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Exchange Interaction between Nearest-Neighbor Ion Pairs.
I. V'+ in KMgFsf
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The con6guration-interaction method is applied to the exchange interaction between nearest-neighbor
V2 ion pairs in KMgF3. A linear cation-anion-cation four-electron model is assumed, taking into account
the ionic conlguration as well as anion-cation and cation-cation charge-transfer excitations. Numerical
estimates indicate that the charge-transfer excitation between the cations is more important than that from
an anion to its neighboring cation. These two charge-transfer processes together with the ionic configuration
contribute the majority of the exchange interaction. The overlap integral between two neighboring cation
d orbitals is also taken into account, and its contributions to the exchange integral are examined and found
to be signihcant.

I. INTRODUCTION

ECENTLY Smith and Owen' investigated the
electron-spin-resonance spectrum of V'+ ion pairs

in KMgF~ and found the strength of exchange inter-
action between the nearest-neighbor V'+ ions to be
—4.4'K (antiferromagnetic). Motivated by their meas-
urements, we shall estimate contributions to the ex-
change integral arising from the following five con-
figurations and their interactions:

A. The ionic configuration.
B. The configuration in which one electron is trans-

ferred from F to V'+ on the left.
C. The configuration in which one electron is trans-

ferred from F to V'+ on the right.
D. The configuration in which one electron is trans-

ferred from F to V'+ on the left, and at the same time
an electron is transferred from V'+ on the right to the
vacated Quorine orbital.

E. Same as D, except all transfers to the right.

The first three configurations have been investigated
by Anderson, ' Yamashita and Kondo, ' and Keffer and
Oguchi4 for MnO, while configuration D was first con-
sidered qualitatively by Yamashita and Kondo. ' The
effects of configurations D and E are similar to the
kinetic exchange suggested by Anderson. s This exchange
is always antiferromagnetic and represents the second-
order effect of virtual charge transfer between the
magnetic ions. It has been suggested by Owen and
Taylor' that the "cation-cation" transfer configurations
D and E shouM be more important than the anion-
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cation transfer configurations B and C. Quantitative
estimates of various contributions to the exchange inter-
action are difficult because of the many-electron and
many-center nature of this problem and because of lack
of knowledge of the response of the electronic wave
functions upon charge transfer. Hence, in this paper we
examine quantitatively the relative importance of the
previously mentioned configurations and the sign of
their contributions to the exchange interaction.

We are also interested in examining the magnitude
and sign of the contributions to the exchange integral
coming from the lack of orthogonality between the
d orbitals of two V'+ neighbors. This overlap integral
has usually been neglected in the calculations of super-
exchange interactions because of its small magnitude
as compared to the anion-cation overlap integrals.
However, we find that the cation-cation overlap integral
enters in the expression for the exchange integral with
lower order than the anion-cation overlap integral and
thus could become important. It will turn out that the
effect is numerically important for the collinear example
we are treating in this paper. In the case of right-angle
superexchange, to be examined in a subsequent paper,
(e.g. , two nearest-neighbor V'+ ions in Mgo) the cation-
cation overlap eGects play an even more important (and
in fa,ct dominant) role.

We restrict ourselves to the problem of three nuclei
(i.e., V-F-V) and four electrons. To fix notation, con-
sider, in the ionic configuration, one electron occupying
a d„orbital of each V'+ ion and two electrons in 2p
orbitals of F ion, as shown in Fig. 1(a). All the other
configurations, as well as the labeling of the orbitals are
shown in Fig. 1. It is clear that because of restrictions
introduced by the exclusion principle and symmetry
properties, configurations D and E are allowed only in
the singlet state. However, the other three configura-
tions enter in both the singlet and triplet states. There-
fore, we shall calculate the energy of the singlet state
taking into account five configurations and that of the
triplet state considering configurations A, B, and C
only.

The wave function describing each configuration is
approximated in our calculation by a single determinant
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is the product of the one-electron orbitals specifying
configuration R;. The matrix representation (P~'~& is
determined from the physically allowed eigenstates of
total spin for configurations E; and E.;.

In the following section we shall apply (1) and (2) to
calculate the matrix elements in the secular deter-
minant for the energy of the singlet and triplet states.
The exchange integral is directly related to the singlet-
triplet energy separation.

II. ENERGY OF THE TRIPLET AND THE
SI5GLET STATE

Configuration E

Px dxz

y3+@ IF xv+
Bl B2 B3 -" B~

based upon the appropriate Hartree-I'"ock free-ion
orbitals. In this approximation, the configuration inter-
action problem involving nonorthogonal orbitals can
be solved in a relatively convenient way by using the
Dirac —Van Vleck —Serber ' spin-operator expansion
technique. This method was first applied to the super-
exchange calculation by Anderson' and by Keffer and
Oguchi. 4 The matrix element (K—W)n'nI which con-
nects E; to R; is given by'

(g(& W) Bcnr ~Jr; rr P&(g(& W) Ben((P—BcBq ~

P

(B)

FIG. 1. Orbitals considered in a four-electron model. (a) Ionic
con6guration. (b) and (c) Anion-cation charge-transferred
con6gurations. (d) and (e) Cation-cation charge-transferred
conhgurations.

6g= ~ j 618 +28 +14 +24 2 p

1

for both the singlet and triplet states;

(6a)

I.et us define the overlap integral between V'+(3d„)
and F (2p,) orbitals by

S=(~,l~,)= —&a, l~,&, (4)

and the overlap integral between two 3d, orbitals
centered at two nearest neighbor V'+ ions by

T=&asl~,).
In our calculation we shall take into account the cation-
cation overlap effects. Direct exchange between the
vanadium ions is, therefore automatically contained in

our expression for the exchange integral. These non-

orthogonal effects turn out to be numerically important.
Because of restrictions imposed by symmetry proper-

ties and the exclusion principle, we note that in each
configuration there is at least one pair of identical
orbitals which are occupied by two electrons with

opposite spin, viz. , s1 and s2 form a singlet in all our
configurations (cf. Fig. 1). Applying this condition and

following the description for constructing matrix repre-

sentation of the permutation operators given by
Serber, r the relevant (P's that enter in (1) are found to be

where K is the sum of the total kinetic energy of the
electrons, the electron-nuclear potentials, and the
Coulomb interaction between electrons; 8' is the un-
known energy in the secular equation; r; denotes the
number of pairs of filled orbitals in configuration E.;;and
the summation is taken only over the rs!/sr; perrnutations
which differ by more than an interchange of identical
orbitals in E; (e is the number of electrons under con-
sideration). The coefficient (K—W)p"'ns of the matrix
representation of the permutation operator P is given by

+84—~ i 6 184 6 284 +148 +248 2 s
1.

+18,24 6 14,28

for the singlet state; and

=1 ~6 84 ~ j 6 184 6 284 6 148 6 248 2 j

+18,24 +14,28

for the triplet state.

A. Energy of the Singlet State

(6c)

(x w)~"n = &~yn'ls—e w lan )—
w&I'f 'lp )—(2)

' P A. M. Dirac, Principles of Qnantnrn Mechanics (Clarendon
Press, Oxford, England, 1958), 4th ed.' J. H. Van Vleck, Phys. Rev. 45, 405 (1934).

9 R. Serber, Phys. Rev. 45, 461 (1934).

VVe mentioned in the previous section that con-

figurations A, B, C, D, and K all contribute to the

energy of the singlet state, hence the secular deter-
minant is five-dimensional. Nevertheless, since the ionic
configuration is even, it is connected only with even

combing. tions of the excited configurations. Therefore,
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we form the following two even states:

4'= (4'~2) (P—4') '

P'= (16~)(P+~').
(2a)

(7b)

On substituting (3) into (2), we find

f = (1/~2[ba(ri)b2(r2)b3(r3)b4(r4)
—ci(ri)c2(r2)c3(r3)c4(r4)]; (Sa)

f '= (1/~2[di(ri)d2(r2)d3(r3)d4(r4)
+~1(ri)e2(r2)e3(r3)B4(r4)] (gb)

Hence the 5)&5 secular determinant can be factored into
a 3)&3 and a 2)& 2 part. The former contains interactions
with the ground conhguration and is, therefore, the only

Its ZO8 8
X=+— V;2—P

2m & g Fgg

(10)

where Z, is the atomic number of the nucleus of the
gth ion.

Observing the following equalities from symmetry
considerations

one of interest to us. It is given by

(X—W) A" (X—W) Ag (X—W) Ag'

(Be—W)'A (BC—W)«(X.—W)«' =O. (9)
(Bc—W) 0'" (x—W)c'0 (x—W) g'0'

The Hamiltonian to be used here is given by

(x-W)-=- (x-W)- (x-W)AD= (x-W)- (Be-W)-= (x-W)-;
(x—W)DD= (x—W)BB (Be W)cD=——(x—W)BB (Be—W)cB= —(x—W)BB

(X—W) Ag =%2(x—W) "B
=%2[(X A —S'W) —(X B +S'TW) (X14" ——SW)

+ (X„"B+$'TW) (BC„,AB —ST'W) (Xi„—AB—$3W—)+2(x 2 AB+STW)]) (12b)

(x—W) Ac'= v2 (x—W) AD

=%2[(xr —TW) —(X13 +S W) —(X14 S TW)+ (X13 24 +S W)] &
(12c)

(X—W)«= (X W)BB (X——W)Bc-
= (X2B —W) —(X13 —T'W) —(X14 —S'W)+ (X34 B—S'W) —(X134B +S'TW)
—(BC B+S'TW)+2(X13 24

B S'T'W) (X—rBc+$2T—2W)+ (X13 c—S'TW)+ (X14Bc—$2TW)
—(X Bc T'W)+ (X,—Bc TW)+ (X143—Bc+$2T2W) 2(BC13 24Bc+—$2W) i (12d)

(x—w)g '=(x—w) + (x—w) B

=%2[(BCr S'TW) (X1—3 D+S'w—)—(X14 STW)+ (BC — +Sw)
+ (xrBB+$3W)—(X13BB—$3TW) —(X14BB—STW)+ (X13 24BB+ST2W)]; (12e)

(x—W) g'0'= (x—W)DD+ (x—W)DB
= (XID —W) —(x13 —S'W) —(x14 D—S'W)+ (x13 24D —S'W)

+ (Ger B T'w) (X13 —+s'Tw—) (X14 B+s'Tw—)+ (X1,3 24DB—S'w) . (12f)

In order to simplify the algebra involved in solving (9), we use the same procedure adopted by Keffer and
Oguchi4 of replacing 8' everywhere except in the term K&~~—8' by its zeroth-order approximation Kl~~. The
order of magnitude of each term in (12) is given very roughly by

and using (1) to (6b), we find the matrix elements in the secular equation to be given by

(X—W)""= (Ger"A —W) —(X13A"—S'W) —(X14 "—S'W)
+(X34AA T2W) (X134AA+$2TW) (X143AA+$2TW)+2(BC13, 24AA $4W) (12a)

BC B*B~' orde of X B' *(PQB*~f 4).

Taking into account only terms of order S', S', S4, T', S'T, we obtain the energy of the singlet stat'e:

(13)

W —X AA (X AA $2X AA) (X AA $2X AA)y (X AA T2X AA)

(Xi AA+$2TXrAA) (Xi AA+$2TXrAA)+2(x AA $4X AA)y2(x AB Sx AA) (XrBB X AA) 1

X[ (X AB Sx AA)+2(x AB $3X AA) 2(x AB $3X AA)+4(x AB+ STX AA)]

4[(x AD Tx AA) (X AD+$2X AA)]2(x DD X AA) 1+g(x AB Sx AA) (X —BD+Sx AA)

X [(X AD+$2xrAA) (X AD Tx AA)](x BB X AA) —1(x DD X AA) —ly2(X AB Sx AA)2

X[(x BB $2xiAA) (X BB $2X AA) 2(x BC+$2X AA)+ (X BC Tx AA)](x BB X AA) 2—
4(xi AB sxrAA)2(x BD+$X AA)2(x BB X AA) 2(x DD X AA)—1 (—14)
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B. Energy of the Trijplet St@.te

We only need to consider configurations A, B, and C for this case. The secular determinant is given by

(X—W)- (X—W)- '

=0
(X—W) cA (X—W) cc,

Following the same procedures used in computing W, except that (6c) instead of (6b) is now used, we obtain

(X W) AA —(X AA W) (X AA S2W) (X AA S2W) (X AA T2W)
+ (X834AA+S2TW)+ (X143AA+S2TW) ' (16a)

(X—W) "0=%2(X—W) AB

= %2L(XrAB—S'W) —(X&3AB+S8TW)—(X&4AB—SW)
—(X„"B+S'TW)+(X "B ST2W—)+ (X AB—S'W)7; (16b)

(X—W) cg= (X—W) BB—(X—W) Bc

(X BB W) (X BB T2W) (X BB S2W) (X BB S2W)+ (X BB+S2TW)

+ (X BB+S2TW) (X Bc+S2T2W)+ (X Bc S2TW)+, (X Bc S2TW)

+ (X84BC—T'W) —(X884BC TW) —(X243B—C+S2T2W) . (16c)
The energy of the triplet state is found to be

W X AA (X AA S2X AA) (X AA S2X AA) (X AA T2X AA)+(X AA+S2TX AA)+(X AA+S2TX AA)

+2(X 4AB SX AA)L (X AB SX AA)+2(X AB S8X AA)+2(X AB S8X AA)7(X BB X AA) —1

2(X AB SX AA)2$(X BB S2X AA)+ (X BB S2X AA)+ (X Bc TX~AA)7(X BB X AA) —2 (17)

Hence, the exchange integral, defined by the coupling —2J34s3- s4 between the spins of two d electrons, is given by

J,4——-', (W,—W,)

j (X AA T2X AA) (X AA+S2TX AA) (X AA+S2TX AA)+ (X AA S4X AA)}

4(X AB SX AA)

(X AB S3X AA)+ (X AB+STX AA)7
BB ~ AA

2(X AB SX AA)2

y((X BB S2X AA) (X Bc+S2X AA)+ (X Bc TX AA)7
BB X AA)2

AD TX AA) (X AD+S2X AA)72

~ DD ~ AA4.

4(X14AB SXIAA) (X18,24BD+SXrAA)
XP(X AD+S2X AA) (X AD TX AA)7

(X BB X AA)(X DD X AA)

2(X AB SX AA)2(X BD+SX AA)2

(X BB X AA)2(X DD X AA)
(18)

For convenience we divide J34 in (18) into four parts:

jJicn}
+jJ-}
+jJ-}
+ jJcc;cc}

The first line in (18), denoted in (19) by J;,„, is the
contribution to the exchange integral due to overlap
effect within the ionic configuration. The second and
third lines in (18), equal to J„in (19), are the effects
coming from anion-cation charge transfer. Both the

expressions for J;, and J,. agree with Keffer and
Oguchi's results' except that we have included the
effects of nonorthogonal cation orbitals. The fourth line
in (18), denoted by J in (19), comes from the cation-
cation transfer and always lowers the energy of the anti-
ferromagnetic state. The last two lines in (18), denoted
by J„,„in (19), are a result of the interaction between
the ionic, and the anion-cation and cation-cation
transfer configurations. We notice that in (18) the terms
involving the cation-cation overlap integral are of the
order of T' and S2T, in the sense of (13), whereas those
involving the anion-cation overlap integral are of the
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order of S4. Hence, it is of numerical importance to take
the cation-cation overlap into account. The relative
importance of the terms in (19) is estimated in the next
section.

III. NUMERICAL ESTIMATES

We consider the anion-cation charge transfer energy
BCzns —Kz"" entering in the denominator of (18) 6rst.
This energy is given by the sum of the following con-
tributions: (i) the difference between the energy of an
electron in V+(ls, 'f, ts, J,) configuration and the ioniza-
tion energy of F ion, (ii) the difference between the
Madelung energies at the V site and the F site, (iii) the
electronic polarization energy of the surrounding ions
consequent upon transferring an electron from F to
V'+ site, and (iv) the intera, ction energy between the
extra electron at the V site and the "hole" at the F site.
To evaluate these terms we must 6rst examine the
correlation effects arising from charge transfer. These
effects are connected with the expansion of the cation
d orbitals and the contraction of the anion p orbitals, as
well as polarization of the neighboring ions caused by
the virtual charge transfer excitation. Simanek and
Tachiki" pointed out that, because of the high-
frequency character of this virtual excitation, charge
redistribution and electronic polarization cannot be
fully developed during the charge-transfer process.
Hence, to a good approximation, we estimate term (i)
by taking the difference between the "unoccupied"
energy of V'+ ion" and the ionization energy of F ion.
This is found to be —4.6 eV. The increase in the
Madelung energy together with the electron-hole inter-
action energy consequent upon charge transfer is ap-
proximated by the value 26.9 eV, as found by Hubbard
et al." for a similar charge transfer process in KNiF3.
The electronic polarization energy is estimated by using
the static formula —P; n,E,s, and reduced by roughly

rDD —r+~ = 17.2 eV. (21)

To evaluate the numerators in (18) we use the V'+ 3d
orbitals" and the F 2p orbitals" computed by Watson.
The one- and two-center integrals are calculated by
using the modified version of the Switendick-Carbato
MnnAT program, "while the three-center integrals are
roughly estimated by using an overlap charge model.
The effects of ions other than the linear molecule V-F-V
are omitted in our estimates of the numerators of (18).
We find the following results:

and

S=0.0757 T= —0.0018, (22)

a factor of 3 due to the dynamic effects discussed by
Simanek and Tachiki. ' Here E; is the electric field at the
ith ion site and n; the electronic polarizability. We con-
sider only the anions in the immediate vicinity of the
anion-cation pair involved in the charge-transfer process
and use a high-frequency dielectric constant of 2 for the
Coulomb interactions other than those between nearest
neighbors, In this manner we find a value of —1.1 eV
for the polarization energy. Summing up all the con-
tributions, we find

(20)

Next we estimate the cation-cation transfer energy
KzDD —3Cz"" appearing in (18), using a procedure
identical to our previous one. This energy consists of
(i) the difference, 21.5 eV, between the energy of V'+
unoccupied t~, orbital and the ionization energy of V'+
ion, (ii) the electronic polarization energy, found to be
—2.5 eV, consequent upon transferring an electron from
a V'+ ion to its nearest V-ion neighbor, and (iii) the
resulting electron-hole interaction energy of —1.8 eV.
The Madelung energy is unaltered by this charge
transfer. Hence we obtain

sc,»= —6.5787;

BCg3 24~~= 0.4881)

3Cg3, 24~~= 0.0404;

Ki4~~ = —0.0033;

X,»(0.0001;
A 0.0418;

y34 =0 0124 j BC&&4 0 0001 ~ BC&3 24 0 0010

X, = —0 0377; 5('.z "=0.0117) Xt4s"~= —0.0001 (23)

i3 g4 = —0.0003 .

Combining (18), (20), (21), (22), and (23), the various
contributions to the exchange integral between two in-
dividual d electrons are found to be

J;,„=—9.4'K;
J„=—16.0 K;

Their sum gives

J„=—8.0'K;
J", =21'K.

(24)

734= —31.3'K.
"E. Sim5neh and M. Tachilri, Phys. Letters 21, 625 (1966)."R. K. Watson, M. I. T. SSMTG Technical Report No. 12,

1959 (unpublished)."J.Hubbard, D. K. Rimmer, and F. R. A. Hopgood, Proc.
Phys. Soc. (London) 88, 13 (1966).

These results indicate that the cation-cation charge-
transfer process contributes half of the strength of the
exchange interaction, while the ionic configuration and
the anion-cation transfer yield comparable contribu-
tions, but are less important as compared to the cation-
cation transfer.

To determine the strength of exchange interaction
—2J~~S" S~ between the total spins S of the V'+ ions,
we project the spin of a single electron onto the total

"R. E. Watson (private communication).
4 A. C. Switendick and F. J. Corbato, M.I.T. SSMTG,

Quarterly Progress Report, No. 34, 1959 (unpublished).
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spin using a method described by Van Vleck."Noting
that the exchange interaction for the orbitals d„,—p„—d„, is identical to that for d„p,—d„—, we obtain

J~a= 2Js4/9= —7.0'K,

a result nearly two times larger than the value of
—4.4'K reported by Smith and Owen. '

IV. DISCUSSION

We have demonstrated that the ionic configuration,
together with its interactions with the anion-cation and
cation-cation transfer configurations, leads to an antifer-
romagnetic coupling between two neighboring V'+
ions. In addition to these configurations, the configura-
tion in which one electron is transferred from the anion
to the neighboring cation on the left and simultaneously
another electron is transferred from the anion to the
cation on the right also lowers the energy of the anti-
ferromagnetic state. We have estimated this contribu-
tion for the linear model V'+—O' —V'+ for V'+ MgO
and found it small compared to the contributions arising
from configurations discussed in this paper. We believe
that a similar situation holds for the case of V'+:KMgF3.
t ondaira and Tanabe, "using orthogonalized orbitals,
also found this double excitation insignificant for
KMnF3.

The 2s orbitals of the F ion play an insignificant role
in the superexchange interaction, because they are
orthogonal to the occupied d orbitals of V'+ ion. Hence,
their contribution to the exchange integral is at least an
order of magnitude smaller than that coming from the
2p orbitals. Moreover, charge transfer can only occur
from the 2s orbitals to the e, orbitals of the cation,
which are empty and thus can be occupied by an
electron with either spin direction. Hence, the im-
portance of s-electron transfer is further reduced by
roughly a factor of J; t.../AE 0.1, where J; &,. is the
intra-atomic exchange integral between the cation d
orbitals and hE is the separation in energy between the
charge transferred configuration and the ionic con-
figuration. The 0. character of this transfer is not ex-
pected to increase its importance significantly. For the

"J. H. Van Vleck, Rev. Univ. Nacl. Tucuman Ser. A
(Argentina) 14, 189 (1962)."Ken-Ichiro Gondaira and Yukito Tanabe, J.Phys. Soc. Japan
21, 1527 (1966).

above reasons, we have not included this configuration
in our estimate of the exchange integral.

It is worthwhile to point out that the lack. of cation-
cation orthogonality contributes 2.4'K (ferromagnetic)
to J~~. Of this total, 1.1'K comes from the ionic
configuration and 1.3'K from the anion-cation charge
transfer. It is not surprising that these effects are
numerically important, because they are proportional
to T' 3)&10 ' and 5'7 10 ', while the anion-cation
overlap effects are proportional to S' 3)&10 '. These
two kinds of overlap effects are thus comparable. The
cation-cation nonorthogonality will play a much more
important role in the case of right-angle exchange inter-
action between V'+ ion pairs, since in this case, the
largest cation-cation overlap integral is more than one
third of the anion-cation overlap integral. Consequently,
the anion-cation charge transfer excitation can yield a
ferromagnetic coupling and the cation-cation transfer
will be strongly antiferromagnetic. We shall discuss this
problem in detail in a subsequent paper.

Owing to the difhculties mentioned in Sec. I, our
numerical estimates of the exchange interaction be-
tween two V'+ ions are only necessarily semiquantita-
tive. Similar difficulties are encountered in calculating
the covalency parameters in the transition metal ion
compounds. """It is interesting to note that whether
we take into account the full correlation effect, or none
at all, in estimating the transfer energies, Jz& only
fluctuates 2'K about the value of —7'K. The relative
importance of the different configurations discussed in
the previous section is rather insensitive to these
effects. To achieve a strictly quantitative result, we
should have to consider the ions in the vicinity of the
linear model V-F-V in evaluating the nurnerators of
(18), use suitable wave functions for the d electrons of
the V+ ion in the excited configurations with intra-
atomic correlation effects taken into account, and a
more precise evaluation of the three-center integrals
appearing in (18).
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