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We are concerned with the scattering of an excitation in a solid by a potential of finite range. The appro-
priate scattering theory is formulated using the t matrix. A general expression for t-matrix elements is ob-
tained involving only finite sums. Phase shifts are introduced and are related to the change in density of
states produced by the scattering. The phase shifts satisfy a form of Levinson's theorem. The relation
between the phase shifts and the t matrix is examined with the aid of the optical theorem, and it is shown
that in the case of the scattering of long-wavelength excitations in a spherical band (subject to certain limita-
tions described in the text), the usual relation between the phase shifts and the scattering amplitude can be
recovered. As an application, the change in the density of states and the excitation lifetime are obtained
for spin waves in a Heisenberg ferromagnet with a small concentration of magnetic defects.

I. INTRODUCTION

''N a previous publication, an expression for the
~ ~ amplitude for scattering of an excitation in a solid.

by a potential of 6nite range was presented. ' Similar
results have also been obtained by Mann. ' 3 Physically
the situation considered is the scattering of an electron,
phonon, or spin wave by a single point defect which
d,oes not possess any internal degrees of freedom. This
is the analog of potential scattering in ordinary quantum
Inechanics.

Solid-state scattering theory is relevant to several
interesting problems. It is obviously of central import-
ance in transport theory. ' 4 In addition, it furnishes a
convenient method. of studying bound-state problems
involving localized defects. Virtual states, or scattering
resonances, within a band may also be included. ' The
properties of dilute alloys can be investigated. More-
over, through multiple scattering theory at low temper-
atures, and the virial expansion at high temperatures,
it furnishes a practical method of attack on many-body
problems in those cases in which a low-density system
of particles is of interest.

In I, solid-state scattering theory was described in a
form most directly applicable to electrons, leading to a
construction of the scattering amplitude. Phase shifts
were not introduced (except in a very simple example),
and the relation of the theory to the scattering theory
of ordinary quantum mechanics was not altogether
clear. In the present work, the scattering theory will be
formulated more generally and abstractly. This is most
conveniently accomplished. through the introduction
of the t matrix. In Sec. II, general expressions for
t-matrix elements are derived, whose evaluation involves

only Qnite matrices. In Sec. III, scattering phase shifts
are introduced. A simple formula relates these phase
shifts to the change in density of states produced by the
scattering. The phase shifts are shown to satisfy a
form of Levinson's theorem. Then we examine the
question: Under what circumstances does the relation
between the scattering amplitude and the phase shift
obtained in elementary quantum mechanics apply in
solids? It is found that subject to certain restrictions
to be described later, that it will hold for the scattering
of long-wavelength excitations in a spherical band. In
Sec. IV, the use of phase shifts is illustrated by applica-
tion to the determination of the change in density of
states and the spin-wave lifetime for a simple Heisen-
berg ferromagnet containing a small concentration of
magnetic defects.

%e will begin. by considering the determination of the
t matrix in a general way. ' Let us separate the Hamil-
tonian for the excitations of interest in the presence of
the defect into two parts: a part Ho which describes a
supposed perfect crystal in which the defect has been
replaced by a normal atom, and a scattering potential
V which represents the difference between the real and
the perfect crystal:

H=Hp+ V.

The perfect crystal Hamiltonian H'p has a set of eigen-
vectors, representing wave-like states, which are
characterized by a wave vector k and a band or polariza-
tion index n, and which we denote by ~nk).

Hpink)=E. (k) ink). (2)

The band function E (k) describes the energy spectrum
of the excitations. These states are orthonormal
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The scattering process is described by the elements of
the t matrix on the basis of the states

~
nk). From formal

scattering theory, ' we know that the probability per
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unit time for a transition in which an excitation in the
state I pq) goes to the state

I nk) is given by W(pq —&crk):

W(Pq k) =2~Nsl(~kl~lPq) lsG(Z.) (4)

in which N is a normalization constant [N=Ss' for
states normalized according to Eq. (3), and we will use
throughout this paper units in which k=1', G is the
density of final states, and (rrkltlpq) is the relevant
t-matrix element.

The t matrix satisfies the equation

(5)t= V+VBt,

in which g is the operator,

g = 1/(E+—Pp) (6)

~= V[1/(1—BV)j (7)

However, the utility of this result depends on whether
the inverse operator can be constructed. We will be
concerned. with certain potentials V for which this is
possible.

In addition to the eigenstates Ink), it is convenient
to introduce another set of basis vectors representing
localized states. These states, which are characterized

by aband index and a lattice site R„,andwiil be denoted

by lrrn), are defined by

g J./2

Inn) =
(2z.)sl'

e—'"
I

k)d'k, (8)

and. is referred to as the Green's function. The super-
script (+) on the energy parameter E in Eq. (6)
indicates that if E is within the continuous spectrum
of Hp the Green's function is to be defined by allowing
the energy to have an infinitesimal positive imaginary
part. This device corresponds to the selection of
outgoing wave boundary conditions. " Equation (5)
has the formal solution

when expressed on the localized basis, have only a Gnite
number of nonzero elements. These potentials will be
called potentials of Gnite range. Such potentials arise
naturally in certain problems —for instance, the
isotopic mass defect in a vibrating crystal lattice, or the
magnetic defect in a Heisenberg ferromagnet. In other
cases, it may reasonably be supposed that real potentials
can be approximated by potentials of Gnite range. The
essential observation of the present theory is that for
potentials of finite range, the t matrix can be constructed.
on the localized basis using ordinary matrix operations
with Gnite matrices. Thereafter, one can obtain the t
matrix on the wave-like basis through the transforma-
tion of Eq. (9).

where
[1—QV] '=P/D

D= det[1 —BV) (12)

and I' is the adjoint matrix adj(1 —b V). The determin-
ant D is of vital importance in the following, so it
is convenient to indicate its presence explicitly. We
know that a Qnite matrix always has an inverse unless
its determinant vanishes; thus the t matrix will exist
except for values of the energy such that D=O.

Equation (7), (9), and (11) lead to the following
explicit expression for the t matrix elements

II. CONSTRUCTIOH OF THE t MATRIX

In this section we will derive a general expression for
t-matrix elements due to a potential of Gnite range.
I.et us suppose that the nonzero portion of the matrix V
is n&&N (whereas the full matrix is XXX, say). The t
matrix resembles V in that only a m&(e subset of its
elements are nonzero, and it is necessary to consider
only the same N)(rs portion of the matrix 1—g V. Let us
write, for this portion (the rest may be ignored)

in which 0 is the volume of the unit cell, and the
integral includes the (first) Brillouin zone. We also
have

gl/2

(9)

The localized states are orthonormal

(p~l~~) =s.,s.„
and. are complete. It should be noted that for electrons,
the transformation coefficients (rink) and (rlrre) are
Bloch wave functions P, (k,r) and Wannier functions
c (r—R„), respectively. For magnons, the states lk)
(there is only one band in a simple ferromagnet)
represent spin waves and. the states Irr) are those in
which a spin deviation is localized at site R„.

We will be concerned here with potentials V which,

» An exception may occur if the surfaces of constant energy
have concave portions (see Ref. 1).This will not concern us here.

(.kl~lpq)= Z s'&'"=' &

(2s.)sD p ~~'~

&& (~il vIP'i) (P'il ~
I p~}, (13)

where we use parentheses to indicate matrix elements on
the localized basis. For potentials of finite range, all
the sums in Eq. (13) involve only a finite number of
terms.

Usually, however, we are concerned with defect
potentials which have some symmetry —and. frequently,
this is that of the point group of the crystal. In such a
case, Eq. (13) can be simplified if we introduce functions
which transform according to specific irreducible
representations of the symmetry group. We will denote
these representations by an index s; and denote the
degeneracy of representation s by g, . The introduction
of syinmetrized functions can be performed mathemat-
ically with the aid of a unitary transformation. We
define symmetrized combinations of plane waves
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belonging to representation s by'

gi/2

C,„(k,R„)= P U(s„; R„)e'~ a .
(2w) 3/2 m

(20)
The suxn in Eq. (14) includes lattice vectors of a given
type; that is, starting from some given lattice vector,
we include all those which can be formed from that one
by a rotation in the symmetry group. The index v

designates the row of the representation. The resulting
function still depends on the "type" of lattice vector,
and for this reason, we retain the R in the designation
of the symmetrized function.

One property of the functions C,„which will be
important to us later is the following: Let the function
C,„be expanded in powers of k. Then the terms in the
expansion are proportional to functions of k times
Kubic harmonics belonging to the particular representa-
tion and row.""In particular, let us consider only the
leading term in this expansion, and write

C,„(k,R )=X,k E,„(8,p), (15)

in which the "partial-wave" t matrices are given by

&~&l&.IPe)=—Z V*.-.e P..e, ,s-
D, p'&~~

XQ C„e(k,Ri)C,„e(q,R„). (21)

Equation (21) is the general partial wave formula for
solid-state scattering theory.

The band index n or P on the syxnmetrized functions
C, indicates that the wave vector appearing in the
argument of C is related to energy through the band
function for that particular band. Comparison with
Eq. (98) of I indicates that the scattering amplitude is
proportional to the t-matrix element. Suppose that a
wave with wave vector tl in band p is incident upon a
scattering center. Then a scattered wave will appear in
each band in which conservation conditions can be
satis6ed. The excitation wave function describing the
scattering will have the asymptotic form in the localized
representation'4

in which ), is a constant containing the lattice param-
eter, etc. , cr is an exponent depending on s, E,„ is the
relevant Kubic harmonic for row v of representation s,
and the angles 8, p specify the orientation of k with
respect to the crystal axes. Note that P, and a are
independent of ~. In order to simplify some of the
subsequent formulas, we will adopt the convention that
the Kubic harmonics are to normalized to 4m. . Thus,
the E,„(which may be taken to be real) satisfy

gl/2

(22)

With the use of these results, we can express the t
matrix as a sum of contributions from the different

(14) representations.

E,„(8,(p)E;„(8,q)dQ =47r8„.8.„.. and the np element of the scattering amplitude, which
is a matrix in the bands, is related to the t matrix by

The introduction of the s~rnnetrized functions causes
the determinant D to factor into a product of subdeter-
minants coming from the representations.

D= rr, (D,)".
Each subdeterminant appears a number of times equal
to the degeneracy of the representation. The potential-
energy matrix V which appears in Eq. (13) becomes
block-diagonal, as does the Green's function xnatrix g.
In consequence, the adjoint matrix I' is also block
diagonal, and the diagonal blocks contain subdeter-
minants as factors. Specificially we can write

P U(s„R„)(nasl V lPl)Ut(Rx, s'„)=8„8„„.V, , „,ex, (18)

where V, , „,p~ does not depend on the row of representa-
tion s. Also we write

P U(s„,R„)(o.e lP lPl) Ut(Rx, s„.')
D

=8„8„PN,a~, st (1—9)
Dg

"M. Flower, N. H. March, and A. M. Murray, Phys. Rev.
119, 1885 (1960).' F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 6i2
(1947).

(23)

Let us recall the usual expression for the scattering
amplitude in ordinary quantum mechanics. It is

f(O~) =-g (21+1)e'" sin8xPx(cos 0'),
l

(24)

in which 0' is the angle between the wave vector of the
incoming wave and a vector to the point of observation,
P~ is a Legendre polynomial, and Bg is the phase shift
of the /th partial wave. This result has quite a different

See I. We have made a few simplifying approximations. All
surfaces of constant energy are assumed to be convex. The
quantity we here call y~ Lsee Eq. (23) below/ would be designated
g (k) in I and is given by Eq. (28) of that paper.

in which p is a constant which depends on the energy
surfaces in band 0;, which in the limit of a spherical
band is just the reciprocal effective mass (E (k) =y ks
in that case).

IQ. PHASE SHIFTS
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form from the result obtained by substituting Eqs. (20)
and (21) into Eq. (23). Yet a connection must exist at
least in the long-wavelength low-energy limit in which
we frequently have spherical energy surfaces and
details of the crystal structure should not be important.
To obtain a relation, it is 6rst necessary to introduce
phase shifts. This will be done by the de6nition

—ImD,
(25)tan5, =

ReD,

This de6nition of the phase shift corresponds to that
given by Baker."

Introduction of the phase shifts simplifies many of
the calculations of solid-state scattering theory. From
Eq. (77) of I, we see that the contribution to the change
in density of states produced by scattering in representa-
tion s is given by

gs 1 dDs
Qg, = ——Im-

D, dE
(26)

IJseof Eq. (25) allowsusto express Eq. (26) in theform:

gs d~s

m dE
(27)

This elegant relation, which is valid at any energy
within the continuum, connects scattering theory with
the calculation of bulk properties of a dilute alloy. We
note that Eqs. (26) and (27) give the change in the
density of states relative to the entire crystal volume,
so that if a 6nite concentration c, of defects is present
we merely multiply Eq. (27) by c. We will apply this
result subsequently.

It has been observed previously that a scattering
resonance may occur in representation s at an energy
close to that at which the real part of D, vanishes. ' I.et
this energy be denoted by Ep( ). For energies close to
Ep('), we may expand D„retaining only the leading
terms. Then in this region we can write

tan5, =
2(g jr' (sl)

where we have de6ned

(28)

2 ImD, (Ep&'&)

(29)
[d (ReD,)/dE]Zp

Equation (28) shows that for positive I' the phase
shift increases through 7r/2 as the energy E goes through
Ep&s& from below. This behavior is typical of scattering
resonances. We can coznbine Eqs. (27) and (28) to
obtain the change in density of states near a resonance

This expression has the characteristic Breit-Wigner
form and indicates that F, is the width of the resonance.

I,et us now suppose that the defects introduced into
the crystal are such that the total number of states is
unchanged, and let us also suppose for the moment that
we are considering a situation in which a single band
(or group of bands) is isolated from all others. The
lowest energy in the band is Ep, and the highest
is E . Then if we integrate Eq. (27) with respect to
energy from Ep to E, the result must be minus the
number of states forced out of the band by the perturba-
tion, that is, the number of bound states in representa-
tions lying either above or below the band. To take
degeneracy into account, we denote the number of such
bound states by g„e, so that we have

&.(&o)—5.(& )=1m, . (31)

Equation (31) may also be obtained by consideration
of the analytic properties of D,. This result is analogous
to I.evinson's theorem.

In order to obtain a relation between the phase shift
and scattering amplitude which approximates to Eq.
(24) we need the optical theorezn. The general statement
of the optical theorem appropriate to solid state
scattering theory has been established in Ref. 9, and
the result is quoted without proof here:

Im(cxkt t/nk)= —lr p
dS. (Es)

f(uk[t/Pq) /'. (32)

Eqllatloll (32) differ s from tile optical theorem for
free-space scattering in only two respects: (1.) a suzn
over band indices appears, and (2) the surfaces of
constant energy, which are indicated explicitly, may be
anisotropic.

We would expect that Eq. (24) would apply in a
limiting case which approximates that of scattering in
free space. This turns out to be true, and we introduce
the following assumptions:

(1) Eleznents of the t matrix connecting different
bands can be neglected. We will therefore drop the
band index in Eq. (29), and con.sider only a single band.

(2) The energy-band. function has the simple form

E=yk'. (33)

Surfaces of constant energy are spherically symmetric.
(3) The syznmetrized functions C,„(k,R ) which

appear in Eq. (21) are to be expanded in powers of k.
Our result is obtained when only the lowest term in this
expansion is retained.

We now proceed as follows: From Eq. (25) it follows
that we can write

gs~s
6Ã, =

27r (E—Ep&81)'+I', '/4
(30)

sinb, e "
IDlDs

(34)

"M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958). Then, with the use of Eq. (15), we can write the leading
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term in the low energy expansion of the t-matrix
element as

into Eq. (35)

(kit, l
q)=—

sin8, e '~'

A,u2 P K,„(8,~)K,„(8',~'), (35)
IrnD,

7
(kl t, l q)= — e'&'+ ~ sin(8, +p,)

2m'k

XQ K.,(8,q)K,„(8',(p') . (41a)

in which A., is a constant containing the potential, the
P matrix and factors of X, from Eq. (15). We are not
interested in the precise expression for A., at this point,
since it depends on the particular scattering problem
under consideration. It is of some importance that A.,
depends only on the representation being independent
of the rows. A., may be complex: Ke write it in theform

A.= I/l. l
e'". (36)

The angles 0, p and 0', p' specify respectively the
orientation of the vectors k and q with respect to the
crystal axes. We must now substitute Eq. (35) into
Eq. (32). As a consequence of the orthogonality of
Kubic harmonics belonging to different representations,
there are no cross terms in Eq. (32) connecting different
representations. Equation (32) holds for each t,
separately, and this result is true in general, not merely
in the low-energy approximation. After the substitution,
the left-hand side of Eq. (32) gives

Im&kl t, lk)

sin8, sin(8, +p,)=—lh, l
1't" Q K '(8 q) (3/)

IIIlDs

xq sin'8,
I
A,

I

~

k"g" dQ'Q K,„(8,q)K„(8', q')
2y(ImD, )' etta

XK,„(8,q)K,„(8',q'). (38)

The integral is performed with the aid of Eq. (16). We
also observe that lkl =

I ql as a consequence of con-
servation of energy. Then Eq. (38) gives

2+' k~+' sin'5,
l~. l'Z K '(8 ~)

(ImD, )'
(39)

We solve the reduced form of Eq. (32) for

ImDs=
2m' sinb, k' +'

sin(8, +p,)
(4o)

We can now substitute this expression for ImD, back

The right side of Eq. (29) is correspondingly, with the
use of Eq. (33)

dS, E
I( lt lq&l'

From Eq. (23), we then obtain the portion of the
scattering amplitude coming from representation s:

1.
f,= e'~'+—I"& sin(8, +p,)g K,„(8,q)K,„(8',q'). (41b)

k u

This result is to be compared with Eq. (24). There
are both similarities and differences.

(1) If we add the contributions f, from the different
representations, there are only a finite number of
terms in contrast to the infinite number of terms which
appear in Eq. (24). This is a general feature of solid-
state scattering theory which results from the fact
that the scattering potential (and the energies) as
invariant under only a finite group. Each phase shift
8, must contain contributions from an infinite number
of spherical partial wave phase shifts in the limit of
complete spherical symmetry.

The relation between the phase shifts 5, defined in
Eq. (25) and those of ordinary scattering theory is the
following. In the solid, only the phase shifts appropriate
to the finite sylnmetry group of the defect potential are
defined. If we imagine a limiting process in which the
lattice constant becomes infinite and the scattering
potential acquires spherical syxxUnetry, the 5, Inust
become combinations of spherical wave phase shifts 5~.

In this limit, the determinant D is still well defined,
although our methods of calculating it would not be
useful. The subdeterminants D, would then factor still
further into a product of terms coming from each of
the partial waves which, in the solid, are possible bases
for representation s. From this, we see that each 8,
would become in the limit equal to the sum of the phase
shifts for all those waves which go into representation s.

(2) The angular dependence of the scattering ampli-
tude as given by Eq. (41) is different from that of
Eq. (24). In Eq. (41) both sets of angles 8, p and 8', &p'

appear and in general the t matrix does not depend
simply on the angle between the vectors k and q.
However, there are some important special cases in
which further reduction is possible. In particular, if
the representation s has as basis functions all of the
spherical harmonics of a given / then the sum over v can
be performed. This happens only for the s-like represen-
tation I'~ for which the K's are equal to 1, and the p-like
representation I'~5. In the latter case, we can choose a
basis in the representation such that

k,
K~~(8, q) =V3—=%3 sin8 cosy,
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etc., and the sum over v gives immediately

3k q/kq=3 cosO.

in agreement with Kq. (24). These are the only two
representations for which reduction to Eq. (24) is
always possible. If we consider l=2, for instance, the
five spherical harmonics are divided between the I'~~

and I'25 representations in a cubic crystal. If, however,
3xs+pxs=8ss+pss. , then the amplitudes from both
representations can be combined to yield

5I s(cosO~)

in agreement with Eq. (24). This obviously can only
be true for restricted classes of potentials. Higher
spherical harmonics are divided in xnore complicated
ways.

(3) Next, we observe that there is an additional
contribution to the phase in Kq. (41). We could of
course have dered our scattering phase shifts 5, to
include p, as well, but then our de6nition of the phases
would not agree with Eq. (25), and we would not have
Eq. (27) either. However, although I know of no
general theorem which requires that A, be real, there are
some rather important cases in which this happens.
These include:

(a) The Koster-Slater model in which there is only
one band and one nonzero matrix element of the poten-
tial. In this case there is only s-wave scattering.

(b) In cubic lattices with one band, and, nearest-
neighbor interactions, the p- and d-wave scattering
will have p, =0. This need not be true for the s represen-
tation I'~, but it does hold for that representation in at
least one interesting case, which is

(c) The Heisenberg model of a ferromagnet with
nearest neighbor interactions only. We will examine that
case in more detail below.

Actually, cases (a) and (b) above have the following
in common: Whenever there is only a single terxn in the
interaction potential after symmetrization, then I'=1,
and from the reality of the potential (in this case, the
xnatrix elexnent is required by Hermiticity to be real),
it follows that p=0.

IV. APPIICATION TO SPIN WAVES

In this section, we will apply the preceding general
theory to spin waves in a Heisenberg ferromagnet
containing defects. This theory has certain features
which make it very attractive for the purposes of
illustrating scattering theory: (1) there is only one
band, (2) matrix elements on the basis of localized
states can be obtained readily, and (3) it is nontrivial-
the interaction involves nearest-neighbor couplings,
and so (unlike the simple Koster-Slater model) analysis
of the scattering in terms of irreducible representations
is useful. In previous publications, the energies of bound
states and the locations and widths of resonances have

in which s is the number of nearest neighbors. The
quantities go and gi are dixnensionless measures of the
central cell and first-neighbor Green's function:

go=-
(2z)'

dgE'—E(a)

expiq ck
d g-

(2w)s E+ E(q)—4JSQ

where 6 is a vector froxn the origin to any one of the
first neighbors. We separate the real and imaginary
parts, and retain only the leading terms in an expansion
in powers of the energy Lor of k, through Eq. (33)j.
Then we And the phase shift

Qks f S'~

s) (45)

"S. Takeno, Progr. Theoret. Phys. (Kyoto) 30, 565, 731 (1963).
'7 L. Yin-Yuan, F. Li-zhi, and G. Shi-je, Acta Physica Sinica

19, 599 (1963).
'8Yu. A. Izyumov and M. V. Medvedev, Zh. Eksperim. i

Teor. Fiz. 48, 574 (1965) LEnglish transl. : Soviet Phys. —JETP
21, 381 (1965)j.

's J. Callaway, Phys. Rev. 132, 2003 (1963).I J. Callaway and R. Boyd, Phys. Rev. 134, A1655 (1964).

been determined. ' " ' The cross section for spin-wave
impurity scattering has also been obtained by a process
which amounts to direct evaluation of Kq. (21).""The
present objective is to introduce the phase shifts in
order to simplify the calculation of the cross section,
and also to apply Eq. (27) to d.etermine the change in
the density of states produced by a small concentration
of imperfections. This result can be used to obtain the
changes in the low-temperature thermodynamic proper-
ties of an insulating ferromagnet.

Our discussion will be based on Ref. 20, and we will
use much of the notation of that paper. We consider
only simple ferromagnets and assume that the exchange
interaction couples only nearest neighbors. Let us recall
that a magnetic defect in a Heisenberg ferromagnet is an
atom characterized by a different spin (S') and/or a
different exchange coupling (J') than those of the host
crystal (S and J, respectively). The impurity is assumed
to couple ferromagnetically: J' is positive.

In cubic crystals (which are the only ones we shall
consider) the low-energy spin-wave scattering is
doxninated by the s and p waves as described in the
previous sections. Scattering will exist in other represen-
tations depending on the particular lattice, but the
phase shifts for these representations are of order k5

or higher, and will be neglected here.
We begin with the s-like representation I'x', and for

this we have from Eq. (3'I) of Ref. 20

J''i Egx ( J'S
1+ (gl gs)l 1——I+ I

1—
I

(42)
2 k J/l 4JSE JSl
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For the p-representation I'ts we 6nd

where
pgn ~

p=-', (1—Z S /SS),

(46)

(47)

where E is a numerical constant which depends on the
lattice in question (it is the E=0 limit of the real part
of g„).For the simple cubic lattice, the value of E may
be obtained from the tables contained in Ref. 6 to be
X=0.42. These expressions will always be valid when
k is suIIiciently small; however, the range of utility of
Eq. (45) will not be large if there is a low-energy s-wave
resonance, and in such a case the resonance may
exert a dominant eRect on the thermodynamics. ""
We will assume here that there is no low-energy
resonance.

With the aid of Eq. (27), we can deduce the total
change in density of states due to a concentration, c, of
magnetic impurities. This is, to lowest order,

C

AN =hN, +8N~= $8,+38—„j.
x dE

(49)

We observe that both the s and P-wave phase shifts
are proportional to O'. Thus their energy derivatives are
proportional to k, that is, to E'I'. From this we see
that the change in the density of states depends on the
energy in the same way in the presence of imperfections
that it does in the perfect crystal. Then we can write
for the total density of states N(E), after performing
the differentiations,

N(E) =No(E)+AN

3c tr S' 4p
=N, (E) 1— I1——

I
. (50)

2 & S 1—Zp)

The density of. states for the perfect crystal is

and g„ is a symmetrized combination of Green's func-
tions appropriate to the I'i5 representation whose
precise form we will not give here (see Ref. 20). Again
we expand for small k and obtain

Qk3 p

3x' 1 Kp

Equation (54) has the following significance: We can
use Eq. (33) to relate energy and wave vector in the
crystal containing imperfections provided that we
replace y by y„ through Eq. (54). This replacement will
enable us to compute those properties of the ferro-
magnet which are determined by the spin-wave density
of states, such as the dependence of the magnetization
and specific heat on temperature for low temperature.
These results are, of course, valid only through Grst
order in the concentration. An extension to higher
powers of the concentration would be dificult but
could, in principle be carried out through the methods
of Lifshitz. " Our results, Eqs. (50) and (54) are in
agreement with calculations by Izyumov' and Murray"
using different methods.

The calculation of the low-energy spin-wave scatter-
ing cross section is very simple once the phase shifts
have been determined. To order k4, we have the total
cross section

4m.
o=—L8 s+38„sj

k'
(Qk')' S') ' 16 p'

1——I+— (55)
4z Sj 3 (1—Ep)s

which agrees with Ref. 20. The lifetime of a spin wave
of wave vector k in the imperfect crystal can be related
to the scattering cross section by the formula

r '(k)=cVo/Q,

where v is the spin-wave velocity, v= 2yk. This gives

.-'(k) =
cQk'E(k) —) S'i' 16 p'

I1——I+— . (»)
2z i SI 3 (1—Ep)s

Equation (50) suggests that we can deine a perturbed
reciprocal eRective mass, y„, for the crystal containing
imperfections through the formula

N(E) =QE'Is/47r'V„sls. (53)

Then y„ is determined from Eqs. (53) and (50) to be

S 4p
~.=»+cl 1——

S 1—Zpi

No(E) =
4~9~3/2

in which y is the spin-wave reciprocal eRective mass:

y= 2JSu'

We see therefore that v=' is of order k' for small k,
so that low-energy spin waves are only very weakly
damped. . This is of the same order as that due to spin-
wave-spin interactions in the perfect ferromagnet. ""
Again, it should be noted that these results apply only

(52)
if there are no low-energy resonances.

for any cubic crystal, and a is the cubic-lattice constant.
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