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Nonlocal Damping of Helicon Waves
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Nonlocal damping of a helicon wave propagating at an angle to a static magnetic Geld is analyzed. It
is shown that in metals such damping is primarily caused by transit-time effects rather than by "Landau
damping. "An expression for the damping is derived for all values of the electron mean free path, provided
the helicon wavelength is much longer than the cyclotron radius.
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HEN a helicon wave propagates in a metal
(with a spherical Fermi surface) along a static

magnetic Geld, it can be damped by two processes'.
collisional damping and absorption caused by Doppler-
shifted cyclotron resonance. The ever-present col-
lisional damping is caused by the scattering of elec-
trons by impurities, defects, and phonons. Its Ineasure
is the quantity to,r, where os, =eB/rlc is the carrier
cyclotron frequency and r the relaxation time. Col-
lisional damping is small when co,v is large.

The second type of damping occurs only under
suitable conditions, namely, when there exist carriers
within the metal whose velocity along the magnetic
field is such that they experience a Doppler-shifted
cyclotron resonance. ' Since such carriers are very
effective in extracting energy from the wave, the damp-
ing, when it exists, is extremely severe. When the elec-
tron distribution function is the Fermi distribution,
the onset of the damping (as the frequency of the wave
or the magnetic field are varied) is precipitous. For
metallic densities, the quantity M is a measure of this
effect. Here k is the wave vector of the helicon wave,
and Z=ee/to, is the cyclotron radius where v» is the
Fermi velocity. When kR(1, there is no cyclotron
damping, and the wave, except for collisional damping,
propagates unattenuated. When kR&1, the damping
is so severe that the helicon ceases to be a well-defined
excitation.

When the helicon wave propagates at an angle to the
magnetic field (0(h(s/2, ) it is no longer a purely
transverse wave and two other sources of damping can
exist. The existence of a (small) longitudinal electric
field leads to so-called Landau damping which is quite
analogous to the (Landau) damping of longitudinal
plasma oscillations. We show, however, that this form
of damping is negligibly small. In addition, the mag-
netic Geld of the wave is now such that when added to
the static magnetic Geld, it causes the carriers to ex-
perience a moving periodic mirror field, which, in turn,

~ See, for example, Proceedings of tlze Symposium on Plasma
sects in Solids, Paris, 1964, edited by J. Bok (Academic Press
Inc. , New York, 1965).' P. B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962);
P. M. Platzman and S. J. Buchsbaum, ibid. 132, 2 (1963); C. C.
Grimes and S. J. Buchsbaum, Phys. Rev. Letters 12, 357 (1964);
M. T. Taylor, Phys. Rev. 137, A1145 (1965).

leads to what we shall call magnetic Landau damping. '
We will show that this is the dominant damping
mechanism.

A measure of the effectiveness of both types of
damping is the quantity k/, where /=e~v is the mean
free path for collisions. The larger k/ is, the more e6ec-
tive is the resonant damping. Kaner and Skobov' have
analyzed the damping of helicon waves (which they
called "Landau damping") in the limit kl ~os. Un-
fortunately, under most experimental conditions k/

is not very large since, by definition, kt=(eo, r)(kE).
Thus, k/ must be smaller than ~,r because kR must be
kept less than unity if cyclotron damping is to be
avoided.

In the present paper we present a derivation of the
helicon dispersion relation in the limit kR&1, co,7&1,
but for arbitrary values of k/. In the limit k/ —+~, our
results diGer from those of Kaner and Skobov for
reasons which are discussed later in the paper.

where
4~~.s(k, to, &e)

e s(k, to) =b.s+
'i@0

(2)

The quantity a p is the wave-number —and wave-fre-

quency —dependent conductivity of the medium. The
vector E is the high-frequency electric field, and 80 is
the applied static magnetic field. In a metal the delta
function in (2) can be neglected.

Setting the determinant of the coeKcients in Eq. (1)
equal to zero yields the dispersion relation

Ak' Bk'+C=O, —
' T. H. Stix )The Theory of Plasma Waees (McGraw-Hill Book

Company, Inc. , New York, 1962), p. 206$ calls this damping
"transit-time damping. " We believe that the name "magnetic
Landau damping" which was recently suggested to us by Dr.
Stix, is more appropriate.

4E. A. Kaner and V. G. Skobov, Zh. Kksperim. i Teor. Fiz.
45, 610 (1963) LEnglish transl. : Soviet Phys. —JETP 18, 419
(1964)j.
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HELICON DISPERSION RELATION

The propagation of a plane monochromatic wave of
the form exp(i(eA —k r) in an infinite translationally
invariant metal is governed by Maxwell equations
which reduce to
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where S8
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mCdc
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o „,= — —(tank) G(p) L1+8((kR)')7,
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A = p„cos'6+2 p„sind cosh+ p„sinSin26 (4a)

+( sin'd, +2p p„sink cosh) —p„'7, 4b~ (6~~6yy sin gg/ SZ

(4c)C=(p)4/c') detl pl.

(r for a free-electron gasThe conductivity tensor e,
hose distribution function is the Fermi distn ution,

has been evaluated using e o
others. n ah . I a Cartesian coordinate system wi
along the z axis an ed the propagation vector k in h
x-z plane, the elements of e are given by

g

(6d)

(6e)

(6f)

(7a)

o„=—P
Z
' n=p

aJ„'(b) COSP8 sin8d8

p (1+8„p)(a'—n')
16J.(, 0)=.—,+2., —
3

m z aP J„(b)J„'(b) sin'8d8
7

b (1+8 p)(a' —e')

~ aJ„(b)J„'(b) sin'8 cos8d8
o„,= —o,„=—1V Q

n=p p (1+8 p)(a' —r)')

(5d)

, (5e)

0'xz= 0 zx=
Z

n=p

Here

S2
J '(b) sin'8 cos8d8

b(a' —e')
(5f)

X= (3ne'/m(o, ),
a= ((o—zpc k'vp cos8 cosk—)/(oc z

b= (ki)); sin8 sink)/p)„

where e is the electron density, e& is the Fermi velocity,
B.

In the limit (o,r))1, and ko)-/(p, =kR«1, the Besse
b ded and the integration over 8functions can De expan e an

performed. We then find, for ~((~„

' x'(1—x')
G(p) = dx

x+6
=-4p+2p' —2p(1+ p') tan '(1/p),

G(p ~op) =
15 e2 35 e'

G(p ~ 0)=-;—m.p+4p'+

H(p) = 1—p tan-'(1/p),

11 ii
H(p —&~)=-———,

3 6 5
(7c)

H(p ~0)= 1—m.p+ p'+

It is clear from qs. a—E s. (6a)—(6f) that if we drop terms
tsar 8 and Cu ~kR ' and smaller, the coefficients, , anor or er an

e Gnd to order kELKq. (4)7 simplify considerably. We n
that it is suIIicient to set

S8 1
L1+e(k'R') 7

mCdc Cdc7

+pF(p) I
kR

I (cosh) tan'6

(Sa)

C= ((p /c )Ezzpzp

(6a) A = p„cos'6,
J3= (p)'/c') Lp„(p,+cos'hp„„)

+ (Pzp Sink Epz COS

(Sc)
mCdc Cd c7

d the dis ersion rela-f 1
tion for the helicon wave and, in particular, its damping.8((kR)')+Bl (kR)', (6b) tion for t e e icon w

(ocr

Ozz=
3Ã8

,LH()+~«kR) )7,
m(o, ((o,r)(kR cosh)'

6M. Cohen, M. Harrison, and W. Harrison, y .Ph s. Rev. 117,
937 (19%).
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kII2=——
C2 order, COS~
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1 L1+cos'Aj 3
+ —F(s) sinshlkZI

16
r=

234~2 co,r 2 cosh

is the well-known dispersion relation for helicon-wave
propagation in the local limit, and

2.0

f.e—
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+ (kR)'(co,r) $4sG(e) —1]s (11)

6H(s)

In our notation, the expression for I' which Kaner and
Skobov derived in the limit kl»1 is

I'Ks=(~.r cosA) '+(3x/16) sin'h~kR~. (12)
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Similarly, in the nearly local limit (e —+co, kt cosh«1),

1 3
1+ (k1 sink c—os')s

co,r COSA 10

Equation (14) is actually quite accurate for fairly
large kt (klcosh 1). For example, when klcosh=1,
we find from the exact Eq. (11)

$1+0.25 sins'),
ao,r cosh

(15)

which is nearly what Eq. (14) would predict.
In Fig. (1) we have plotted the quantity X(e) where

I"(e)= L1+X(e) sins' j.
co r COSA

(16)

The comparison between experimentally measured
absorption, for Gnite kl, '7 at angles other than zero
and theory should be re-examined in the light of these
results.

' C. C. Grimes, BulL Am. Phys. Soc. 11, 570 (1966).' J. R. Houck and R. Bowers, Bull. AIn. Phys. Soc. 11, 256
(1966).

It is not clear how these authors arrived at the above
expression, but presumably they replaced F(e) and
G(e) by their limiting values s and -„respectively.
Unfortunately this procedure is not quite correct. For
example, in the limit of large (kl), LG(e) ——sg is of order
(1/kl)' so that the third term in Eq. (11) is of order
(~,r) ', that is, of the same order as the first, the col-
lisional damping, term. The same remarks apply to the
F(e) term. Thus, we find in the limit c—&0, i.e.,
B cosh»1,

FIG. 1. The solid curve is a plot of the function x(e) as defmed
in Eq. (16) of the text. The dashed line represents the damping
as given by Kaner and Skobov.

kg 8
m = F,=eE, +-( vXB)..

c

The force P, which acts on the particle in the s direc-
tion, that is, along the static magnetic Geld, is made up
of two parts: a part due to the small but 6nite E, and
a magnetic part (%)(vXB),. The magnetic force,
when the 6eld varies slowly in space, can, to a good
approximation, be written as'

( / )(vXB).=u (18)

Here the quantity fi=-', mv&'/Bs is the magnetic moment
of the carrier whose velocity at right angles to Bs is
vi. The physical origin of the force which Eq. (18)
represents is well known. It is the force which a charged
particle with magnetic moment p, experiences when it
moves adiabatically in a magnetic Geld whose strength
varies slowly with position; for example, a mirror Geld.
When a helicon wave propagates at an angle to the
static magnetic 6eld, it ceases to be a purely torsional
wave. That is, there is then a finite, 6rst-order com-
ponent of magnetic 6eld, B„which alternately adds
to and subtracts from the static magnetic field Bs.
The result is that a gyrating particle 6nds itself in a
moving periodic magnetic mirror, and its interaction
with that mirror will be particularly strong when the
velocity of the particle along s just matches the velocity
of the mirror along s, i.e., when s, =et/k, . Those par-

SL. Spitzer, Jr., Physics of Fully Ioeised Gases (Interscience
Publishers, Inc., New York, 1956), pp. 7-11.

SIMPLE MODEL FOR THE DAMPING

What is the origin of the damping represented by the
various terms in Eq. (11)?In this section we show that
it is, to a good approximation, caused by "magnetic
Landau damping" mentioned in the Introduction.

Consider the s-component of the equation of motion
of a charge carrier of mass m and charge e:
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ticles for which p, is just less than cp/k, will be speeded

up by the mirror and will extract energy from the wave.
Those for which p, is just greater than pp/k, will be
slowed down. Since in thermal equilibrium there are
more slow-moving particles than fast-moving particles
(cIfp/cjp, (0), the processes just described will damp
the wave.

The reader will have noticed, of course, that the
physical description of the damping is similar to con-
ventional Landau damping which exists when E, is
different from zero. Mathematically the two are iden-
tical. It is easy to show, however, that for helicon waves
in a metal, magnetic Landau damping is by far the pre-
dominant damping mechanism. The ratio of the two
forces in Eq. (17) is given by

eE, ear E,

IJ, (BB,/Bs) tJk,B, uk.k, E„
(19)

m plfp
COSP

2mk, 2 —~& —e=co/a

(21)

The rate of change of particle energy ((g)„„p)has been
suitably averaged over the initial position so and

~ This was pointed out to us by G. A. Pearson."J.D. Jackson, J. Nncl. Energy, Pt. C, 1, 171 (1960),

The ratio (E,/E„) can be obtained from the co-factors
of the dispersion relation. Inserting the ratio E,/E„
into Eq. (19), we ffnds

eE,/(tJBB,/Bs) p&/kpp.

The Landau damping is completely negligible com-
pared with magnetic I andau damping. In view of the
fact that a helicon in a metal is almost all magnetic
Geld, it is not surprising that we Gnd the electric sects
(Landau damping) small compared to the magnetic
effects (magnetic Landau damping).

It is possible to obtain the actual magnitude of the
magnetic Landau damping (in the large-kl limit) from
the simple equation of motion (17).Stix' and. Jacksonm
have shown that the rate at which particles gain energy
from the Geld as a result of a one-dimensional force
F in the s direction Lsee Eq. (17)$ is given by

velocity wp of the particles. For a simple metal (spherical
Fermi surface) at low temperatures, fp is the "one-
dimensional" Fermi distribution

3 'v

v, +up

=0 v, +vg.

8p2 370—(b)„,„p= —(kR) sin'6
Ch 8x 8

(22)

In deriving Eq. (22) we made use of the local helicon
dispersion relation, Eq. (10).

We can now set the rate of gain of average particle
kinetic energy equal to the rate of decrease of electro-
magnetic energy in the helicon. Neglecting the electric
energy relative to magnetic energy in the wave, we find

(23)

where W=Bp'/Sp. and cp; is the imaginary part of the
frequency of the helicon wave. Thus

co& 3x'—=—kE. sin26.
o] 16

(24)

This is precisely the term found by Kaner and Skobov
and is the predominant term in our Eq. (11) in the
limit kl cosh —+~. The additional damping terms in
our equation must arise from the fact that at finite
M 7 particle motion is not quite adiabatic.

Note addedin manuscript. Conclusions similar to ours
concerning the origin of the damping were reached
independently by J. Walpole and A. McWhorter LJ.
Walpole, Ph.D. dissertation, M.I.T., 1966 (unpub-
lished); J. Walpole and A. McWhorter, Phys. Rev. (to
be published)). These authors consider, in addition,
tilted ellipsoidal Fermi surfaces. Then even when the
wave propagates along the magnetic Geld, tilted cyclo-
tron orbit' can cause magnetic Landau-like damping,

If we substitute F=+(BB,/Bs) into Eq. (21), setting
p=-', mp~'/Bp, we find


