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Temperature Dependence in the Effective Ruderman-Kittel-
Kasuya-Yosida Interaction*
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The effective interaction between two magnetic impurities immersed in a simple metal is calculated by
means of the method of double-time Green's functions. A Kondo eKect is looked for and found, but it is
complicated by the existence of effective magnetic fields at the impurity sites. The effect is generally to
enhance the magnitude of the interaction as T decreases. We Gnd a continuing temperature dependence at
extremely low temperatures even when there are local Geld energies X such that 'h» k~T.

l. INTRODUCTION In the present paper, we turn to the problem of the
eGective interaction between fmo impurities, known as
the Ruderman-Kittel-Kasuya- Yosida (RKKY) interac-
tion. From the above-mentioned work, we Inight expect
that a lnT behavior would exist in say the third power
of JD terms that would become important at low tem-
peratures. %e 6nd in fact a similar behavior. The
problem is approached by calculating the average en-

ergy of the system by means of Green's functions, keep-
ing in mind the possibility that local magnetic fields

may exist at the impurity sites. Our calculation follows
fairly closely the method used by Nagaoka.

The paper is organized as follows. In Sec. 2 we set up
the Green's functions and the basic equations of motion.
In Sec. 3 a chain-breaking method is developed which
enables us to calculate some of the more recalcitrant
Green's functions. In Sec. 4, the resulting equations. are
solved algebraically, and in Sec. 5 the eGective Heisen-
berg type of interaction is discussed.

2. THE HAMILTONIAN AND
GREEN'S FUNCTIONS

The Hamiltonian for the two-impurity problem on the
sd-exchange model in a magnetic 6eld 3'. ' ' is

2

H'=H —EpN=+ &(ko)ek, —p p3c;""S;,

—(Js/N)p exp)i(k —k') R;]2S; Sk.k, (2.1)

where we use an abbreviated notation'

+k'ktr ~k'a +ko j +kg ='dekko

sk'kyar +k~n +k,—r j sk'ks 2 (+k'k+ tsk~k —)
2S,"Sk k =S;PSk k +S~~k kP+SJ.(&k k~—k k-) ~ (2 2)

where 0 means spin, ak,t and ak, are electron creation
and destruction operators, respectively. The indices k
and l will always refer to conduction-electron wave vec-
tors, and j refers to the impurities, The energy $ is
written in terms of the unperturbed Bloch energies E(k):

&(k-)= (k)—::"'-' '=+
(k)+-',„ (2.3)

s M. Bailyn, Phys. Rev. 13?, A1914 (1965).
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~REAT interest has been shown in the sd exchange~ interaction in order to explain some of the proper-
ties of dilute magnetic alloys, as evidenced by the large
number of recent papers on the subject. One of the most

significant of these was Kondo's paper' dealing with the
problem of the resistance minimum. Kondo showed that
in the second Born approximation, a term proportional
to lnT appears in the resistance, which could, in con-
junction with other terms, produce a resistance mini-
mum, provided the exchange integral Jo is negative.

Such a logarithmic term in the scattering cross sec-
tion gave rise to a divergence at T=0, which stimulated
Suhl' and Nagaoka' to look more carefully into the
problem for the very low-temperature region. Nagaoka
used the method of double-time Green's functions, and
obtained the Kondo lnT term at high temperatures,
which however did not persist into the very-low-tem-
perature region. Using a self-consistency argument, he
argued that below a critical temperature T„ the lnT
term disappears, and the resistance saturates at a cer-
tain value. Other work on the resistance problem was
carried out by Liu and Abrikosov. ' Abrikosov also con-
sidered the eGect of a local magnetic field, which we
also do here, but no connection with Abrikosov's results
will be formulated. Yosida and Okiji' considered the
corresponding magnetization problem.

In addition to these papers, it has also been shown by
Kim' that it is possible to have a resistance minimum
even if there is no local moment. Kim used the Anderson
"mixing" model to show this. Scalapino' also used the
mixing model to calculate the susceptibility of a dilute
alloy, obtaining a resonance type of behavior reminis-
cent of Yosida and Okiji and Nagaoka. There have been
many other papers in this area too numerous to mention.

". Work supported in part by the Advanced Research Projects
Agency, through the Material Research Center at Northwestern
University, Evanston, Illinois.

' J. Kondo, Progr. Theort. Phys. (Kyoto) 32, 37 (1964).' H. Suhl, Phys. Rev. 138, A515 (1965).' V. Nagaoka, Phys. Rev. 138, A1112 (1965).
4 S. H. Liu, Phys. Rev. 137, A1209 (1965).' A. A. Abrikosov, Physics 2, 5 (1965); 2, 61 (1965).
K. Yosida and A. Okiji, Technical Report of Institute of

Solid State Physics, University of Tokyo, Series A, 1965 (un-
published).

r D. J. Kim, Phys. Rev. 146, 455 (1966).' D. J. Scalapino, Phys. Rev. Letters 16, 937 (1966).
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containing a magnetic field effect. S;+ and S; are the
raising and lowering operators, respectively, for the jth
impurity spin. In Eq. (2.1) we have made the approxi-
mation J(k',k) =Js.

Our maj or interest in this paper is to calculate the
average energy

E'=(a')=P P(k )(,.)—P pX:.0(S;,&
—J&jV 'P expLi(k —k') R;](2S; Ss s&, (2.4)

the angle brackets signifying a grand canonical average.
In particular we shall be interested in the part of E that
has the form of a Heisenberg interaction between the
two impurities

E'H„,——Q J;t (S;,S;,).

In order to obtain the averaged operators in Eq.
(2.4) we shall, following Nagaoka, ' use retarded Green's
functions the complete theory of which may be found
for example in Bonch-B ruevich and Tyablikov'

((A () 2t)
~
B(X',0)))—=—i((A (M),B(X'0)]~&8(t), (2.6)

where

s(t)=o "«0
=1 ~ t)0. (2.7)

Here A has been taken as 1, the + subscript means an
anticonunutator, and )X' refer to a complete set of vari-
ables. In equilibrium this Green's function depends only
on time through the difference in the two-time indices
of the operators A and B. This diBerence has already
been written as t—0 for convenience.

The equations of motion are obtained by a time
differentiation

((A(Xa)iB(l')))—= (2 ) 'f Ah '"'((A(l4)iB(X'0))).

(2.9)

Now the theory of Green's functions' shows that the
thermodynamic average of the product AB is related
to the Fourier transf orm of the retarded Green's func-
tion through the formula

(A(4)B(Vt)) 2f Ae f(ra)2=m((A(l, «+$0) ~B(V))),

—((~(~t) I B(~'0)&)=~(t)(L~(~t),B(~'0)] )

+((L~(~t)»]- I B(~'0))) (2.8)

where the —subscript means an ordinary commutator.
The Green's functions just defined and the averages

in Kq. (2.4) can be linked together through the energy-
Fourier transform of the former:

where

f(-)L. p(-».n+» . (2.11)

The Green's function in Kq. (2.10) has been analytically
extended to just above the real axis.

The plan then is to take the Fourier transform of Eq.
(2.8), solve, and substitute into Eq. (2.10). To specify
just what Green's functions we shall need, we refer to
Eq. (2.4) and notice that the following averages are
required

(as.'a")
(nttgag" a+~) 2

(St.as', .as.& 2

(2.12)

where all the operators refer to the same time, and
where for convenience we define

esf,—=S;. .o =+
Sgg

(2.13)

Thus from Eq. (2.10) we need

G.(k'ki t)
—= ((as',t(t) i as.(0))), (2.14)

F,(jk'k~ t)=((as', . (t)S;,(t) ~
as.(0)&), (2.15)

Z, (jk'k
~
t) =—((as',t(t)mt. (t) ~

az. (0)&). (2.16)

It will be convenient to use also the sum

r—=viz. (2.17)

(2S; Ss a&= 2+ Im f(co) I',(jk'k
~
co+io)d~. (2.19)

Furthermore, we do not need both these groups in-
dividually, since they are simply related through use of
the 6 Green's-function's equation of motion. From Eq.
(2.22) below, it is easily seen that

Ls)—$(ko)]G,(kk i ra) = —(2n-) '—JgX-'

X P expLi(k —k') Rt]F,(jk'k~~). (2.20)

Going back to Eq. (2.4) we see finally that we need

E'=2 p Im d(o (af(co)Q G.(kkl ~+iO)

X ex'(St ) (2 21)

The averages in Eq. (2.12) are not needed individually
but only in certain groups:

(ng&—= (ns++na )

=2+ Im f((o)G.(kk~(o+io)des, (2.18)

(2.10) j 1

V. L. Bonch-Bruevich and S. V. Tyablikov, The Greee Euec-
tcott 3EBth(Bt tfc st(ftcttic(ft Mech(tttccs (North Holland Publlslnn& Thus a calMat»n of the dtagonal elements G,(kkl&)
Company, Amsterdam, 1962). of the conduction-electron Green's function is all that
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is required to determine the average energy of the system. We shall be content to have our results in terms of the
averaged (m;,)'s.

To complete this section we shall write down the basic equations of motion. First we need

[co—$(k'o)]G, (k'k)+ JpN' ' P exp[i(k' —1) R;]I',(jlk) = —(2z.) 'bk k. (2.22)

This in turn requires

[cp—$(k'o)]F', (jk'k)+ JpX ' P exp[i(k' —I) R;](SQG,(lk)

—(((m;,sa&,t+S;,m;,at, ,t~ ak,))—I',(jlk))+JpX ' P exp[i(k' —1) Rp]

X((S&,Sp, ,a«t S;—m;,at, ,teak, ))—JpX 'P exp[i(1'—1) R,]
X((S;~at~tak', aug' —Sjaat, guk, r—gl, ~ —2mjegtaak' 'e at'

I uk ))=0 (2.23)

[ot—$(k'u) ]Z,(jk'k)+ JpS ' P exp[i(k' —1) R;]((m; 'a«t+S;,m;,a&,t
~ ,ak,))

+Joe 'Q exp[i(k' —1) Rp].((m;,m;,a tt+m;, S;,a t,t~a, k,))—JplV 'Q exp[i(l' —I) R;.]
1 11'

X((S;,a«tak. ,ta&. ,—S;.a&,tak. ,ta&.,
~
ak,))= —(27r)

—'(m;, )bk. ,k. (2.24)

Here j is one impurity (at R;) and j is the other im-
purity (at R;.). These are rather frightening equations,
but as in Nagaoka's paper, after the chain-breaking is
managed, only a finite number of unknowns occurs, and
the equations can be solved exactly for them. The prob-
lem of chain-breaking will be discussed in the next
section.

It should be noted that in Eqs. (2.22)-(2.24) and in
what follows, the energy dependence of the Green's
functions is omitted in notation for convenience, but is
always to be understood.

3. CHAIN-BREAKING, AND A THIRD
POWER OF JQ CALCULATION

Equations (2.23) and (2.24) involve Green's functions
of higher order for which we must either get new equa-
tions of motion, or else chain-break into approximate
linear combinations of the basic functions in Eqs.
(2.14)-(2.16). Nagaoka followed Zubarev" in the man-
ner of chain-breaking, keeping coefficients that con-
served the total spin. He veri6ed that the results were
exact to terms involving the third power of JQ.

When the operators become more and more compli-
cated, it beomces more and more dBBcult to know just
what linear combination of the basic Green's functions
to take. Our approach will be to let the third power of
JQ terms guide from the outset the details of the chain-
breaking. The importance of these terms was 6rst
demonstrated by Kondo' in the scattering problem. He
showed that these terms could explain the resistance
minimum, and in fact the deluge of papers on this and
related problems is a testimonial to the significance of

Kondo's paper, and in particular to the importance of
the terms of higher power than the second. We shall
need 6, therefore, accurate to at least three powers of
Jp. From Eqs. (2.22)—(2.24) this means that F and Z
are needed to two powers of JQ, and the undecoupled
Green's function in the F and Z equations to one power
of JQ. Thus we shall calculate the various equations for
the latter to the desired power of JQ and see if some
chain-breaking can be inferred.

Before doing this, we should like to demonstrate di-
rectly that the third power of JQ terms are. of signi6-
cance for the Ruderman-Kittel problem. To do this, we
have worked out the exact third-power expression 6'
for G, omitting reference to magnetic 6elds. After a
mountainous calculation, we found

Q G,'(kk~ tp) =—z
—'[tp —P(k)]-'+ JpA' '[tp —$(k)] '

X ((Sts+Sss)[2h(0)(1+2g(0))+4N]+(S«Ss~)

[4cos(h R)h(R)(1+4g(0))
—4h(R)(2g(R)+h(R))+SN]l, (3.1)

where

h(R)= —JplV 'g exp[ik R][cp—$(k)] '

g(R) = JpN ' Q exp[ik. R]—
XL -k(k)]-'[f(t(k)) —;],(3.2)

f(~)-f(e) ~=~(1)
u= (Jp/N)'P

11'

"D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960} LEnglish here is R —R.
transl. : Soviet Phys. —Usp. 3, 320 (1960}j. If one sets (m;, )=0, and (Sts)= (Sss)=S(S+1)in Eq.
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(3.1), the remaining terms give

r&, '=IrnG '(kk)=
3s-Js'$(S+1)c

[1+4Reg], (3.3)
jV

which is the standard Ruderman-Kittel-Kasuya-Yosida

where c is the impurity concentration. This expression
for the relaxation time (in this case equal to the lifetime)
is Kondo's famous result. On the other hand, the erst
term in the second square bracket of Eq. (3.1) may be
inserted into Eq. (2.21) to give a contribution to Eq.
(2 5)

18m Jo' x cosx—sin@
x= 2k pR, (3.4)

expression. This method was used by Kim and Naga-
oka."The next term in the second square bracket is
third power in Jo and usually neglected, but it looks a
good deal like the standard term except for the appear-
ance of the Kondo g factor. This suggests a possible
temperature dependence in the effective Heisenberg
interaction, and it is this effect that we wish to pursue in
greater detail in what follows.

We now return to the problem of chain-breaking
Eqs. (2.23) and (2.24). We need for this purpose G, I',
and Z to first power in Jo, as well as certain averages
which are to be evaluated by the Green's-function
method also. Without the tedious details, we present
the results for these quantities, the superscript in paren-
thesis indicating the power of Jo up to which these
expressions are valid:

1 2

G,(k'k) &'&=[o& &(k'—o)] ' ——
8&, &,+P JeiV '(m, )exp[i(k' —k) Rt][o&—$(ko)] '

2r
(3.5a)

2

Z,(jk'k) l'&= [o&—t(k'o')] ' ——(m„)B&, &,+ p JstV '(m„m„)exp[i(k' —k) Rt ][I—$(ka)7 ', (3.5b)
27r

F,(jk'k)&'&= JsA '[o&—&(k'o)] '[o& ((k—o)] 'exp[i(k' —k) R;)((S;, ,St )+2f($(k'o))(mt. )},
f (t(1))—f(k(1'))

(n&~.,)&'& =f(&(lo))8» +J,cV
—' P exp[i(1 I') R—,](m.,)

~(1')—~(1)

f(E(1))—f($(1'))
(m„tt», )&'.&= f(((1))( m)b p+&JpiV 'P exp[i(1—1') R;](m;,m, )

~(l') —~(1)

f(((1))—f(t(1')) f(&(1'))[1—f(&(1))]
(St,tt&,ta&,)=JsS ' exp[i(l —I') R,] (S;,S;,) +2(m; )

&(1')-~(1) t(1')—l(1)

(3.5c)

(3.5d)

(3.5e)

(3.5f)

Next, as an example of how the chain-breaking works, consider one of the undecoupled functions in Eq. (2.23)
to 6rst order:

((mrems, u&et[a&, ))t'&=[o&—$(lo)] '(—(mt, ms~)g», +[o&—g(ko)] 'JolV ' P exp[i(1—k) Rt](mt, ms, m, ,)}. (3.6)

But to this order, from Eq. (3.3) we have

((mt.ms. at, t
~

a&,.))'"= (mr. )Z.(21k) l'&+(ms. )Z.(ilk) &t& —(mr.ms. )G.(lk) '". (3 &)

The chain breakimg up-proximatiots consists of assuming that this relation is good to all orders, i.e.,
((m&,ms, u&,t

~
a&,))—(mr, )Z, (21k)+ (ms, )Z, (11k)—(mr.ms. )G.(lk) . (3.8a)

We have worked this out in detail since it is an important one. Notice the sign before the last term on the right.
This decoupling is perhaps not unique, but it is the simplest relation that is satisfied to erst power in Jo."

Another example is the following
f(t') —f(&)

((Sr,a~, a&, , a~ e~ a&,e)) t'& = JstV '(St,Sr, ,) exp[i(1—I') Rt]
o&—&(k'o)

f(k(k'o)) ~1'k'
+exp[i(l —k) Rt]

to —&(k'o) —$(ko.)+$' o&—$(k'o) —$+$'
—2JplV '(mt )

f(k') [1—fR)] f(k(k'o)) [1-fR)]
&& exp[i(1—1') Rr] +exp[i(1—k) Rr]

o&- &(k'o) o&—&(k'o) —&(ko.)+$' o& —$(k'o) —$+$'

=(S,.S», ) G.(k'1) o +(~, , .) o I'.(11k) '
where $= $(lo) and $'= $(1'o). Removal of the superscript (1) gives then the chain-breaking approximation.

"D.J. Kim and Y. Nagaoka, Progr. Theoret. Phys. (Kyoto) 30, 743 (1963)."This decoupling specifically requires that (m, ,) be of seroth order. This is a fundamental assumption in the paper.
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We now list all the approximations used in the decoupling. The first has already been given in Eq. (3.8a). Then
we have

((ml 52 ai—
~
ak )),—(mi. )F.(21k),

((Si.S2, .ai.'~ ak.))=0,
((si.m2.ai, .t~ ak.))= (mg. )F.(11k),

((Si, ai tak, tai, ,~ak, ))=(Si, ,Sk v )G (lk) —(Si, ,Sii,)G (k'k)

((Si„ai, .ak .av, .i
ak, ))= (nk v.)F.(11k)—(Si&iv, .)G.(k'k),

((Si.ai.'ak, .tai .I
ak.))=(Si.Sk v, .)G.(lk) —(niv. )F.(1k'k),

((S,.a, tak. . .tai. .i
ak, ))= (nk. v, .)F.(11k)—(niv, .)F.(1k'k),

((mi.ai.tak', —rr ai',—
~
akrr)) =-;(nk v++n„.v )Z.(11k)—(Si,Sk i,)G.(lk),

((Si,'ai.'
i ak.))= (Si,')G.(lk),

((Si.mi.ai, .t i ak.))=—-,'F.(11k) .

(3.8b)

(3.8c)

(3.8d)

(3.8e)

(3.8f)

(3 88)

(3.8h)

(3.8i)

(3»)
(3.8k)

Equation (3.8k) is exact to all orders for 5=—,. There seems to be no simple chain-breaking relation for arbitrary
spin for this quantity. We therefore shall have in mind a restruction to S= 2 in what follows. Equations (3.8e)—
(3.8k) do not differ from what Nagaoka had; however the equations they now satisfy exactly to first order may
have terms referring to both impurities. Equations (3.8a)—(3.8d) are new.

Just as we ended the previous section with the equations for G, F, and Z, we shall end this section with the same
three equations, but chain-broken:

[oi—$(k'o)]G.(k'k)+ Jox '
p,. exp[i(k' —k") R;)I' (jk"k)=—8k', k—,
Qf f~ '2~'

[o~—$(k'j o)]F,(jk'k)+ J&1v '[(sin m;, ') 2(—sk!» 5—.)

+(sk. ..~les;, .)j Y: exp[i(k' —k").R;]G.(k"k)—J,lv-' P exp[i(k' —k") R,][(nk...U& ——',)F.(jk"k)

(3.9)

(nk'+ +nk —"'—1)&.(jk 'k) j—J 0 V '(m,'.) P exp[i(k' —k") R,'jF,(jk"k) =0. (3.10)

[a&—&(k'o) ]Z (jk'k)+ J&$ ' P exp[i(k' —k") R;]
off

)& l(m, ,'—Sk. ,"'5,,)G,(k"k}+(nk.,M —x}F,(jk"k)}+Jo!V ' p exp[i(k' —k") R, 1(—(m; m;, )G,(k"k)

+(m;,}Z,(jk"k)+ (m;,)I', (j'k"k) }+P(jo)G.(k'k) = —(m;.)8k k(2ir) '. (3.11)

Here j is one impurity, j' the other, and

nk, "'=P exp[i(k" —k') R;]nk'k"„

Sk'&'=p exp[i(k" —k') R;]Sk k-.

(3 12)

(3 13)

mula, to terms of second power in Jo, plus a self-energy
term. Finally, in Eq. (3.11)

pU )=~o~ '& L(5,—.5."')-(5.5,—."')j (3.16)

The energy denominators in Eqs. (3.9) and (3.11) are
defined by Eq. (2.3), and the one in Eq. (3.10) is defined

by

Equations (3.9)—(3.11) are still rather frightful, but
at least only t"'s, F's, and Z's appear as unknowns.

4. SOLVING THE EQUATIONS

where

~(kjo) —=~(k, ~)yE(f o) E, —(3.14) In order to solve Eqs. (3.9)—(3.11) we must introduce
certain sums:

E(jo}=Jox '~ (nk. &» —nk, ."&}.
k

(3.15}

The expression on the right in Eq. (3.15) can be shown

(see Appendix 8) to contain the Ruderman-Kittel for-

G.(j'1)=Q exp[—ik' Rf $G.(k'k),

F,(jj'1)=P exp[—ik' Rf )F,(jk'1),

Z,(jj'1)=—p exp[—ik'. R;.jZ (jk'1).

(4.1)
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We also need

G,(j1)=P exp[—ik' R,7[pal &—(k'o.)j 'G, (k'k) . (4.2)
kf

Now by multiplying Eqs. (3.9)—(3.11) by exp( —ik' Ri)
and summing over k', we get equations depending only
on the set of functions in Eqs. (4.1)—(4.2). Similarly we

multiply by exp( —ik' R,) and sum. The resulting set of
equations involves then a finite (and small) number of
unknowns, which can be solved for without approxi-
mation. The equations obtained in this way are the
following:

G.(11)=n.(ik)+h. (0)r.(i1k)+h.(R)I'.(22k), (4.3)

F.(11k)= [g'+, 1.(0)+g', 1.(0)ji'.(11k)
—g'. ..(0)F.(1ik) —(m,.)h,.(R)F.(12k)

+Xi.(1I0)G.(1k), (4.4)

F.(12k) = [g'~, 1.(R)+g', 1.(R)$1',(11k)
—g', ,1,(R)F,(11k)—(mp, )hi, (0)F,(12k)

+Z,.(1 I
R)G.(ik), (4.5)

z.(11k)= (mi. )n.(1k)+g'...(0)F.(11k)
+L,(1 I 0)G, (1k)+(mi, )h, (R)I', (22k)

+ (m,.)h.(R)Z.(»k)
—(mi.mp. )h.(R)G.(2k)+P(io)G. (1k) ) (4.6)

z.(12k) = (mi. )n.(2k)+g', .(R)F.(11k)
+L (1IR)G,(1k)+(mi, )h, (0)I',(22k)

+(m„)h, (0)Z, (12k)—(mi, m2, )h, (0)G,(2k)

+p(1o.)G (2k) . (4.7)

In these equations, a large number of abbreviations have
been used, which will now be enumerated. First there
are the e's, E's, and L's:

n, (ik) = (2m) ' exp[—iR1 k)[p&—$(ko)j ', (4.8)

Lt 1 (1 I R) = (S1 ml )h 1(R)
—2V'1.(1IR)+~'-..1.(1I R) (4 9)

L.(1IR)= (mi. ')h. (R)—y' ...(1IR). (4.10)

These are abbreviations used simply to shorten the other
equations.

Next there are the g's, h's, and y's. These are sums
de6ned as follows:

g', 1,(R)= —Jp!v 'p exp(ik. R)

X (11su. ' —p)[co—&(kio.)]—', (4.11)

hi (R)= Jp!v 'p exp(ik R)

X[1p—&(kio)3 ' (4 12)

7'.. 1.(1 I R) = —spiv ' P exp(ik. R)

X(S1,."'Si, .)[o1—&(kio.))—', (4.13)

X(, ' —')[ —~(k )j-' (4 14)

As regards the 6rst spin subscript on g and y, we shall

adopt the convention that if it does not appear at all,
then the following sums are meant:

g'.1.(R)=
p & g'. .1.(R) (4.15)

y' 1,(1 I R) =—Spiv ' p exp(ik R)

X(Sj,&'& Si)[p1—$(kio)i ' (4.16)

This completes the de6nitions of the functions that ap-
pear in Eqs. (4.3)—(4.7). If one of the g, h, or y appear as
a function of 0 rather than of R, then they are obtained
from the above formulas by setting R=O.

The g function is related to Kondo's similarly notated
function (but containing an extra —', in the numerator of
the summand) and gives rise to the log-T dependence in
the resistivity, if we replace (e&) by a step function, and
neglect local 6eld effects at the impurity. If the latter
are taken into account, then at very low temperatures

g becomes temperature-independent. In Appendix A we
derive these two expressions, and infer an interpolation
formula. In any case it is clear that we must be careful
to take into account situations where a local field occurs,
especially since in the Heisenberg interaction, we are
dealing with these very 6elds.

Before proceeding, notice the various orders of small-
ness indicated by the three types of sums g, h, and p.
Because of the log-T behavior, g must be taken to zeroth
order in smallness even though the factor Jo appears in
it. (As is well known the real part of 1+2g is actually
set equal to zero in defining the resonance temperature. ')

However k is always of the order of Jon„where n, is
the density of states at the energy E. The important
E's are near the Fermi surface, and in that case Joe, is
quite small. We therefore treat h as of first order in
smallness.

Finally, y will also be treated as first order. It looks
as if it might be second order, since it contains one factor
of Jo in its definition, and another factor in the lowest
order terms of its summand. The latter we regard as a
true first-order effect but the sum over k gives rise to
a logarithmic term that may nullif y the effect of the

using Eqs. (3.12) and (3.13) .The subscripts and. super-
scripts on these quantities are not altogether randomly
placed; they mean the following. The superscript on g
and y refers to the superscript on the e and Sk that ap-
pear in their summands. Similarly the 6rst spin index
a' on g and y, refers to the spin index on the n and Sk.
The second subscripts on g and p, and the only subscript
on h refer to the g(kio) in the energy denominator. If
instead of the subscript 1o. we had simply 0., then the
energy denominator would be simply pp —f(ko). Thus

g', ...(R)= JplV 'P—exp[ik Rj
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the other factor Jp. Thus we conclude that y is of Grst
order.

While we are on this topic of orders, notice that the

P and E(jo) of Eqs. (3.15) and (3.16) are of second order.
In what follows and in fact in what preceded we make

a distinction between powers of Jo and orders of eJ'0.
The chain-breaking approximations referred only to the
powers of Jp, but not necessarily to the orders of Jpe, .

We are now faced with solving Eqs. (4.3)—(4.7). This
is an algebraic problem of no unusual difhculty, although
it becomes enormously tedious. We shall write the
answer down directly for G without going through any
of the intermediate steps. We Inention, however, that it
is somewhat simpler if one solves irst for I" and then for
G. The answer is

1 JpS ' 1
G.(k'k) =—8"',"—

2~ o)—P(k'o.) co—&(k'o) D,

XP exp(ik' R;)fC,(j'k)A, (jj')

+C (jk)[1+A.(j'j'))}. (4.17)

Here the denominator D is symmetric in j and j' (j'
is always the impurity that is not j here)

D.=D.(jj')= L1+A.(jj)][1+A.(j'j')]
A.(jj ')A.(j 'j—) (4 18)

The expression for C is

C.(jk) =-.(jk)[(m;.)+~.(j)]
+p(ja)["—((ko)]—'(2n) —'(exp( —ik R;)

+exp( —ik R;)h, (R)(m,' ~ )} (4.19)

in terms of a 8 to be defined below; and A(j'j) is

A,(jj') =2m. P exp(iRp k)C,(jk)

Also

(m'. '+') =
1ah, (0)(m; .) (4.23)

and a series of e's have been delned that are always of
higher order than other terms that appear in the same

bracket:

e =h;.(R)[g.,;.(R)(m;..+)]+».(R)[g ...(R)(m, .—)],
'2 ———2(mp. &"&)h;,(R)g&,;.(R),
&3= —(m;, &+&)h;.(R)g&'. ;.(R),
e4 ———(mj'. &+')h;.(R)IC.(jR)

+(m,'.'-&)h. (R)I..(j I R),
c'= —(m; .'+')h;, (R)E;,(jI R) .

(425)

Notice that all the e's are proportional to (mp ) and
disappear in the one impurity problem.

The result in Eq. (4.17) is exact subject to the chain-

breaking approximations It is however limited to S=~.
It is clear that if we remove all terms involving R and

m; w e should get the corresponding solution for the
one impurity problem. It is easily seen that in this case

There have been used here a number of quantities
which ultimately will play no role and will eventually
be neglected. Thus 8 is a first-order quantity:

&.(j)= —(~ ')h .(0)+2&'. .(jIo)+(

X[».(0)—h,.(0)]+&' .,..(jl 0)—r „.(jI0)+~,

&~.(jI0)+"
+[g'...(o)—g'. .l.(0)+~r] . (4 24)

1+g', ,g.(0)+&3

=—h (R)L(m .)+~.(j)]+P(j~)
dh. (R) dh. (0)

X +h, (R) (mp. '—&) . (4.20)
de d(0

1 1
G~(k ~k) =—8y' g-

2n (o—$(k'o) o)—&(k'o)

JpS

~ Uk)L(m .)+&.(j)]+P(j~)[2~(~—E(k~))'] '

The quantity A(jj) splits up into two parts

A, (jj)=2(mp, +)h;, (R)g,;,&(R)+A,'(j),
A' being also in terms of 8
A.'(j) = —2g'. .(o)-[g'...(o)—g'. . .(o)+~r]

2g', '.(0)+~2

x ' —».(o)&.(j)+[h.(R)]'
1+g&'.,;.(0)+as

X(;.m;. ' ')+P(j ) [h.(0)]
dE

(4.21)

1+g'...(o)
1—2 '. .(0) —h.(0)&.( ')+PU ) h.(o)

1+g', ,;,(0) dE
(4.26)

Here 8 is still quite complicated. This result differs

from Nagaoka's by containing all the local fmld eRects.
If these are now eliminated (so that (m;, )=0, j=1, 2)
we get

1
G.(k', k) = —bg. ,g-

2m co—P(k')

+h.(R) [h.(R)](m,'.&-~) . (4.22)
dE

~.Uk)&.(j)JpÃ
(4.27)

~—h(k') 1+2g'(o) —h(0)&-(j)
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where now 8 simplifies to

a.(j)= —(Sr2)h(0)+27r(S lO).

where

(4.28)
Z,,'=—P rm

2'
de f(or)or ——h.(R)'

de
S. THE EFFECTIVE HEISE5BERG INTERACTION

It is clear from the preceding section that the solution
in Eq. (4.17) is quite formidable. Fortunately for what
we seek, most of the complications disappear to lowest
order, and it is therefore in this approximation that we
wish to continue the calculation. We are after terms
proportional to (m; nr; ), and the lowest order of such
terms is second. Remember that a factor of g does not
raise the order.

A first simplification to note is that the terms contain-
ing p in the A's and C's are generally of third order, and
will be neglected. Second, the A (jj ')A (j 'j ) term in D,
Eq. (4.18), is second order, and it can be seen that it
can never produce a Heisenberg term in second order,
if the denominator can be expanded. Such an expansion
is valid only if 1+A does not go to zero. We shall as-
sume that this restriction is permitted. The result of
these approximations is that

1
G~(k'k) ——

by~ g
2rr or —((k'a)

JX '
P exp(ik' R,)

or —$(k'0) r=i

d
X I:1+A '(j)7 'L1+A.'(j')j '+2 & —h.(o)

dc'

Xh;".(R)gr" r'..(R)$1+A.'(j")$—' . (5.5)

This completes the derivation of the basic expression
for the effective Heisenberg interaction to second order.

It should be noted that this is considerably simplified
from the rather monstrous expressions at the end of
Secs. 2 and 3. We can get a further simplification by
integrating by parts the first term in curly brackets. The
integrated out part will vanish at the limits, and the
term proportional to ordf/dor will give zero also since
df/dor acts as a delta function (at or=0). The result is
then

J;, —=J(R)=Im

d
X Q th (R)]' p & r+~0—p

dc'

+ ZZ h'"(R)g'", '"(R) r-'4, '-( ), ( 6)

X{ 'r~(2 k)h~(R)X~(j)X~(2 )+ir~(jk)X (2)) ~ where we have isolated the R-dependent factors, the
(5 1) others abbreviated by

where

.)+&.(j) ( .)+&.(j)
1+A.(j) 1+A.'(j)

2(~r .'+')hr. (R)g'(Rr),
1+A. (j)

(5.2)

X.(j) ~
Heis —2 h;.(R)g', ;.(R) (5.3)

{1+A.'U)3'

and so does the quadratic term. Summing up, and plac-
ing in Eq. (2.5) we find

Once again we assume an expansion is possible, so that
1+A' must not go to zero. The expansion of X utilizes
the separation of A in Eq. (4.21). This was the reason
for the separation. Glancing at Eq. (5.1) and Eq. (2.21),
we see that a Heisenberg type of term in the energy can
come about through an I linearly, or quadratically. And
in fact from Eq. (5.2) we see that X does have a second-
order Heisenberg contribution

e,.=—
I 1+A.'(1)j-'(1+A.'(2)3-', (5.7)

2~

1 dh (0)
L1+A-'(j")j-'

2Ã dM
(5.8)

Up to now all the approximations have been made
with powers of Jo or orders of Joe, in mind. Equation
(5.6) must be regarded as a erst term in an expansion of
powers of Jys, for example. In the next step, we shall
appeal to another kind of approximation, namely that
stemming from R being large. This is the typical situa-
tion envisaged: a very dilute alloy, with indirect inter-
actions having nevertheless a surprising and significant
effect. For very large E, one can employ asymptotic
expansions for the integrals in Eq. (5.6) and a further
simplification ensues. Namely terms containing the
factors orf(or) will provide higher order (in the sense of
higher powers of 1/R) effects than terms containing just
f(or) by itself. We shall not derive a complete defense of
this statement; it can be verified by appeal to the
methods described by Lighthill'4 for example. A plausi-

z' .;,=g z;; (s;,s,'.), (5.4)
~4 M. J. Lighthill, Introduction to Fourier Analysis and General-

ize& Functions (Cambridge University Press, New York, 1958).
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bility argument can easily be made however. The factor
k(R) in the free-electron approximation is a swiftly
oscillating function of pp'~'Jt. , and f(cp) at low tempera-
tures can be regarded as a function with a discontinuity
at co=0. An integral containing a product of these fac-
tors will, for large R, "oscillate away" over most of the
region of integration, the region right near the discon-
tinuity being the exception. Thus the rest of the inte-
grand can be (approximately) removed at the value
co= 0. But in the terms referred to above, the rest of the
integrand contains a factor co, and hence when removed at
co=0 gives just 0. This means of course, zero to lowest
order in powers of 1/R. A term like the one containing

Pi(p~) in Eq. (5.6) will not however disappear in lowest
order when that is done, and hence the asymptotic ex-

pansion of Eq. (5.6) starts off as follows:

J(Z)-™I ' P, .(0) d f( )[k.(&)]'. (59)

If we set pi ——1, we get exactly Kim and Nagaoka's"
expression for the standard Ruderman-Kittel-Kasuya-
Yosida expression [containing however a magnetic field
eRect which we neglect since it provides corrections of
order (ting ext/E&) 1/2) ~

J(R)~J(R)«&ip P Re[1+A,'(1)) '[1+A,'(2)) '

where [see Eq. (3.4)]
18mJo' cos2k~R

J(R) «&=
Ep (2kFR)'

(5.10)

(5.11)

In obtaining this result, we have considered only the
real part of pi to be significant, the imaginary part being
of higher order in Jpe, (at least until the resonance

appears) .
Equation (5.10) is then our corrected effective Heisen-

berg interaction. To zeroth order we have [see Eq.
(4.22))

1+g u, n

A.'(j)=-2a'. (o)
1+a'..i.(0)

(5.12)

We remember that the subscript jo- means that the en-

ergy denominator contains reference to the eRective
6eld at the site of the jth impurity. Thus the numerator
of the fraction in Eq. (5.12) does eot contain this effec-
tive field effect (it does however contain reference to an
external magnetic field if there is one). The difference
between these two cases is signi6cant because, as shown

in Appendix A, at low temperatures, if there is no loca,l

field, then g is approximately,

g, (0)=—Jpe, ln(Ei/kiiT), pt=0 (5.13)

and if there is a local 6eld it saturates to a value

g,;.(0)=—Jpe, ln[Ep/[X;(), pp=0, (5.14)

—2Jpe, ln[b, (T))
8 g'g=

1—Jpe. ln[b, (T)]
(5 18)

Here b, (T) as T gets lower and lower depends less and
less on T and approaches a certain 6nite value. We shall
assume that the denominator in Eq. (5.18) does not
vanish. However, we envisage the possibility that
Joe, lnb; could become of the order of magnitude 1, so
that a,;, could be of order of magnitude 1. It could be
smaller, but we shall treat it as not a negligible
quantity.

By analyzing the various cases and temperature de-
pendences of the quantities involved, we have reached
the following conclusions on the basis of the results just
obtained.

(1) If no local molecular fields exist, then Eq. (5.16)
inserted into Eq. (5.10) shows that a logarithmic tem-
perature dependence will occur that is quite similar to
what arises in the resistivity. Our results indicate a reso-
nance (we have left out the imaginary parts and hence
the resonance width, but it is there) at a critical
temperature

1+2Jpe. in[Em/kaTc) =0 (5.19)

just the same as for the resistivity. Below this resonance
it is not clear that our evaluation of the g's is correct,
since some self-consistency correction is probably neces-
sary. ' This eRect will be to raise the magnitude of the
RKKY interaction if Jo is negative, and to lower the
magnitude if Jo is positive. If Jo is negative, then as
T, is reached the eRect is much larger than could ever
occur if Jo is positive.

(2) If a local molecular field exists, then no matter
what the sign of Jo is, a critical temperature signaling
a resonance will occur at T.':

2(Jpe,)'
»[E~/koT. ')=O. (5.20)

1—Jpe, lnb;(T, ')

We assume here that the denominator 1—Joe, lnb; is
positive, however.

Let us consider the temperature eRect for Jo negative
and a local field existing. At large T, J(R) equals J(R) «&.

As T drops, J gradually increases (both because of the

where X; is the magnetic 6eld energy. An interpolation
formula (Appendix A) is then

g,;.(0)=—Joe. ln[Er/(k&T+ ~)~;~)], pi=0 (5.15)
—= —Jpe, ln[b, (T)].

Referring to Eq. (5.12), we see that if there is no
eRective 6eld, then

A.'(j)=—2g(0)—2J'pe, ln(Ei/ksT), pi=0 (5.16)

and if there is, then

A.'(j) = o,i —[1 Joe—ln(Er/koT)], pi=0, (5.17)

where
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linear and the quadratic terms in Jp in A') until a maxi-
mum is reached, after which it falls. The maximum
would not be in6nite because of the resonant widths left
out of our expressions.

Consider now the case where Jp is positive, and a local
field exists. Again at large T, J(R) equals J(R) ~ ~. As T
decreases, we imagine that at Grst the terms linear in Jp
will have the largest eRect, and these terms will decrease
J. However, eventually these terms reach a Gnal value
given by Eq. (5.14), and then the explicitly T-dependent
term in Eq. (5.1/) takes over. The effect of this term
will be to raise J(R), so that as T decreases, first J de-
creases and then it increases to a maximum value, after
which it Gnally decreases again.

These consitute the conclusions of the paper. There
are two further comments we wish to make. The local
Geld itself is usually thought to contain the RKKY
term in it. For just two impurities, we could then formu-
late a self-consistency condition, and try to determine
J as a function of m; treating the local field energy X

as a known function of the unknown J.The temperature
dependence might alter significantly because of this new
place for the unknown. A calculation of this sort is de-
ferred to a later paper.

Finally, a remark about accuracy. In the local-Geld—
dependent expressions, the important T-dependent term
in Eq. (5.17) contains two powers of Jp. If we expand
the denominator containing A', this T-dependent term
will occur in J only in fourth power of Jp or higher. Since
our approximations were valid exactly only to third
power of Jp, could it not be the case that this local Geld
eRect is spuriousP We see no convincing answer to this
criticism. What we have obtained is an estimate of the
powers of Jp eRects higher than the third, but we can
not assume that the estimate is rigorous. We should have
to perform the chain-breaking at one higher power of Jp
in order to be absolutely certain. Such a calculation
seems almost prohibitive in complexity, but the indica-
tions are that the very low-temperature behavior might
require it for the future.

ergy EJ:.Integration by parts gives

g= Ii+Ip,
where

de, E—Eg—X'
Ii —J——p dE fp ln—

dE Eg

dfp E Eg——X
I2= —Jp dE e, In

dE, Ep ']

Using a free-electron model

3Jp
Ii — ——

l x+lnx —x lnx j,
2Ep

where
E +X '~'

x+=——

(A2)

(A3)

(A4)

(A5)

(A6)

1

dp8 +1
»l.—xi&.T l

= —»l~/x~TI, »&n~T

=O(1),

Since for ) —& 0 we neglect this integral anyway, we infer
an interpolation formula

whence
I,=—inL1+ lZ/k Tlj, (A9)

g——Jpn, (Ep)ln (A10)

APPENDIX 3: THE EVALUATION OF E(je)
From the definition in Eq. (3.15), and the relation in

Eq. (3.5d) we have to second order

I~ is therefore of order Jpn, and is neglected.
The other integral becomes on simple manipulations

Ip
—Jpn, (E~)——LIp+in(E p/kiiT) $, (A7)

where

APPENDIX A: EVALUATION OF g

We consider g at co=0 containing a local Geld energy
A, in general in the denominator. We shall estimate on
the basis of approximating ej, as a step function. We
have then to evaluate

E(jp) =2(Jp/E)' (ni;.)

g= J~ 'Z fpl:E(&)jLE~+—lI —E(&)3 '

=Jp dE n (E)fp(E)(E—Ep —lI,) i (A1)

where fp is the Fermi function relative to the Fermi en-

The 6rst term is the Ruderman-Kittel eRective field
from impurity j', and the second term is the eRective
Geld from that part of the conduction electron polariza-
tion caused by the jth impurity itself.


