2.13):
((S—M) (S+M+1))..e ~'

=((S+M)(S—M+1)), e 'z'

= (sinh-', x)[(S'—(M') ) coth-', x

+ (S coth-,'x —M)j—=Ae(x)

~z+= —e'/(6x'zzz) r(ka)k~'(Ofay/aei~)de, ~ (2.15).

pz=(~z++~z ) '

(2.14) The electrical resistivity pz arising from impurity
scattering is

=3f cschgsp (2.16)
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We assume IVI))l Jl and expand the resistivitykeep- (2.13) in combination with Eqs. (2.14), (2.15), and
ing only the lowest order terms in (J/V)'. Using Eq. (2.16) gives

pr= (3vmcQ)/(2e'Ep/k) V'+J'{M').
I
1+2J ( Bf/—Bp))g(p yp —H)+g( +v/i H)

+(J'/2)M cschx/2 ( BfP/—Bp)dp[1+2Jg(p)+2Jg(p y/i//—H)]/D+

+ ( BfP—/Bp)dp[1+2Jg(p)+2Jg(p+y/igH) j/D, — (2.17)

where
Dy (1 f)she/P+ f~+x/2 (2.18)

where

$(v) =v cothv,

Ip+(x) = d p(Bf'/B p)/D+= (x/2) cschx/2, (2.19)

where in Eq. (2.17) we have assumed isotropic scatter-
ing and factors of k and k2 have been replaced by their
values at the Fermi surface. The error introduced
because of this is of the order of (y/i/3H)/p/ and is
neglected. Also (Bf/, ~/Bp/, +)= (Bf/p—/Bp/, ), where the +
subscripts have been dropped since the final result in

Eq. (2.17) is independent of p+.
To evaluate Eq. (2.17) we define the following

integrals:

F(v,x) =F(—v, —x),
F(v, —x)=F(—v, x),

F(x/2 —v, x) =F(v—x/2, —x) =F(v,g).

Using Eq. (2.25) in Eqs. (2.19) to (2.22a) gives

Ii+(x) =Ii-(x)—=Ii(x),
Ip+(x) =I,—(x)=I,+(x)=I,—(x) =—Ip(x) .

(2.25)

(2.26)

F(v,0) =-', (2v cothv —2) csch'v
= l(d'/d")Le(v)7 (2 24)

Using Eq. (2.23) it is easily verified that

Using Eqs. (2.19) to (2.26) in Eq. (2.17) in conjunction
dpdp'(Bf/Bp)(Bf'/Bp') lnlv+x/2I, (2.20) with Fq (2 9) g,ves

Ip+(x) = (2/x) (sinh-', x)

I,+(x)= (2/g) (sinh-', x)

where
v= (p—p')/2ka&.

dpd 6 (Bf/B p) (Bf /B p )

X (» I
v I)/D+, (2.21)

d pd p'(Bf/B p) (Bf'/B p')

X (ln I vox/2
I
)/D+, (2.22a)

3xmcQ
pz = V'+ J'{M'),

2e'g~J h

6Js
X 1+ L2+ln(ksT/2pp)+I i(g) 1 (2.27)

J'x 6Js ( k//T
+ MLcsch'(-', x)j 1+ I 2+in +Ip(x)

2 pv' 2pp

oo

Ii(x) =-
2—Ii+(x)= F(v,0) lnlv&x/2ldv, (2.22b)

By making the substitution I= (p+p —2p/. )/2k//T,
the integral over the variable I may be carried out
analytically, leading to

that
d2

lnlv+g/2I —Lv cot vgdv,
t&

Ip+(x) = F(v, +x) lnlv Idv, (2.22c)
Ip(x) =

Ip+(g) = F(v, +x) lnl vugg/2
I
dv. (2.22d)

The integrals Ii(x) and Ip(x) can not be evaluated in
closed form. For small and large values of x we obtain

Ii(x) =—0.432+0.091x';
I xl (2

The function F(v,x) is given by

F(v,x)= (B/Bv) {Ly(v)—4 ( —*/2) j/x) (2 23) g2

x 1.63
=ln ——

2

(2.29)
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and
Is(x) =—0.432+0.030x', t x

~
(2

2.5-

x 327
=ln ——1+

2 g2
'

(2.3o)
)x) &1O. 2.0—

The asymptotic values of Ir(x) and Is(x) will be used
later to evaluate the variation of the resistivity near
T=o. The functions It(x) and Is(x) are shown in
Flg. 1.

l,5—

l.o—

P(ylj, nH, O) = (2 tan —'4) '

=0

)H)&4~/~& V
~'+(Vf nH)'

[H ) &4m/gpss
(3 1)

where d is the spread in the distribution function,
again calculated in an Ising model. In most of our
calculations we will use the value of 6 adjusted so that
it gives agreement with the experimental low-tempera-
ture specific heat, "i.e.,

b, =750@ ~ I'%», (3.2)

III. CALCULATION OF THE RESISTIVITY

The expression Eq. (2.27) for p contains the variable
x=ypeH/(k~T) and is therefore dependent upon the
internal (or external) field in the system. By measuring
the resistivity of dilute magnetic alloys as a function of
the temperature and the impurity concentration one
hopes to learn something about the distribution of the
internal fields in the alloy. The theoretical interpreta-
tion of the experimental resistivity measurements must
also be examined with respect to consistency with other
results, such as the low-temperature specific heat, the
magnetic susceptibility, Mossbauer determination of
hyperfine 6elds, etc., in order to distinguish between
alternative models proposed for the magnetic state of
the alloy system.

It was proposed by Marshall' that the very low

temperature specific-heat anomaly of dilute copper
manganese arises from the distribution of random in-
ternal 6elds resulting from the random positions of the
impurities which interact via a RKKY potential.
Marshall argued qualitatively that the probability
distribution P(H, T) of the internal fields H at a tem-
perature T is a truncated Lorenzian. Later Klein and
Brout' " used more rigorous methods to obtain the
P(H, O), the distribution function at T=o, in an Ising
model. It was found that spin correlations between the
magnetic impurities reduce the probability of obtaining
very small small (near zero) fields by roughly a factor
of 4 from that of an uncorrelated system, and corre-
spondingly increases the probability for large 6elds.
For the purposes of this paper the Ising model P(H, O)

is approximated sufBciently well by

0.5—

-0.5 l

I

r

/
/

l2 l6

x =(l'pB H) I k 7

20

Fro. 1. The function I~(x) and Is(x), where z=yysH/kzT. The
functions were obtained by numerical integration of Eq. (2.2/).

2'A. A. Abrilmsov and L. P. Gorkov, Zh. Eksperim. i Teor.
Fiz. 43, 2230 (1962) fEnglish transl. : Soviet Phys. —JETP 16,
1575 (1962)g.

'6 A third model to explain the low-temperature speci6c heat of
the dilute alloys was proposed by A. W. Overhauser, Phys. Rev.
Letters 3, 414 (1959).We have not calculated the predictions for
the resistivity arising from this model.

where c is the fractional impurity concentration. d in
Eq. (3.2) is expressed in degrees Kelvin. We remark
that the distribution function, Eq. (3.1), is truncated
at a value proportional to the impurity concentration,
unlike the truncation used by Marshall. ' In the more
correct probability distribution function calculated in
Ref. 19, there is a finite probability that

~
H

~
&46/&pal,

but the qualitative (or semiquantitative) results of the
resistivity calculation will not be appreciably aGected

by considering these large 6elds because of the relatively
small probability associated with them. Throughout
this paper we use the T=O probability distribution of
the fields and then later discuss qualitatively the errors
arising from this. Therefore, from now on we suppress
the index 0 in P(yIJ~H, O), i.e., P(ypuH, O) =P(7pnH).

The existence of another magnetic state for these
alloys was proposed by Abrikosov and Gorkov. 4" Ac-
cording to this, long-range magnetic order with a
well-defined transition temperature' exists in dilute
magnetic alloys interacting via an s-d exchange inter-
action. Part of the purpose of this paper is to suggest
experiments which may differentiate between the
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Marshall-Brout-Klein (MBK) and Abrikosov models.
In particular, the change in the very low-temperature
resistivity of dilute magnetic alloys obtained from the
MBK model is linear in T, with slope proportional to
the T=O specific heat and to the magnetic suscepti-
bility (that these two quantities are related has been
discussed before)."In a long-range-ordered system the
change in p(T) has zero slope near T= 0. The resistivity
as a function of temperature is

p(T) = P(vp~H) pr(x, T)d(vpeH)+aT' (3 3a)

For the Ising-like distribution of fields this becomes

mir (g/T)
p(T) = I' pr (x,T)dx+ aT', (3.3b)

o (6/T)2+x'

where a is assumed to be 2.6X10 "Q cm/deg', as in
Kondo's discussion. ' Here p(x, T) is given by Eq. (2.26)
and I'= (tan '4) '. In order to compare results with
experiment it is convenient to subtract out the zero-
temperature limiting value of the resistivity p(0) from
Eq. (3.3b). p(0) can be evaluated by using the asymp-
totic forms of Ii(x) and I2(x) as given in Eqs. (2.28)
and (2.29). We find

pr (0)= (3n-mcQ)/(2e'1Vogks)

X V'+ J'S' 1+ (6J/or )(2+log(ke/4ez)+ P(ypeH) log(ppeH/ke)d(ypeH)) . (3.4)

The value of the integral in Eq. (3.4) is —0.443
+log(h/k&). We define the change in the resistivity
from its T=0 value by d p(T), then

~ (T)= (T)—(o)

A. The Resistivity near T=o

(3 5)

We next show that for the short-range-ordered sys-
tem, Ap(T) near'o T=0 is nearly linear in T and is only
weakly dependent upon the impurity concentration and
the strength of the s-d exchange interaction J.Also for
a fixed 6, Dp(T) is proportional to the impurity spin S.

Let m be the slope of the resistivity as a function of
temperature near T —+ 0." Then the coefficient m of
the linear term in T is

m = limdp/d T.T~ (3 6)

As T —& 0, x ~~, and we use the asymptotic form of
Ii(x) and I2(x) as given by Eqs. (2.29) and (2.30)
to obtain

m=A J'c limp
LE+x'T'

where

6J xT) -dF, (x)
X I+—2+in

6p 4o,i dx

A = (3s.mQ/2e'Peak)
=2.3X10 '(op(copper)/o~g'~'o~ ' Q cm/eV'.

A is conveniently written so that the interaction poten-
tials in the equation for the resistivity are expressed in
units of the Fermi energy of the host, and

—Fo(x) =S(S+1)+1IIIL-',x csch'(-', x)—coth-', x$. (3.8)

"M. W. KIein, Phys. Rev. 141, 489 (1966).

Using Eq. (3.8) in Eq. (3.7) gives

m =AScJ'QP (0)L1+ (6Js/o&) (2+in(k&/4o+) )]
X (1—~ lnT), (3.9a)

where P(0) is the value of the probability distribution
function at H=O, P(0) =I'/6, and u= —(6Js/oy)/
L1+(6J / s)e~(2+1 (nk /e4 ~)o)j Qis .a number of the
order of unity and is independent of J and c and only
weakly dependent upon S.The low-temperature specific
heat is also proportional 'r "to P (0).Using the expres-
sion Eq. (3.2) for A gives for the slope of the resis-
tivity m:

m ~ Sop 'o(i1 n 1 n—T)

X (I+ (6Js/ep)$2+1n(ke/4og )g). (3.9b)

The value of o, is approximately 0.06 for copper and
gold if J is taken as —O. j.5 eV. YVe find, therefore, that
except for the relatively weak dependence on J, the
initial slope from one material to another is, in our
model, proportional to the impurity spin and is propor-
tional to ep '". The larger the impurity concentration
the greater is the range in which the resistivity is linear
in T. The behavior of Dp(T) versus T for low tempera-
tures and for several concentrations is shown in Fig. 2.
The solid lines are the results obtained when using the
probability distribution of the internal field given in
Eq. (3.1) with the impurity spin S=1. The results were
obtained by numerical integration of Eq. (3.3). The
dashed lines in Fig. 2 show the calculated results ob-
tained when one assumes long-range magnetic order to
exist in the system. For this case we assume for T&(Tp

P(ypaH) =&(ypeH keTo), (3.10)—
where Tp is the temperature at which the magnetic sus-
ceptibility is a maximum, i.e., pp&H=750c. The long-
range-ordered model of the form presented byAbrikosov
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and Gorkovss gives, in the molecular-field approxima'-

tion, a change in p(T) near T &0—which has zero slope,
in contrast to the linear behavior predicted by the
short-range order of Klein and Brout.""The very
low-temperature resistivity of Au-Fe and Au-Mn wa's

measured by MacDonald et e/. 28 For the Au-Fe alloy
with a nominal concentration of 0.1 at.% Fe the linear
dependence of the resistivity with T is clearly exhibited"
in Fig. 11(b). Their data on the 0.04 jq Au-Fe alloy
also suggests linearity. The linear behavior of Ap(T)
for copper alloys (es = 7 eV, J= —0.15 eV) is shown in

Fig. 2. The slope is about 5X10 ' 0 cm/deg. For gold-
iron the value of 6 obtained from the low-temperature
specilc-heat data"' is about the same as that for
copper alloys. Using Eq. (3.9b) we find that the slope
has to be multiplied by the ratio of the Fermi energy
of copper to that of gold to the three-halves power.
Taking the iron spin to be unity and e& for gold to be
5 eV gives for the slope Ap(T) about 0.8X10 ' 0 cm/
deg. The measurements of MacDonald et al. give 10 '
0 cm/deg. (It is our opinion that the very good agree-
ment between theory and experiment is accidental. For
our purposes a disagreement of only a factor of 2
between them is still considered good. )

We consider the qualitative and relatively good quan-
titative agreement between the low-temperature specific
heat" and the low-temperature resistivity as additional
evidence that, at least for the 0.1%%u~ Au-Fe for which
the very low-temperature resistivity has been measured,
the probability for zero internal fields is well described

by an Ising-like probability distribution function of the
form given by Eq. (3.1). Our model predicts this ap-
proximately linear behavior at sufficiently low tempera-
tures for all dilute magnetic alloys in which the excess
specific heat is linear in T and J is negative. We should
also remark that the temperature of the maximum in

p(T) for the 0.1%%u~ Au-Fe is =2.5'K from experiment
and 1.8'K from theory.

Another difference between the two models is pre-
dicted in the resistivity at high temperatures. On the
basis of a long-range-ordered model, with To as the
ordering temperature, as T is decreased from high
temperatures p(T) would reach its minimum and then
increase again, provided that T;„is greater than To.
Slightly above Ts, p(T) may possibly decrease some-

what due to the onset of short-range order, but as the
temperature is further lowered to To there would be
an abrupt, almost discontinuous decrease of the re-

sistivity due to the onset of long-range ordering. The

I I I I

0

I

short-range-ordered model, on the other hand, predicts
a continuous change of the resistivity with temperature.

B. The Resistivity Maximum

To obtain the condition for an extremum in the re-
sistivity we diGerentiate Eq. (33) with respect to T
and set the derivative equal to zero. Let h =6/T and let

(3.11a)

I's(h) = I" 37(x) (x/2) csch'(-,'x) dx,
0 fis+x'

(3.11b)

0.& 0.4 0.5 0.6 0.7 0.8 0.9 I,0

TEMPERATURE IN o K

Fin. 2. The change in resistivity ap(T) with temperature for
three different concentrations. The solid lines were obtained by
using an Ising-like distribution of internal fields, whereas the
dashed lines are the r'es'nits obtained by using Eq. (3.10) for the
field distribution. Both sets of curves were obtained by numerical
integration.

' D. K. C. MacDonald, %'. B.Pearson, and I. M. Templeton,
Proc. Roy. Soc. (London) 4266, 161 (1962)."B.Dreyfus, S. Souletie, R. Tournier, and. L. Weil, Compt.
Rend. 259, 4266 (1964). The linearity of the low-temperature
specific heat of Au-I'e with temperature is exhibited in this
reference. Here also, the excess low-temperature specific heat is
approximately independent of the impurity concentration. The
fact that the excess specific heat changes by about a factor of 2
as the concentration changes by a factor of 40 is presently still
unexplained.

I's(5) = I' {S(S+1)+M(x)L-',x csch'(-', x)—coth-,'x))

X dx, (3.11c)
6'+xs

where in Eq. (3.11) we used the relationship (M'),
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=S(S+1)—M coth-', x. Then

dp/dT ~ F3(8)—8{te~/(6J)+2+in(kiiT/2ey )j
x I 3'(~)+I"(~)+I" '(~)}

+ (5aT'6p)/(6A cJ')=0—, (3.12)

where the primes in Eq. (3.12) are derivatives with
respect to 8. It is convenient to rewrite Eq. (3.12) in
the form

lnT, i—— 1n(k—s/2c~) e~/(—6J)—2

+(I' (~)/& —I' '(&)—I' '(~)

+(5aT, i'ep)/(6A cJ'5) }/Y'8'(8), (3.13)

where T, t is the temperature of the extremum. Equa-
tion (3.11) will be used to discuss the two extrema,
namely T, the temperature at which the resistivity
is a maximum, and T; the temperature of the re-
sistivity minimum. As long as these temperatures are
reasonably well separated and T, (T;, the value of
T,„may be determined by neglecting the T' term in
Eq. (3.13).We obtain

lnT, =G(8) =G(D/T, „)=G(750c/T, ). (3.14)

The left-hand side of Eq. (3.14) varies slowly with
T,„,whereas the right-hand side of Eq. (3.14) is found
to be, using numerical integrations, rapidly varying
with 6. Thus, the resistivity maximum is approximately
determined by the value of 8, . Therefore, a change in
the concentration by a factor of 2 requires a change in

T,„also by a factor of 2 in order to keep 5, a con-
stant. We therefore find that the temperature at which
the resistivity is a maximum is proportional to the

impurity concentration. We have solved Eq. (3.13)
as a function of the impurity concentration and the
results are shown in Fig. 3. The circles in the figure
represent the solution obtained numerically. It is seen
from Fig. 3 that T, is proportional to the impurity
concentration up to a temperature relatively close to
the resistivity minimum.

At this point we should note that the result that
T, ~ c was obtained without a moment expansion of
the effective internal field. In fact this result is inde-
pendent upon the details of the probability distribution
used and would be valid for a cutoff Lorentzian as well
as a Gaussian. The change in the concentration depend-
ence of T, from a linear dependence for a Gaussian
to a c"' dependence for a cutoG Lorentzian as found by
Silverstein" arises only because one uses a moment
expansion.

The low-temperature resistivity maximum occurs
with negative values of J only. However, when J is
positive an increase in the internal field tends to reduce
the increased resistance arising from the lnT term.
Therefore, for positive J, as the temperature departs
from T=O the initial slope of the resistivity will be
negative from our model. ' This behavior is exhibited
in Fig. 4 where it is found that with positive J value
the resistivity has a low-temperature minimum. The
minimum was found, by our numerical calculations, to
be approximately proportional to the impurity con-
centration for low concentrations. In Fig. 4 we also
show the variation of the resistivity with the value of
the impurity spin S keeping 6 constant. Note that T,
is somewhat spin-dependent. We Gnd that the value of
B,„which satisfies Eq. (3.14) is 8, =0.395 for S= ~~,

8, =0.415 for 5=i, and b, =0.55 for S=-,'. The
initial slope of the S=1 curve is that shown in Fig. 2.

The value of Ap(T) at T=T, increases with the
impurity concentration and the value of J.An approxi-
mate relation for the value of hp at its maximum,
Ap(T, ), is

Ap(T ) ~ cJ'(I+(6Js/ei)(2+1n(kith/eF)}. (3.15)

The second term in Eq. (3.15) is not very accurate and
should only be considered as a guide to obtain approxi-
mate values. We have performed computations in
which we varied J Lincluding the value of J occurring
in Eq. (3.2)$ for a 0.1% alloy and found Eq. (3.15)
correct to within 20% as J was varied from 0.075 to
0.225 eV.

O.OI
O. I I.O

TEMPERATURE )N K

FIG. 3. The temperature of the resistivity maximum and mini-
mum as a function of the impurity concentration. The results are
obtained by numerical solution of Eq. (3.13).The point D gives
the concentration where the maximum and minimum tempera-
tures coincide. At this concentration the maximum as well as the
miniinum disappears.

C. The Resistivity Minimum

For low concentration of magnetic impurities (of the
order of 0.1% or less) the resistivity minimum in the
presence of internal fields is not drastically changed
from the case when the field is zero. Thus, the Rondo

3 It is not clear whether this can be taken seriously in view of
the Suhl-Abrikosov resonance temperature, which is not small for
positive J.
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C.=O.OOI, h, = 750 c
E =7ev

disappearance of the maximum and the minimum can
be simply derived by requiring that T; &T, . T;„
is of the order of 10'K and is proportional to c"',
whereas T, =1800c for S=1. We therefore obtain
the condition

1800c)10(c/cs)"', (3.16)

6
5

Cy

'0
g 4

3

S-l, J

%s r & S = I,J =+0.l 5eV, C =O.OI

-I
0

I

IO

TEMPERATURE IN 'K

I

l5 20

Fro. 4. The change in resistivity ap(T) for several impurity
spins S, and two values of J.The crosses in the upper Ggure show
'P~ . The impurity concentration is O. l. jq unless otherwise indi-
cated. The solid lines represent the results of numerical integration
assuming negative J.Positive J is assumed in the results indicated
by dashed lines.

treatment' gives the value of T; quite well. From our
analysis we find that at T=T;„there are still some
impurities which experience large internal Gelds and
quench the Kondo e6ect completely, others experience
small internal fields and quench the Kondo e6ect only
partially. For this reason the resistivity near T=T;
will be somewhat lower than that given by the Kondo
treatment. ' But since it is diKcult to estimate the
variation of the probability distribution of the internal
field as a function of the temperature we can not give a
good quantitative estimation of how much the resistivity
is suppressed around T=T; for concentration of the
order of 0.1%.However, we can describe qualitatively,
and semiquantitatively by machine calculation, the
resistivity behavior as the concentration is increased.
We recall that the temperature at which the resistivity
maximum occurs is proportional to the impurity con-
centration. Therefore, as the concentration is increased
the maximum moves to higher and higher temperatures.
As this happens the whole resistivity curve as a func-
tion of temperature Battens, until the maximum and
the minimum "coalesce" and both disappear, resulting
in a monotonic decrease in the resistivity as the tem-
perature is lowered. An approximate expression for the

where cs is 0.01% for copper manganese. st This rough
calculation gives that the minimum disappears at a
concentration of about 1%.We shall discuss later that
for Cu-Mn the experimental value of T, is about
twice that which one obtains using 6=750c and S= s,
and therefore the minimum may be expected to dis-
appear at about 0.5%%u oncentration. To obtain a more
accurate description of the concentration where the
minimum disappears one has to solve Eq. (3.13) with
the T' term included. This we have done for an im-
purity spin S=1, and the calculated results obtained
are shown by the crosses in Fig. 3. We note that the
c'~' dependence of T; is retained in the presence of
internal fields as seen from the slope of the T; curve
as a function of the impurity concentration. We Gnd
that for the parameters chosen the maximum and the
minimum temperature coalesce at a concentration
slightly below 0.8%. For concentrations greater than
0.8% the resistivity is monotonically decreasing with
decreasing temperatures for negative values of J.

The variation of the resistivity as a function of the
temperature and for several values of the impurity
concentration is shown in Fig. 5. Note how the char-
acteristic curves change as the concentration is increased.
For the 0.1'%%uz concentrated alloy there is well defined
maximum and minimum, whereas for the 0.5% alloy
the curve is Oat over a wide range of temperatures but
the minimum is still retained. The 1% alloy shows
neither a minimum nor a maximum but the resistivity
decreases monotonically with decreasing temperature.
The slopes for each of these curves near T=O is given
in Fig. 2. They are approximately independent of the
impurity concentration and their value is given in
Eq. (3.9).The dashed line in Fig. 5 shows the resistivity
arising from a long-range-ordered system with a fixed
internal field. Its slope near T=0 is essentially zero.

D. The Variation of the Resistivity in the
Presence of External Fields

We have calculated the part of the resistivity which
arises from the s-dt scattering mechanism in the presence
of an external field. In this calculation the e&B term
in the Soltzmann transport equation leading to the
ordinary magnetoresistance of the solvent is neglected.
The concentration was chosen to be sufficiently low
that the internal field e6ects are not very large. In fact
we set the internal Geld equal to zero and varied the

"D. K. C. MacDonald, Att Irttrodttctiort to the Prirtciples os
Therraoetectricity (John Wiley fk Sons, Inc. , New gurk, 19@},
p. 33.
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that for concentrations much greater than 10 ' there
will be a maximum in the resistivity arising from in-
ternal field e6ects at a temperature much greater
than T„.

There is an error arising in our calculations from the
fact that we have used the T=O probability distribu-
tion of the fields for higher temperatures. A preliminary
estimate indicates the correct temperature-dependent
probability distribution may give a quantitative change
in the resistivity, but this change will not be very large.
We therefore feel that the qualitative behavior of the
resistivity is correctly described by the T=O proba-
bility distribution.

VI. CONCLUSION

We have calculated the effect of internal fields on the
low-temperature resistivity of dilute concentrations of
magnetic impurities in a nonmagnetic host using the
second Born approximation. We have shown that in an
Ising-like distribution of internal fields the low-tem-
perature resistivity varies approximately linearly with
temperature. More generally, the variation of the low-
temperature resistivity is approximately proportional
to the low-temperature specific heat arising from mag-
netic disordering. Comparison of the experimental low-
temperature specific heat with the experimental low-
temperature resistivity for a 0.1%%uq concentrated Au-Fe
alloy substantiates the proportionality between the
above two quantities. The predicted change in the very
low-temperature resistivity with temperature is ap-
proximately concentration-independent. The theory
predicts a maximum in the low-temperature resistivity
and T, is, for negative J, proportional to the impurity
concentration. At concentration ot about 1% the maxi-
mum as well as the minimum disappears for iron or
manganese in copper or gold. The theory gives qualita-
tive, and in some cases quantitative, agreement with
the experimental low-temperature resistivity in dilute
magnetic alloys. It is indicated that low-temperature

0.49

0.45to
Z

X
0

I

0.4l
I-

M

0.37

0.33 I I t I

2 4 6 8

MAGNETIC FIELD IN KILOGAUSS

IO

resistivity measurements may be used for probing the
internal-field distribution of these alloys.
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Fro. 6. The change in the resistivity hp(T) as a function oi
the external field. I"or these results the internal field was taken to
be zero; therefore the curves do not exhibit the interference be-
tween the internal and external fields.


