
410 L. R. TESTARD I AN D T. B. BATEMAN

The importance of the lattice softening to super-
conductivity (via the electron-phonon interaction) will

depend on how much of the phonon spectrum experi-
ences the softening which we have detected in the
megacycle range. A consideration of transport and equi-
librium properties has indicated that for the high-
frequency phonons some softening may occur, but it is
probably of smaller magnitude than that found for the
ultrasonic waves. However, an appreciable inhuence on
superconductivity of the unusual phonon behavior may
not require that the softening extend out to Debye
frequencies. Morin and Maita' have found from specific-
heat data that for the high-T, superconductors the
important phonon frequencies involved in the super-
conductivity are at least an order of magnitude smaller
than the Debye frequency.

Finally, there is little evidence from existing data
that the structural transformation has led to an appreci-
able reduction in the transition temperature for super-
conductivity. For materials which do transform, the
cubic state at 21'K clearly cannot possess any properties
suKciently superior for superconductivity to raise T, by

more than 4 K. Stress experiments which have pro-
duced tetragonal strains comparable to what occur in the
structural transformation do not alter T, by more than
0.5'K. Since the difference in T, between transforming
and nontransforming samples is generally less than
0.5'K and apparently not consistent in sign, the eBect
of the structural transformation on T, is small. How-
ever, the proposed fine structure in rt(e) is of the order

kT„and it is not evident what value (or average)
of rt(e) determines T,. A degradation of the super-
conducting behavior could be present if such 6ne
structure should limit T, because pf the width of the
peak.
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A proof is presented of the virial theorem for the interacting electron gas in a uniform positive background
with the boundary conditions used in actual calculations of the total energy.

T= E r, E= (r,E), — —— ——
dr, dr,

*Operated with support from the U. S. Air Force.
r N. H. March, Phys. Rev. 110, 604 (1958).

(2)

INTRODUCTION

'HE virial theorem for an interacting electron gas
in a uniform background of positive charge, a

simple model useful in the theory of solids, was written
some time ago by March' in the form

2T+ V= —r,dE/dr, . (1)
Here T, V, and E are, respectively, the average kinetic,
potential, and total energies per particle for the system
in its ground state and r, is the radius of a sphere con-
taining one electron, in units of the Bohr radius cp
= tt'/nte', i.e., (4sr/3)r, sass ——0/E, where 0 is the volume
and E the number of electrons. In conjunction with
E=T+V, this relationship can give the average kinetic
and potential energies separately, once E is known as a
function of r,. Explicitly we have

1
V=2E+r, E= (r,'E)—. ——

dry rs dr4t
(3)

s See, e.g., W. J. Carr, Jr., R. A. Caldwell-Horsfall, and A. E.
Fein, Phys. Rev. 124, 747 (1961); W. J. Carr, Jr., and A. A.
Maradudin, ibid 133, A371 (1964).; L. Hedin, ibid. 139, A796
(1965).' J. C. Slater, J. Chem. Phys. 1, 687 (1933).

e See, e.g., Per-Olov Lowdin, J. Mol. Spectry 3, 46 (1959)..' J. de Boer, Physica 15, 843 (1949).' T. L. Cottrell and S. Paterson, Phil. Mag. 42, 391 (1951.).

These relations have been quite useful. '
However, no proof of (1) has been reported in the

literature.
A relation similar to Eq. (1) was proved long ago by

Slater' for the electronic energies of a diatomic molecule
with the nuclei 6xed away from their equilibrium posi-
tions. Diferent proofs of the Slater relation have since
been given by various authors. 4 Also for the system of
interacting particles in a box, a relation analogous to (1)
was used by de Boer' and proved later with the method
of scaling by Cottrell and Paterson, 6 who paid particular
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attention to the boundary conditions and their con-
tribution to the virial. None of these proofs justihes
relation (1) for the system for which it was stated
by March, ' because of both the presence of the posi-
tive background charge and the different boundary
conditions.

Below we present a proof of the virial theorem (1)
for the electron gas in a uniform background of neu-
tralizing charge, with the boundary conditions used in
actual calculations of E(r,)

degree (—1) and thus

BVb
r, = —Vb.

~e

= —VC ~ (12)

Finally, V, (ri, ,r~) is a homogeneous function of
(rt, ,r~) of degree (—1) and therefore

H= T+U=T+V.+V,b+Vb.

Here T is the kinetic energy of the electrons,

(4)

PROOF OF THE VIMAL THEOREM

The Hamiltonian of the E electrons and the positive
charge spread uniformly over the volume 0 is

Adding the last three equations, we can write for the
total potential energy V(ri, ~ ~, r&,r,) of Eq. (4)

BV BV
g r"—= —V—r,—.

81; fs

The kinetic energy T= T(pi, ~,pz) is a homogeneous
function of all y's of degree 2 and thus

(14)

V, their Coulomb interaction energy,

g2

V 1

ri r~

V,b the electron-background interaction,

P
Vb= (—e) Q dsx

g 1'i—X
(7)

Note that relations (13) and (14) are valid also as
operator equations, since the components of the p's
and the r's commute separately.

From the virial theorem in classical mechanics, ~ we
are led to consider in the quantum-mechanical case the
operator that corresponds to the time derivative of the
oper ator8

G=P r, p;, "

with p= eE/0 the uniform positive-charge density, and that is
Vb the energy of the background, i.e.,

p2

Vb= — d'x d'x'
0 0 l

x—x'l

Qo-r, ', p~r, ')

as follows from the definitions of r, and p.
We observe now that V,b and Vb are functions of r,.

Furthermore, V.b(rt, .
, r~,r,) is a homogeneous func-

tion of all its variables (r ,r. ,r~,r,) of degree (—1), as
can be seen from Eqs. (7) and (9) by a change of the
variable of integration. The Euler theorem for homo-
geneous functions then gives

In Eq. (4) we have put V= V,+V,b+Ub In the fo.l-
lowing it proves convenient to keep the number of
electrons E fixed and consider how these quantities
vary with 0, or, more conveniently, with r,. We have [G,T]=g [r;,T] y, =ill p; =iA2T, (17)

i i /pi

where the last equality follows from Eq. (14), and

[G,V]=g r; [y,, V]

ihg r,'—t' aV
=el v+r. , (1g)

ar,

where for the last equality the relation (13) was used.

where [,]denotes the commutator. We recall that the
commutation rules for ri and y,- give the operator
identities [r;,f(pi, ,p~)]=iaaf/ay, , [y,,f(r, , ~,r~)]
= —iaaf/ar;. Using these we find simply

(
a a )2 r' —+r.—lU.b= —U.b

ar, ar)
(1O)

Similarly, Vb(r, ) is a homogeneous function of r, of

' See, e.g. , H. Goldstein, Classscal Mechaescs (Addison-Wesley
Publishing Company, Inc. , Reading, Massachusetts, 1957), p. 69.

'Note that 6 is not Hermitian. Introducing the Hermitian
operator G= (G+Gt)/2 gives us nothing new, since Gt= g;p; r;
=G+3XiVs and thus 6= 6+(3/2)XsA differs from G by a con-
stant that commutes psmith H.
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BV
(ih) '[G,H]=2T+ V+r,

Brs
(19)

Thus, we have, on account of the homogeneities of the
kinetic and potential energy functions, the operator
relation

right-hand side of Eq. (23) zero and thus

BV dE

This gives, in conjunction with Eq. (22),

(24)

The last term in Eq. (19) can also be written as
r,BH/Br„since T is independent of r, in our scheme of
keeping X Axed.

We can now prove relation (1) by taking the expecta-
tion value of both members of Eq. (19) with respect to
the ground state of the system. If we denote this state
by the normalized wave function 0 (r) =4'(ri, .

, r~),
we have

H+(r) =E+(r), (2o)

where E= (0'~ H
~
4)= (H) is the ground-state energy

for the system.
Since different considerations are necessary for vari-

ous boundary conditions on the ground-state wave
function, we shall discuss a number of possible boundary
conditions separately.

(LG,H])=0. (21)

This is seen by developing the commutator, making
use of Eq. (20) and the fact that H is a Hermitian opera-
tor with respect to functions %(r) and G+(r) = —ihg, r,

B% (r)/Br;, d~ ue to the boundary conditions on 4'(r).
We thus find from Eq. (19)

BV
2(T)+(V)= —

~

Br,
(22)

We can now relate (BV/Br, ) to BE/Br„by noting that
all quantities in Eq. (20) depend parametrically on r, .
Differentiating Eq. (20) with respect to r, and then
taking its expectation value, we obtain, since BH/Br,
=BV/Br„

Free Boundary Conditions

If we impose on the electrons no constraints other
than those of their mutual repulsion and their attrac-
tion to the positive background in volume 0, we may
take the wave function 4'(r) to vanish rapidly when
any one of its arguments r;~~ . Such boundary condi-
tions are often used in evaluating E(r,) for r.))1.

In such a case the expectation value of the left-hand
side of Eq. (19) vanishes, i.e.,

2(T)+(V)= r,dE—/dr, . (25)

Denoting the average energies per particle by a bar,
we obtain a proof of relation (1) by dividing Eq. (25)
by X, since S is just a constant independent of r,.

Note that identical arguments can be used to prove
Slater's' analogous relation for a diatomic molecule.
The only difference is that r, is replaced by the inter-
nuclear distance; Eq. (13) is still valid, since V is
obviously a homogeneous function of the electronic and
nuclear coordinates of degree (—1). For a general sys-
tem of electrons and fixed nuclei, Eq. (25) takes the
form

2(T)+(V)= —P R.. (BE/BR.), (26)

where R„are the nuclear coordinates.

1 4~e'
V=—P P exp[iq (r, r,)], —

20 ~w~' qw q

(27)

where q= (2ir/a) n with n = (ei,n&, e3) being & integers.
Expression (27), however, again gives a homogeneous
function of (ri, , r~,r,) of degree (—1). Thus, the
operator equation (19) is still valid, since in deriving it
use was made only of the homogeneous character of
V(r, r.) and not its specific form. The periodic boundary
conditions on the wave function are now

Periodic Boundary Conditions

Qne may object to the free boundary conditions for
the homogeneous electron gas, for then the volume of
the system is not well dehned; only the smeared positive
charge has a de6nite volume 0, whereas the electrons
extend throughout space. Furthermore, the usual evalu-
ations of E(r,), especially for r,«1, are performed with
periodic boundary conditions for %(r) on Q. It is of
importance, therefore, to investigate whether these
constraints contribute anything to the virial of the
system.

If, for convenience, volume 0 is assumed to be in
the form of a cube of side a(~ r,), the potential energy
V is then usually taken to be not exactly as given by
(6)—(8), but in the form

BE BV B%'

+ +*(II E) dr, — —
Br, Br, Br.

(23)
4' (1'i, , r~+ a, , r~,' g)

=@(ri, , r.. .r~, a), (28)

the integration extending over all space for each elec-
tron. We again note that, for the boundary conditions
under consideration here, II is Hermitian with respect
to % and B%/Br, . This makes the second term on the

where a denotes translations of any one of the Cartesian
components of r, by the cube lengths, i.e., a= (u, a,u),
and the last argument a(~r, ) explicitly denotes the
dependence of 0' on the size of the cube,
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We 6rst note that Eq. (21) is no longer valid, since
B is sot Hermitian with respect to functions 4 and G%'

for these boundary conditions, G% not being a periodic
function. Instead we have

since clearly r,8%/Br, = ad%/Ba. Combining Eqs. (30)
and (29) with the expectation value of Eq. (19), we
have

where

dE
2(T)+(V)+r, =@*—(H E)Cdr, —

drs 0
(31)

8 8)
e(rg, ,rg., a) —= P r,"—+a—~+(rg, ,ry, a). (32)

ar; aai

We now note that C, de6ned by Eq. (32), has the
full periodicity of 4, Eq. (28), i.e.,

C (r,a) =C (r+ a, , a), (33)

where we have introduced the notation (r,a) —= (r~,
r;, ,r~, a) and (r+a;, a)—= (r~, , r~+a, ,r~, a).
To prove this, we observe that partial differentiations
of Eq. (28) give

8% 8%
(r,a) = —(r+a, , a)—,

Br; Bf;
(34)

84)
(ih)—'(LG,Hj) = +*(H E) —P r,'—~d&, (29)

Q ar;i

the integration extending over the volume 0 for each
electron. Similarly, Eq. (24) is not valid for periodic
boundary conditions, because again B is not Hermitian
with respect to functions @and 8%(r; r,)/Br„ the latter
not being a periodic function. That is, the integral in
Eq. (23) does not vanish now, but instead we have

BV dE 84
rs =r, —+—*(H E)a d—7. , —

Br, dr, BG

that the partial derivatives of %(r,a) are evaluated at
the values of the arguments shown in the parentheses
at the right. If we multiply (34) by r;, sum over all j,
and add Eq. (35) to it, we get on the left-hand side
C(r,a) and on the right-hand side C(r+a;, a). This
proves Eq. (33).

With respect to functions 4' and C that satisfy the
periodic boundary conditions (28) and (33), it is clear
that H is a Hermitian operator in Eq. (31).This makes
the right-hand side of Eq. (31) vanish. Dividing the
resulting expression by E, we prove relation (1) for
periodic boundary conditions.

Nu11 Boundary Conditions

Although not of direct relevance to the actual calcu-
lations of E(r,), it is of some interest to point out that
the virial theorem (1) is valid also when the electrons
are kept within the volume 0 by an infinite potential
wall. In such a case the boundary condition is 4=0
when any one r; is on the surface bounding Q. One can
then prove~ that C, given by Eq. (32), also vanishes
on the bounding surface. H is then Hermitian with
respect to such functions and the integral in Eq. (31)
vanishes again. This proves relation (1) for these
boundary conditions.

Carr" has given a different proof of (1) for these
boundary conditions, using the scaling method of Ref. 6.

COMMENT

It is clear from the proof above that the virial
theorem (1) is valid not only for the average values of
the energies when the system is in the ground state,
but also when it is in any one of its stationary states,
provided the corresponding wave functions are subject
to the same boundary conditions. It is thus also valid
for the canonical ensemble averages of the energies.
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