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Ferromagnets*
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The properties of an Ising-like ferromagnetic model are investigated in the presence of a space-dependent
magnetic Geld which favors phase separation. The treatment is limited to very low temperatures where
molecular-Geld theory seems to be applicable. The magnetization profile in the interface region is calculated,
as well as the interface free energy, within an harmonic approximation to magnetization density modes in
our model. The instability of the interface in the limit of vanishing external field, which was recently pointed
out for Quid systems, is recovered and discussed in detail.

I. INTRODUCTION
' "N this paper we investigate the interfacial structure
~ - of a simple ferromagnetic system. Phenomenologic-
ally one has a good picture of how a ferromagnet looks
if placed in an external space-dependent magnetic Geld.
A positive Geld favors a positive magnetization; and
in regions where the Geld is negative, the magnetiza-
tion also turns out to be negative. Regions of diferent
magnetization are separated by the so-called Bloch wall
whose thickness depends essentially on the mutual
interaction between spins and on the temperature. As
we approach the Curie temperature from below, the
thickness tends to inGnity, resembling the fact that
the distinction between two diferent phases vanishes
at and above the Curie point. For Quids where the
situation is similar, one derives within the Maxwell-
van der Waals theory' the following concentration
proGle in the transition region between liquid and vapor:

1 2s
p(s) =- tzt+tos —( t—tzs) ta»

2

where p& 2 are the densities of liquid and vapor,
respectively, and d is the interface thickness. %e shall
find exactly the same proGIe in our ferromagnetic model,
restricting ourselves to temperatures far below the
Curie temperature.

Besides the interesting problem of how the thickness
d depends on temperature, another interesting feature
was recently discussed by Bu6, Lovett, and Stillinger. '
They point out that the gravitational Geld plays a
rather peculiar role in interface calculations. They cal-
culate the thickness for a Quid system starting from a
sharp interface and allowing for distortions by surface
plane waves. It turns out that the thickness exhibits a
logarithmic singularity in a small gravitational field,
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whereas the corresponding free energy suffers a bounded
logarithmic anomaly in the same limit. This behavior
is not at all surprising if one remembers that the
gravitational field mainly serves to locate the interface
between two different phases in space no matter how
weak the Geld actually is. Switching o8 the Geld allows
for macroscopic displacements of the interface; this
instability is presumably rejected by the divergence
of the interface thickness.

In the following investigation we shall deal mainly
with the corresponding e8ect in a ferromagnetic system.
As the properties of ferromagnets are far from being
solved in the critical region, except for certain special
cases as for example the two-dimensional Ising model
without magnetic Ge}d, we have to confine our atten-
tion to temperatures far below the Curie temperature
where molecular-field theory seems to be applicable.
Section II is devoted to a discussion of our model and
its relation to the Ising model of ferromagnetism. In
Sec. III we apply molecular-field theory to our model
functional integral which amounts to a saddle-point
approximation in the presence of an external space-
dependent magnetic Geld. The approximate evaluation
of the functional integral, performed in Sec. IV, is
equivalent to the harmonic expansion in the treatment
of Buff, Lovett, and Stillinger. ' It turns out that their
results are in full agreement with our calculations.
Section V contains a discussion and a possible short-
coming of our results.

II. DERIVATION OF A MODEL
FUNCTIONAL INTEGRAL

The model we discuss was recently proposed by
Langer. ' For convenience we rederive it here from the
functional integral representation of the Ising model. 4

The partition function of the latter is given by

Z= P exp{—' P PV;;o,o;+g PH;rr;), (2.1)

' J. S. Langer (to be published}.
4 A. J. F. Siegert, in C. K. Uhlenbeck, N. Rosenzweig, A. J. F.
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where II; is a space-dependent magnetic field. Without
loss of generality, the interaction matrix is assumed to
be positive definite. Summations are extended over all
lattice sites with spacing b. As shown by many authors, 4

the partition function (2.1) inay be converted into a
functional integral by introducing a set of random
variables @; to linearize the quadratic argument of the
exponential in (2.1). The result is

functional integral. As we consider only temperatures
far below the true and approximate Curie temperature
To, the parameter e may be taken positive in accord
with (2.7). In that case it is absolutely necessary to
retain the quartic term n p4 in the expansion of ln coshp, ,
as it guarantees the existence of a finite lower bound to
S{p}under all variations of p, and therefore the exist-
ence of the functional integral

where

Z=A g dg; e sill, (2.2) Z=A bp(r) exp( —S{p}). (2.9)

1
S{p}=—p (V ') "p g,—p ln2 cosh(pP;+&~). (2.3)

2 g7'

The normalization factor A in (2.2) is determined by
the condition Z(P=O)=1. We first transform to new
variables by defining

(2 4)

such that S{g}contains no uneven terms in p except a
linear term:

S{p}=—P (V '),;p,p;—P )t;p,—P ln cosh@; (2.5)

where henceforth we consider X;, X;=P,(V );;H;, as
the external field, and where we have dropped an un-
important constant. The model we are interested in
divers from (2.5) in two aspects. First we replace sum-
mations by integrations over the lattice volume L3,
where I.is measured in multiples of the lattice spacing 5,
thus introducing a continuum model. Furthermore we
approximate the Fourier components of V ' by its
first two terms in an expansion with respect to the wave
vector k:

The derivation given before should be regarded as a
justification for studying the model described by (2.8)
and (2.9).' As we shall no longer refer to the Ising model
as basic, we also free the coupling parameter 0. from
its specific value in (2.7); henceforth we consider n as
small and positive.

—ash p —2ep+4nps = )t(r) . (3 1)

Let us first look for solutions of this equation in a
vanishing field and in the one-dimensional case. It is
shown in the Appendix that there is a one-parametric
class of functions satisfying the differential equation
with vanishing derivatives in every order at infinity,
namely,

III. SADDLE-POINT APPROXIMATION IN
AN EXTERNAL FIELD

Under the conditions described above, we expect a
large contribution to the functional integral (2.9) from
the immediate neighborhood of the absolute minimum of
(2.8) under variations with respect to li. The stationary
value p is determined in the usual way by the Euler-
Lagrange equation 5S/8p~„=„-=0, which leads to the
differential equation

1/v(k) =Pp(1+Asks+ ) (2.6)
p(s) = (e/2rr) '~s tanh (s—sp) . (3.2)

where pp is the Curie temperature and R the range of the
interaction forces. ' Finally we approximate the last
term in (2.5) by its first two terms in a Taylor expansion.
With the abbreviations.

The point zo is the location of the interface, dividing
regions of positive and negative magnetization. The
freedom of choosing zo anywhere resembles the fact
that without magnetic field the position of an interface
is arbitrary. If we calculate the contribution of p to
S{p},we shall find a bulk term and a positive interface
energy term, as long as we choose a finite zo. The posi-
tive interface term only vanishes if zo is infinite, i.e.,
a constant p resembling homogeneous magnetization.
The true absolute minimum therefore corresponds to
the latter solution. From this consideration we expect
in three dimensions a p varying only in the z direction,
if the field )%. depends on s only, )t=) (s).

we end up with

S{p}= dr( ,'rr'(& p)' ep-'+np' )—(r)p'j, (2—.8)

which constitutes the basic definition of our model

Pp 1 Pp 1 Tp T1-
a'= —R' e= — 1——=— n= —, (2.7)

P 2 P 2 Tp 12

' The expansion in (2.6) is meaningful for an interaction which
decreases exponentially at large distances. If (2.6) is taken as
exact in the continuum limit, the potential is the familiar Vukawa
interaction, U(r) (1/4rPpR')(e "'a/r). Here a—nd in (2.6) we
consider r, E, and h as dimensionless quantities, measured in
multiples of the lattice spacing b or its inverse, respectively.

6 As shown in Ref. 3, our model may also be interpreted as a
"modified Gaussian model. " Here it is derived from the Ising
model. . Via the usual reinterpretation of the Ising model as a
lattice gas model, we can make contact to classical Quid systems.
In the latter case, the spatially varying external potential may be
identified with the gravitational field.
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As the theory of nonlinear differential equations of
the type (3.1) is not yet developed so far, there is no
hope to solve Eq. (3.1) for arbitrary given Geld. On
the other hand, it turns out that we can Gt a specific
form of the field to allow for an exact solution. By
looking at the solution (3.2) of the zero-field equation,
we guess that a field with the same functional depend-
ence might Gt. Indeed we 6nd for

S'(I }=n dr/4pI'+14j. (3.9)

In order to diagonalize the quadratic form (3.8), we
have to solve the eigenvalue equation

and S' is of higher order and will henceforth be con-
sidered as a small perturbation:

(e+~l I/2 (e+~) I/2

X(s)= 2y~
~

tailh
l 2ni 8

a unique solution

+ )'" (+ )'"
p(s) =

~

tanh s .
2n i 8

(3.3) $—ash —2e+12npsjI (r) =Ev(r) (3.10)

with periodic boundary conditions on a large box of
volume L'. The transverse part of I (x, y direction) may
be separated immediately, as the potential in (3.10)
only varies in the s direction. It is convenient to use
the following notation:

(e+V) (e+3V) a(e+V)"'
Sfp) = L'—+I' (2e+5y), (3.5)

where the first term is a contribution to the bulk free
energy, and the second term contributes to the inter-
face free energy. Remark that the second term does
not depend characteristically on the strength parame-
ter p, as we always consider e very much larger than y.

The next step is to expand S(/1) around its stationary
point by introducing the notation

()=P()+ () (3.6)

The total functional S then splits up into three parts

Fortunately the Geld given by (3.3) is physically quite
reasonable. For positive s it favors positive magnetiza-
tion (p)0), and for negative s we have a negative
magnetization (p(0), respectively. The parameter 7
allows for changing the strength of the Geld, and we
have chosen the turning point of P at s=0, therefore
locating the interface at the same place. We should
mention that the functional behavior of p is mainly
determined by the left-hand part of the differential
equation (3.1) and not by the speciGc form of the Geld

(3.3), at least if the Geld is weak, i.e., y very small.
The essential eGect of the field is that it locates the
interface, no matter how weak it is. If we choose a field
different from (3.3), but with only one turning-point
at a=0, the corresponding p still would be given by
(3.4) (with y=0) and small corrections depending on
the field strength.

The stationary value Sfp) is calculated easily:

8 1.
p (r) — e'/(uzMPyw) f (t) ~

(+~)
2x

P, „=—)(integer;
J.

E = (e+'r)(o/ 2+K 2). o/ 2 —(e+y) I(4e+6r+asp2)
(3.11)

Using (3.4) we obtain

d2———6(1—tanhst) f„=K„'f„.
(Q2

(3.12)

This equation has two bound-state solutions with E„'
equal to —4 and —j., respectively. ~ The normalized
eigenfunctions and eigenvalues are given by

The rest of the states (n=3, 4, ) are scattering
states with E'&0, the spectrum becoming dense as the
volume goes to in6nity. It is easy to see that the
eigenfunctions are

fx(t) =cue'x'/t1+K'+3iK tanht —3 tanhstj (3.14)

3(e+y) I/2 ) I/2

Kis= —4: fi = (1—tan h't),
4a i
Eio= (e+y)(to s—4))0 (3.13a)

3(e+~)I/2 I/2

K 2— 1 ~ f- (tanht) (1—tanhst) '/,
2Q

E,,= (e+y) (o/, '—1))0. (3.13b)

Sf/ ) =Sf/ }+Sof~)+S'(~},

where So is bilinear in s,

Sof1 ) = dr/-a'(VI )' e/ '+6np'/'j—

(3.7)

(3.8)

r A potential of the form V(t)= —C(1—tanh't) has I bound
states where n is the largest integer satisfying:

n( ,'((1+4C)'/1+-1 j;
see L. D. Landau and E. M. Lifshitz, QNuntlm Mechanics (Ad-
dison-Wesley Publishing Company, Inc. , Reading, Massachusetts,
1958), p. 69, problem 4. A similar discussion is given in Ref. 3.
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As the real part of fx is an even function in t and the
imaginary part is odd [see (3.14)j, this condition reduces
to

(3.16)Imfx(C/2) =0,

which determines the eigenvalues E„.Using (3.14) one
calculates the spacing between adjacent E values in
the limit I.—+~. Up to second order in L ' we obtain
with the ansatz

where cz is the normalization factor. Periodic boundary
conditions imply

C ~ p C (~+q)'~'
foal &=—~=fxl &= ——,C= L (3.15)

2) & 2
'

a

ment. The instability is a quite general feature and
does not depend on the special choice of our model. It
was erst pointed out by Su6, I.ovett, and Stillinger'
in a phenomenological treatment of a liquid-gas model.
We shall come back to a more detailed comparison
with their results in the next section.

The second bound state and the scattering states
describe not only displacements of the interface, but
also a change in the magnetization profile. Accordingly,
the energy eigenvalues E„,p are always positive deGnite.

IV. INTERFACE FREE ENERGY) MAGNETIZA-
TION, AND CORRELATION FUNCTIONS

WITHIN THE HARMONIC
APPROXIMATION

2~ s(IC ))
Z„+i—Z„=—1+

C C

s(E)= +
IC'+1 E'+4

(3.17)

(3.18)

PF=S(p}+PFp+PF', (4 1)

We conGne ourselves to a calculation of thermo-
dynamic quantities within the harmonic approximation
where the normal modes do not interact.

The total free energy, PF= —lnZ, may be written as

P G(E.)=C
n=3

" dE s(E))
1— iG(E), (3.19)C)

Any summation over the scattering states may thus
be replaced by

where S(p} is given by Eq. (3.5), PF' is the contribu-
tion of the interaction part S'fv}, and PFO is the con-
tribution of the noninteracting normal modes:

where G is arbitrary. Finally the normalization factor
C~ is

/F0 ———1iL4 bv exp( —So(v}). (4.2)

s(E)-—' Using the normalized eigenfunctions (3.13) and (3.14)[ '(+ + )(+ + )~ 1 ( ) we expand an arbitrary v(r) according to
C

It should be remarked that the two bound states
are not strictly single, but each is composed of a whole
band of transverse plane waves; the same holds for
the scattering states.

The diagonalization which we have performed cor-
responds to a transformation to normal modes. These
are independent to zeroth-order and only coupled by
the S' term (3.9) in higher order. The physical meaning
of the first bound state is that it describes a displace-
ment of the interface without changing the magnetiza-
tion profile given by p, (3.4). This may be seen by ex-

panding the p function displaced by so around 2:0——0:

p( —o)= ()— (d /d ). (3.21)

8 For a similar behavior of the stationary solution of a func-
tional integral see J. Zittartz and J. S. Langer, Phys. Rev. 148,
741 (1966}.

The derivative dp/ds is exactly the first bound-state
wave function fi up to a constant normalization factor.
In the limit of vanishing field (y —& 0), the corresponding
energy E$ p=o goes to zero. ' This merely expresses the
fact that in zero Geld the location of an interface is
arbitrary, therefore we need no energy for a displace-

v(r) =Z t„,,v„,(r),
np

(43)

where $„v are Gaussian random variables. Introducing
(4.3) into (3.8), we obtain So(v} in the diagonalized
form

np

The functional integral (4.2) is thereby transformed to
an infinite-dimensional Riemann integral which can
be solved immediately:

PFO —lnA gdP„v exp( ———-', g E„,~g„v~')

=-', Q ln —lnA.
np 2X'

(4.5)

This expression contains a bulk term ( L') and an
interface term ( L') in the thermodynamic limit
I.—+~. The contribution to the interface free energy
in which we are interested can be extracted easily by
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using Eq. (3.19). We obtain one is thermodynamically de6ned by

1(1.1,2

pp i. f.
2&2~i

d2p M(r) = lnZ=(ti(r)).
hX(r)

(4.11)

&& 1nEi 2+inF2, — dE I

s(E) in')r 2, (4.6)
2K

Applying the transformation (3.6) we obtain

~(r)=p(z)+(~(r)). (4.12)

where we have used

dE
s(IC) =2.

2~

Within the harmonic approximation the second term
vanishes and the magnetization reduces to the p
function (3.4).

We de6ne the two-point reduced correlation function
by

(~2—1)(~2—2)
d'p ln

(~2+1)(~2+2)
fgoo

—(So+8')P

(F)= fhpo
—(&o+s')

PTg' i.f.
0 (4 7) (4.14)

The quantity in brackets is calculated by residue G(r~r ) = ((ti(r) P(z))(ti(r ) P(z)))= ("(r)"(r )) (4 13)
techniques with the result

The average in this equation and in (4.12) is given
through

where ooo is defined in (3.11).Also the final integration
over transverse wave vectors is elementary, if we
introduce polar coordinates. It turns out that we have
to use a cutoff parameter po in order to avoid a short-
wavelength divergence. This divergence is inherent in
our continuum model and similar to the ultraviolet
catastrophy in 6eld theory. As our model is derived from
a basic lattice model, it is quite natural to interpret
the cutoff parameter as the maximal wave vector in
the reciprocal lattice. With this in mind we get anally

M 1
PI' o( '= —12 6((o—(oo)+((o—2—1) ln

8m-a2 co—1

where Ii denotes an arbitrary functional of v. Using
(4.3) we may calculate the right-hand side of (4.13)
within the harmonic approximation

Go(r, r')= Z (t-~4)o .(r) - (r')
np, mq

np ~np
(4.15)

which is identified as the Green's function of the
"Hamiltonian" (3.10) at zero energy, G(r, r'l(o= 0). Sep-
arating the transverse part of the wave functions we
write

oo+ 2 coo+ 1
+((o2—4) ln —((oo2—1) ln

GO 2 600 1
Go(r, r') =

(22r) 2
d2p

)(o(fr*(~~')+No(u 2 ))Go (z z~) (4 16)
ooo+ 2—((oo —4) 111

Goo(z, z') is calculated using residue techniques:
M0—2

where

( 2~ 1/2 ( (t2p 2 1/2

~o=l 4+; ~=l ~o'+ . (4.9)
o1'r k o+p

In the limit of vanishing external field (y —&0) the
interface free energy per unit area reduces to

1—pFo' ' ——const. —(42-g') 'y in'.
1.2

This is exactly the same anomaly as found by Buff,
Lovett, and Stillinger in their liquid-gas model.

Other interesting thermodynamic quantities are the
magnetization and correlation functions. The former

P
—or J t—t'i

Goo(Z, Z') = (~ '-1) '(~ '-4) '
2g(,+.7)1/2(o

&&L1—o)22—3 tanhot —3ooo sgn(t —t') tanhtj

&& (1—(o '—3 tanhot'+3o)2 sgn(t —t') tanht'j. (4.17)

The contribution of bound states to the correlations
is. seen more clearly by looking at the autocorrelation
Go(r, r). From (4.17) we deduce

Goo(z, z) = 1+ tanhot(1 —tanh't)
2g(o+y) &/2oo oo 2—1

3
+ (1—tanh't)' . (4.18)

co '—4p
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The second and third terms representing the bound-
state contributions are large in those regions where the
corresponding wave functions are concentrated. The
behavior of the full autocorrelation function is of
particular interest in the limit of vanishing field (y —+ 0).
An elementary calculation leads to the result

Ge(r, r) =Ci+Cs tanh9(1 —tanh't)

3
+ Cs — in' (1—tanh9)' (4.19)

16xa'

where C& 2 3 are constants. Obviously the logarithmic
divergence in the last term is due to the large Quctua-
tions caused by the instability of the interface in a
vanishing external field. As was expected, the divergence
is exactly the same as found by Bu6, Lovett, and
Stillinger. '

V. DISCUSSION

We have treated an Ising-like magnetic model in
the presence of an external space-dependent magnetic
field. As we were particularly interested in the inter-
facial structure, we had to choose an external 6eld
which favors the separation of two phases in space. It
turned out that we could treat the inhomogeneous case
with almost full rigor, at least in the harmonic approxi-
n.ation. The validity of this approximation depends
essentially on the temperature range in which we are
interested. It is clear that in the critical region all
molecular-6eld treatments break down and one has to
use more re6ned, methods. Nevertheless we believe
that our treatment is correct at low temperatures. '
As was shown in the last section, we recover in our
microscopic approach the predictions of Buff, Lovett,
and Stillinger' in their treatment of interfacial structure
in Quid systems. We believe that the coincidence of
results is not limited to the harmonic approximation in
both treatments. The results of Buff, Lovett, and
Stillinger' at least remain valid in a rigorous non-
harmonic treatment of a two-dimensional system; this
is shown in a forthcoming publication of the author in
collaboration with J. S. Langer. "

Whether our results remain valid in a calculation
going beyond the harmonic approximation may be
doubted. The perturbation expansion of the full free
energy (4.1) is straightforward, if one uses methods
developed by Langer for a similiar problem. " This
would lead to a diagrammatic expansion in terms of the
Green's function Gp(r, r ) (4.15).As the energy denomin-

' As we stay away from the Curie temperature, the parameter
e (2.7) is Iinite. The effective coupling parameter o./e can there-
fore be assumed to be small enough to allow for an expansion.
Our molecular-field treatment gives the first two dominant con-
tributions to the free energy. As usual, we expect this expansion to
be correct only in the asymptotic sense."J.S. Langer and J. Zittartz (to be published}."J.S. Langer, Phys. Rev. 137, A1531 (1965}.

ator of the 6rst bound-state contribution to Go leads
to a logarithmic term (4.19) in small fields (y ~ 0), it
is obvious that 6nite-order perturbation theory breaks
down completely in this limit. It remains to be seen
whether a partial summation of diagrams may over-
come the difficulty. We hope to return to this problem
in the future.

APPENDIX A

The one-dimensional equivalent of the differential
equation (3.1) with vanishing external field is given by

d p—u' —2ep+4rr p, '= 0.
ds

(A1)

We have to con6ne ourselves to solutions of this equa-
tion which contribute a bulk term to the expression
(2.8) at most. This means that the physical solution
must be bounded everywhere and constant at in6nity.
The latter condition implies vanishing derivatives in
every order at infinity.

Equation (A1) immediately leads to the 6rst integral:

dp
Qs eps+rrp4= C.

ds
(A2)

The integration constant C is determined by the
boundary condition

C= —(e'/4n) or 0

Using the first value we get the meaningful solution

Qe
p(s) =~ — tanh (s—ss),

2A 8

(A3)

where se is still arbitrary. The second value in (A3)
leads to the unphysical solution

e5 I/2 (2e) 1/2

p(s) =~ —
~

sec (s—so)
ni 8

(A5)

which is not bounded and therefore must be discarded.
It should be mentioned that Eq. (A1) also has the trivial
solution

(A6)

which has to be discarded because the corresponding
second variation of S(//, ) (2.8) is not positive.
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