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It is interesting to note that there is a close simi-

larity between a superconductor and a laser and that
many of the equations appearing here are analogous
to the equations used. in the description of lasers. " In
that case the role of 6 is played by the electric field E.
Both systems can in many respects be regarded as
nonlinear oscillators. " At its operating point the
imped, ance of a self-sustaining oscillator is zero and the

"W. E. Lamb, Phys. Rev. 134, A1429 (1964).
"M. Lax, Bull. Am. Phys. Soc. 11, 111 (1966); and (to be

published).

vanishing of the resistance and the reactance corre-
spond, respectively, to Eqs. (19) and (29).
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The properties of a granular superconductor are studied with the aid of the isospin formulation of the
microscopic theory of superconductivity. The system consists of grains of homogeneous superconductor
separated by insulating but tunnelable barriers (Josephson junctions). The general nonlinear equations of
motion are set up for the isospins, "spin up" representing the absence, and "spin down" the presence, of a
given Cooper pair. These equations are like torque equations for each isospin moving in an eRective pseudo-
magnetic Geld due to all the other isospins. Linearized solutions result in various single-particle and collective
excitations. A certain class of nonlinear solutions is shown to satisfy a Ginzburg-Landau —like diRerential
equation. The eiIects of electric Gelds (within the junctions) and real magnetic 6elds are studied, one result
being that there are bulk electromagnetic modes, analogous to the surface modes known to be associated
with a single isolated Josephson junction. Consequences of changes in temperature and changes in eRective
electron-electron interaction are studied.

I. INTRODUCTION

" N this paper we wish to examine the properties of a
. . particular kind of granular superconductor; namely,
one where each grain consists of a homogeneous super-

conductor, but at each grain boundary there is a thin
insulating layer (e.g. , oxide). Each layer is thin enough

that it can be tunneled by the Cooper pairs of the
superconductor; in other words, we have a Josephson
junction at each grain boundary. For simplicity, we

assume that the junctions take up a negligible fraction
of the total volume of material.

For such a superconductor, the energy density of the
BCS theory' is augmented by a tunneling-energy den-

sity, the latter being directly proportional both to the
linear density of tunnel junctions' and to the Cooper-
pair transition amplitude for an average junction of unit
area. We are free to imagine the tunneling-energy den-

*Present address: Department of Physics, University of
Arizona, Tucson, Arizona.

' B. D. Josephson, Advan. Phys. 14, 419 (1965).
' J. Bardeen, L. N. Cooper, and J. R. SchrieRer, Phys. Rev.

108, 11/5 (1957).' Sy lirIeur density, we mean the average number of junctions
intersecting an arbitrarily oriented straight-line segment of unit
length.

sity as large or as small as we like, because of variations
in the number of junctions per unit length. We cannot,
however, let the tunneling energy be either too large or
too small because of the tunneling transition probability.
The upper limit is set by the limitation of second-order
perturbation theory (the Cooper-pair tunneling being
visualized as a two-step process, 4 the intermediate step
involving the virtual state where only one of the two
electrons composing the pair has tunneled). When the
tunneling transition probability is too high, perturba-
tion theory breaks down.

The lower limit to the tunneling transition probability
is set by a physical process that has nothing to do with
superconductivity per se; it is the value of the tunnel-
ing probability at which the normal-metal conductivity
of the system (at temperatures where the normal phase
is thermodynamically stable) switches over toiesllatirI g
behavior, because there is a thermal activation energy
associated with electron tunneling. ' This activation en-
ergy is the energy required to change two neighboring,

4 P. W. Anderson, in Lectlres ori the 3farly-Body Problem, edited
by E. R. Caianiello (Academic Press Inc., New York, 1964), Vol.
2, p. 113.' C. A. Neugebauer and M. B. Webb, J. Appl. Phys. 33, 74
(1962).
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electrically neutral metallic grains into electrically
charged grains, one charged +e, the other —e. Pre-
sumably, this change in electrical properties occurs sud-

denly at some critical minimum value of mean tunneling
transition probability. This is analogous to the idea of
the metal-insulator transition, as interatomic distance
is varied, as was first discussed by Mott. '

Thin films appear to have a particularly favorable
geometry for obtaining a granular metallic deposit of
the type being considered here. 7 In fact, the microwave
conductivity of thin films of tin and indium, as measured

by Gittleman et ul. ,
' strongly suggests a granular nature.

This will be discussed further in Sec. V.
The general outline of this paper is as follows. In Sec.

II, the BCS Hamiltonian for the grains of superconduc-
tor and the tunneling Hamiltonian for the junctions will

be reformulated in terms of isotopic spin, ' "spin up" in-

dicating the absence and "spin down" the presence of
Cooper pairs, just as was done by Wallace and Stavn"
for the case of a single Josephson junction. This proce-
dure makes our problem formally analogous to ferro-

magnetism; in particular, the tunneling Hamiltonian
resembles an exchange Hamiltonian. This resemblance
will then be exploited by making the continuum approxi-
mation to the tunneling Hamiltonian in exactly the
same fashion that the exchange energy of the Heisen-

berg theory of ferromagnetism is approximated by a
continuum model in micromagnetics, the continuum

theory of ferromagnetism. "With the aid of the quan-
tum-mechanical commutation relations satisfied by the
isospin operators, the equations of motion and boundary
conditions will next be obtained. Continuing the analogy
with magnetisrn, these equations of motion are torque
equations for each isospin precessing in an effective
pseudomagnetic field due to the other spins.

In Sec. III, we begin the process of solving these
equations of motion. As a first step, what is known as

the semiclassical approximation in magnetism will be
introduced: namely, treating the isospin vectors as clas-

sical quantities. (Note that we are not making the
classical approximation in setting up the equations of

motion, only in solving them. ) Once this approximation
is invoked, two solutions will be obtained almost by
inspection; these are the time- and position-independent
superconducting solution (BCS solution), and the time-

and position-independent normal-metal solution. The
tunneling energy vanishes in both cases.

6 N. F. Mott, Can. J. Phys. 34, 1356 (1956).
C. A. Neugebauer, in Physics of Thin Films, edited by G. Bass

and R. E. Thun (Academic Press Inc. , New York, 1964), Vol. II,
p. 1.

J. Gittleman, B. Rosenblum, T. E. Seidel, and A. W. Wick-
lund, Phys. Rev. 137, A527 (1965).

9 P. W. Anderson, Phys. Rev. 112, 1900 (1958).
P. R. Wallace and M. J. Stavn, Can. J. Phys. 43, 411 (1965).

"L. Landau and E. Lifshitz, Physik Z. Sowjetunion 8, 153
(1935);W. F. Brown, Jr., 3ficromagnetics (Interscience Publishers,
Inc., New York, 1963); S. Shtrikman and D. Treves, in Sfggnet-

ism, edited by G. T. Rado and H. Suhl (Academic Press Inc., New
Yorl-, 1963), Vol. III, Chap. 8.

To go beyond these two solutions is, in general, quite
dif5cult because of the nonlinearity of the equations of
motion. To get around this problem, we will lieeari2e the
equations of motion, i.e., assume that the classical spin
vectors execute small-amplitude excursions with respect
to one of the two known time- and position-independent
solutions. There are two types of solutions to the
linearized equations of motion: single-particle —like and
collective. The former, being excited Cooper pairs, cor-
respond to flipping over one isospin in the pseudo-
magnetic field due to the other spins. The latter corre-
spond to collective excitations of all the isospins. Some
of these, giving rise to nonequilibrium densities of con-
duction electrons, are disallowed on physical grounds.
Other excitations, however, are consistent with charge
neutrality, and are related to real physical phenomena.
Examples of quantities which can thereby be calculated
are: (1) the decay-rate of the time- and position-inde-
pendent normal phase, which is energetically unstable
relative to the superconducting phase; (2) the maximum
velocity of a normal-superconducting interface.

In Sec. IV, we find a certain class of solutions to the
equations of motion not requiring the linearization ap-
proximation. For this class (and only for this class) the
problem can be re-expressed as a second-order nonlinear
differential equation for an order parameter. This equa-
tion bears a strong resemblance to tha, t of the Ginzburg-
Landau phenomenological theory of superconductiv-
ity. "There are differences, however; for example, the
nonlinear portion of the differential equation of Sec. IV
has no power-series expansion, in contrast to that of
Ginzburg and Landau. Although the equation is static
(i.e., it does not contain any explicit time dependence),
it applies to a certain type of time-dependent situation,
that where a/1 the isospins are precessing at the same
constant rate. It will be shown that this angular fre-
quency is proportional to twice the (time- and position-
independent) electrochemical potential of the super-
conductor, in agreement with Josephson. '

In Sec. V, we will generalize to the situation where
there is a constant electric potential within a given grain
of superconductor, but that this potential changes as one
moves from one grain to another. In other words, there
are electric 6elds in the tunnel junctions, and surface
charges on the individual grains. In the continuum
model, this is represented by a finite effective electric
Geld (but no bulk space charge) throughout the super-
conductor, with an electric energy density proportional
to the square of this field. We will also generalize to take
account of real magnetic fields (as distinguished from
the pseudomagnetic Acids already introduced) by in-
serting the magnetic vector potential into the tunneling
Hamiltonian in the usual manner. The nonlinear differ-
ential equation of Sec. IV, in combination with Max-
well's equations, will then lead to a wave equation for

"V.L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).
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bglk electromagnetic modes of the superconductor.
These are the bulk analogs of the two-dimensional
junction electromagnetic modes predicted by Joseph-
son. ' The differences between the wave equation of
Sec. V and that of Josephson is that: (1) The former in-

volves the three-dimensional Laplacian rather than the
two dimensional one; (2) the former is a linear, rather
than a nonlinear, wave equation. This linearity is a con-
sequence of the implicit assumption that the phase of
the order parameter changes only slightly in passing
through any one tunneling junction (introduced by
treating the tunneling Hamiltonian on the continuum
model).

In complete analogy with the usual Ginzburg-Landau
theory, we will see that the nonlinear differential equa-
tion of Sec. V implies a critical dc current density, and
that at currents less than critical, the microwave im-

pedance is a function of this dc current density.
In Sec. VI, we will investigate the consequences of

using a modified electron-electron interaction in the
equations of motion for the isospins. The more com-
plicated interaction is introduced for the usual reason:
to better approximate the fact that electrons in a super-
conductor interact not only attractively with the com-

paratively long-range phonon-mediated force but also
repulsively with the shorter ranged screened-Coulomb
force. It is well known" that the latter repulsion is less
effective in suppressing the former attraction than was

originally thought to be the case in the BCS theory. '
The Coulomb-repulsion matrix element appropriate for
insertion in the BCS theory may be a factor of two or
three smaller than the normal-metal value. We will see
that the same effect may- occur with many aspects of the
present theory.

However, in one regard, the consequences of using a
modified electron-electron interaction are drastically dif-
ferent for the granular superconductor than for the ideal
BCS superconductor. We will see that, when the normal-

metal Coulomb repulsive matrix element becomes
greater than the phonon-induced attractive matrix ele-

rnent, new short-wavelength collective oscillations can
occur (these being solutions to the linearized equations
of Sec.III).These oscillations can have vanishingly small

phase velocities and thus may quench any nonvanishing
supercurrent in the granular superconductor. " The

"N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A
New Method in the Theory of Superconductivity (Consultants
Bureau Enterprises, Inc. , New York, 1959), p. 83.

'4The phase velocity of any collective oscillation will set an
upper limit to the superfluid drift velocity of a superfiuid system,
provided there is a finite matrix element for the process of generat-
ing such an oscillation by transferring energy and momentum from
the superfluid. The determination that such a matrix element is
nonvanishing requires a detailed investigation that we will not
attempt here. Once one assumes the matrix element to be finite,
the limitation on the superfluid drift velocity follows by elemen-
tary arugments. See, e.g. , I. M. Khalatnikov, Introduction to the

Theory of Superguidity (W. A. Benjamin, Inc. , New York, 1965},
p. 6. g'ote added in proof. It has now been proved that these collec-
tive oscillations cannot quench superconductivity. The analysis of
Secs. III and VI has been redone by linearizing with respect to the

possibility thus exists that our granular system will lose
superconductivity, despite the fact that the individual
grains are still superconducting, and despite the fact that
the tunneling between grains is not a limiting factor.

Finally, in Sec. VII, we will show how the formalism
can be extended to finite temperatures. Concentrating
on the limit T~ T„we will recalculate some of the
quantities obtained in the previous sections at T=O.

K=XL+Xll+KT. (2.1)

3C~ and K~ are BCS Hamiltonians' for the supercon-
ductors on the left- and right-hand sides of the junction,
respectively. Each BCS Hamiltonian is reformulated
in terms of isospins in the manner introduced by
Anderson, '

KBCS 2 p 6k$2k Q Vkk~($1kSlk&+$2k$2k~) . (2.2)
k kk'

Here s~k, s2k, and sak are the x, y, and s components,
respectively, of the isotopic spin vector sk, obeying the
commutation relation

Sk X Sk~ =ZSk5kk~. (2.3)

Spin up represents absence, spin down presence of a
Cooper pair of wave vector k. The Cooper-pair annihi-
lation and creation operators are equal to sk+ and sk,
respectively, where

Sk+. Skl+2$k2 )

Sk—=Skl —Zsk2 ~

(24)

There is a set of spin operators ski, associated with the
left-hand superconductor and appearing in the BCS
Hamiltonian 3'.I., and another set skg associated with
the right-hand superconductor and appearing in the
BCS Hamiltonian K~. The two different sets of spin
operators commute, i.e.,

SkL X $kig =O

The tunneling Hamiltonian

(2.5)

/~T M ~ kk'(SlkLSlk'll+$2kL$2k'll)
kk'

(2.6)

state of uniform, steady current Qow (the state described at the
end of Sec.V). It is found that, in general, all collective excitations
now violate the condition of charge neutrality, and thus are dis-
allowed physically. The only exceptions are those excitations
whose propagation vectors x are perpendicular to the direction
of uniform current fIow, but, of course, these are just the excita-
tions which are unable to quench the steady supercurrent in any
case. This restoration of the stability of superconductivity is
especially reassuring because of the fact that our continuum model
of a granular superconductor appears, at least in ~ome respects,
to be a reasonable model for a conventional di"ty superconductor.
The details of this work are now being written for publication,

II. EQUATIONS OF MOTION

Consider the isospin lnodel of a Josephson junction as
given by Wallace and Stavn. " In their model the
Hamiltonian consists of
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X(R)d'E, (2.8)

where the Hamiltonian density X(R) is composed of the
two terms

X(R)=Xscs(R)+Xr(R), (2.9)

Xsos(R) being given by Kq. (2.2) after substitution of
the R-dependent sk, and Xr(R) being given by

XT(R)—Q +kk'{ VR~lk' VBr lk'

+Vsssk. V~ssk. }+constant. (2.10)

The matrix element V'I, g,. is directly proportional to
the matrix element V'~~ of an individual junction, Eq.
(2.6) (i.e., the reciprocal inductance per unit area of
junction), suitably averaged over all types of junctions,
and is inversely proportional to the mean linear dimen-

sion of the grains. The additive constant in Kq. (2.10),
a constant which we will henceforth ignore, is what
would remain of the tunneling energy if there were no
change in orientation of s~ in passing through any junc-
tion. '~ The first part of Eq. (2.10) represents the lead-

ing term associated with a change in orientationof sI,.Itis
this term which plays the essential role in the equations
of motion for s~ which we obtain presently. The passage
from Eq. (2.6) to Eq. (2.10) is completely analogous to
the replacement of the Heisenberg exchange Hamil-
tonian by terms proportional to the square of the spatial

" ftrote added ia proof. It is possible that this negative constant,
which represents an attractive coupling between Cooper-pair states
on opposite sides of a junction, plays a role in the experimentally
observed enhancement of transition temperature in thin-Glm
granular superconductors. See %'. Buckel and R. Hilsch, Z. Physik
138, 109 (1954);O. F. Kammerer and M. Strongin, Phys. Letters
17, 224 (1965);S.Abeles, R. W. Cohen, and G. W. Cullen, Phys.
Rev. Letters 17, 632 (1966).

describes the physical process of a Cooper pair tunneling
through the junction. The matrix element g&1,

' is pro-
'portional to the square of the one-electron tunneling
matrix element associated with the junction, and &I,-I, is
inversely proportional to the intermediate-state excita-
ttion energy corresponding Ito an electron-like excita'tion
'on one side of 'the. 'junotien:and a, hole-liIt':e'excitation en
tthe other side.

'We now v'isualize our bulk superconductor:to consist
:@f=many smaIl gra, ins of pure superconductor with tun-
:rreling junctions at each grain boundary. We assume only
a small change in orientation of sj, in isospin space as we
move across any junction. Let the position vector R
serve to designate which grain of superconductor we are
considering, so that s is a function of both k and R.
Passing to the continuum limit in real space, we must
replace Eqs. (2.3) and (2.5) by

sk(R) xsk (R')=isk(R)5kk 8(R—R'). (2.7)

Assuming that the tunneling junctions take up a negli-

gible fraction of the total volume of the crystal, we can
write the Hamiltonian of the system as

''(Here we have dropped the additive constant. ) Note
that we can now augment the right-hand side of (2.11)
by the term

9
I vz Q ~skI'

without modifying Xr(R). This follows from the fact
that

NO — 2P $8k
k

(2.12)

is the total conduction-electron density, necessarily R
independent in order to maintain electric charge neu-
trality. This modi6ed form renders the analogy complete
with rnicromagnetics" in that pk sk corresponds to the
magnetization vector "Sim. ilarly, in Eq. (2.6), if 9"kk.'

is replaced by a constant independent of k and k', then
the tunneling Hamiltonian can be rewritten (aside from
an additive constant) as

9 Q skI 'sk'8,
kk'

the analog of the Heisenberg exchange Hamiltonian.
For the time being (until Sec. VI), we make the BCS

approximation for the electron-electron interaction po-
tential VI,A, , i.e.,

vkk =v if IeI, I, Iek I(A(o,
2.13=0 otherwise.

(We are using a sign convention where a positive V
represents an attractive interaction. ) Under such condi
tions, s~ will be parallel with the s axis in isospin space
for e~&Ace, while sI, will be antiparallel with the s-axis
for ci,&—A~. This results from the one-electron terms—

2&A,.s» in the energy density. Therefore the k sums in
Eq. (2.11) have finite contributions only over the range
of k space

I ek
I

&Ato, so that in effect 9'kk may be treated
as though it has the same range as does V~I, in Kq.
(2.13). In giving this argument, we have talked as
though s~ were a classical spin vector, which is not
correct. The argument can be recast in terms where only
the three spins

St=—P Sk, Ss=— P Sk, Ss=—P Sk
egg&—&(o ) eIg( &Ace 8JgOAGl

are assumed classical, an excellent approximation be-
cause of the large number of terms in each sum.

r6 See R. H. Parmenter LPhys. Rev. 137, A161 (1965)g for a dis-
cussion of a situation which di6ers from the present case only in
that Vqp is diagonal with respect to k and k' in the form of 3'.p
containing all three components of sq.

gradient of the componerits of 'the magnetization vec-
tor in microma, gnctics, " Ithe -coritinuum theory of
ferromagnetism.

Following KaIlace 'and'Stavn '+'we make the approxi-
mation of treating .9"~~ 'as.a:-constant 9"'independent of
k and k'. This allows 'us 'to rewr'ite Hq. ((2.10) as

:xr(R)= 9'L
I
vt~ 2 ~akI'+ I v~ &»kl'j (2 11)
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We wish to set up the equations of motion for sk(R),
whose time derivative is given by

sA(dsk/dt) = [sk,X],

the superconductor, ' given by

His ——2p(BAi/Be) Ba,

a,a —2H(BA, /Be) 4, (2.21)

the right-hand side being the commutator of SI, and 3C,
the Hamiltonian of Eq. (2.8). With the aid of (2.7), this
can be rewritten

A(dsk/dt) = sk x Hk, (2.15)

where

Hk —=—(BX/Bsk) = —(B/Bsk —Vtr B/BV ttsk)K (2.16)

is, in suitable units, the effective pseudo magnetic 6eld
seen by the isospin vector s~. It should be understood
that Hk has nothing to do with real magnetic fields that
may be present and will be considered later (Sec. V).
Note that Hk is de6ned as the negative of the so-called
variational derivative" of R with respect to s~. The
x, y, and s components of Hk are, respectively,

+»—2[+ Vkk'S»'+Vie p 9 kk~slkl]
&

Hsk= 2[+ V„.s„.+Vtts p 9'kk. ssk.], (2.17)

&3'—26' ~

It is convenient to dedne the two order parameters

61k—:P Vkk'Slk',

(2 1g)

Ask—=Q Vkk. ssk .
k'

Because of Eq. (2.13),A»= 6i, 6»= 6& are independent
of k for

~
ek

~
(As&; otherwise hik ——Ask= 0. In the former

case, we have

&i=2[1+PVtr']Ai,

Qs —2[1+@Vials]gs

B3k= 26k ~

(2.19)

where we have dropped the k subscript from H~ and H2.
The characteristic length $ has been de6ned as

P= 9/V. (2.20)

In calculating the commutator of s~ and 3C in order to
obtain Eq. (2.15), one must perform a partial integra-
tion, with respect to R, of the gradient terms in K in
order to avoid having to evaluate the commutator of
s;k and Vtts;k (i=1, 2). This partial integration'r leads
to the appearance of Vtt's;k in Hk. But it also leads to
a delta-function contribution to Hk on the surface of

88 being the surface delta function and (B/Be) the gra-
dient normal to the surface. In order to avoid patho-
logical behavior of (dsk/dt) at the surface, we must
require

sk xHs=0. (2.22)

Because of the fact that H, is restricted to the x-y plane
of isospin space, the only way to satisfy (2.22) is to make
H, vanish. Thus the boundary conditions are that

P(Mi/Be) =0,
P(Bas/Be) =0. (2.23)

The obvious generalization of (2.23) at an interface be-
tween two different granular superconductors is that
"cs(BE;/Be) (i=1, 2) be continuous at the interface.

sr'= g sin~1 cosga

s2I, ——
~ sin8~ sinyI„

Say= g COSH',

(3.1)

so that sk(R) is a classical vector of magnitude is point-
ing in the direction denoted by Bk(R) and yk(R). In the
theory of magnetism, this is known as the semiclassical
approximation'; it leads to the consequence that the s
component of total spin is not a constant of the motion.
In the theory of superconductivity, this corresponds to
the total number of electrons not being a constant of
the motion.

The accuracy of this approximation in superconduc-
tivity theory is closely connected with the accuracy of
the effective (or molecular) field approximation of mag-
netism, 20 as applied to superconductivity. The latter
approximation is actually much more accurate in super-
conductivity than it is in magnetism, simply because
the e6ective field acting on a given spin is due to many
other spins in superconductivity, but due to only a few
other spins in magnetism. Thus, in superconductivity,
one can treat the effective 6eld as a classical 6eld, cal-
culated classically. [In other words, substitution of Eq.

III. COLLECTIVE EXCITATIONS

In deriving Eq. (2.15), the equations of motion for
sI„we have properly taken into account the fact that
the components of s~ are noncommuting quantum-
mechanical operators (or matrices). At this point we
introduce the first of two approximations used in solving
Eq. (2.15).Speci6cally, we replace sk(R) by the classical
quantity

"See, e g , H. Goldstein, Ct. as. scca/ Mechaitt'cs (Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1950), p.
353.

''7 An analogous procedure is used in the second quantization of
Schrodinger's equation. See, e.g., L. I. Schi8, QNuetlm 3fechcnics
(McGraw-Hill Book Company, Inc. , New York, 1949), p, 858.

'8 The idea of a delta-function surface magnetic 6eld in micro-
magnetics was introduced by C. Kittel and C. Herring, Phys. Rev.
77, 725 (1950)."P. W. Anderson, Phys. Rev. 86, 694 (1952).

"See, e.g., R. Kubo, Statisttca/ Mechattecs (North-Holland
Publishing Company, Amsterdam, 1965), p. 502.
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(3.1), via (2.18), into (2.19) does not lead to appreciable
error in H/, .j But this means that the semiclassical
approximation is accurate, since the classical and quan-
tum mechanical equations of motion for a spin in a clas-
sical magnetic field are identical. "

This first approximation, Eq. (3.1), we shall use
throughout the remainder of the paper. A second ap-
proximation, to be used in this section, consists of
linearizing the nonlinear equations of motion. Let

8/, =8oo+88o,

go= qoo+~q/,
(3.2)

8a, =-', Vg (cos8,.p)88, , (3.3)

86 =—', VP (sin8„.,)8o

To the accuracy of the linearization procedure, we have

where both Oy yI, and Ogp, ypp are solutions. VVe assume
8Ol„by~ are small in the sense that we need keep only
terms independent of, or linear in, some 5O~ or byI, in the
equations of motion. Furthermore, we take Oj,p, q qp to be
the time- and position-independent solutions. (Without
loss of generality, we may assume pip=0. ) Define

ho = o V P sin8I, .p,

temperature. This is the time- and position-independent
superconducting solution. The second is Case II:

Dp ——0, so that O~p
——0 for ~A,)0,

(3.10)
OI, p= x for eq(0.

This is the time- and position-independent normal
solution.

Substituting Eqs. (2.19), (3.2), (3.4), and (3.5) into
(2.15), keeping only terms linear in 88o or Brp~, we get

(.,'y~, ')88,—.,L1+PV oft,
= ——',Ahp(d/dt) hag„(3.11)

Dp8q /, .
—L1+PV~'$8hp ——+ io/t(d/dt) 88/, .

The latter equation comes from either the x or the s
component of Eq. (2.15); the former equation comes
from the y component.

First we consider the situation where there is only
one nonvanishing 5O~ and 8q ~, so that in the limit of an
infinite crystal, 8A&=662 ——0. Rather than considering
one single-particle excitation, we might equally well
consider an incoherent superposition of single-particle
excitations, where the signature of 8OI, and baal, is a
random function of ey. The random signature will in-
sure that 8A~ ——862——0. Under these conditions, 8O~ and
8@~ are proportional" to e '"&', as can be seen by in-
spection of Eq. (3.11), where

~i= ~o+8~i,
2 2

——552.
(3.4)

$~o—+2(e~o+Q ~)&/& (3.12)

$8o—~jap(eo2+g 2)—1/28~~ (3 13)

Dp ———,'1V (0)Uhp (e/, '+~ ') '"«/, (3.6)

Bhi ———,'$(0) U ei(ei2+ ~02)
—i/288idei (3 7)

Bho ——ioE(0) Vhp (e~'+~o') "'&~/de~, (3.g)

For OA, p we have the equation of motion

6It; slQOIt, p
—Ap cosOIcp= 0,

so that

sin8op ——ap(op'+6 ')-"' cos8ip ——eg(eg'+Do')-"'. (3.5)

Substituting into (3.3), we get

For the case 6p ——ep, Asap is just the energy of an excited
Cooper pair. "It should be noted that 6OI, =O for the
case Ap ——0.

Next we consider the situation where there is a co-
herent superposition of many bOI, and 8p&. If each 8OI,

and by~ is proportional to some spherical harmonic
(l&0) of the orientation of k, then once again 8th and
862 will vanish and the single-particle solutions will
ensue. If each 5OI, and by~ is independent of the orienta-
tion of k, then two possibilities exist, as can be seen by
inspection of Eqs. (3.7), (3.8), and (3.11). If 88' is an
odd function of e~, then bpI, must also be odd. This
means that bh~/0, but 86~——0. On the other hand, if
8OI, is an even function of eI„ then bq I, must also be even;
and Sz,=o, bs, ~o.

The first possibility is given by

p= 6p=2AG0 (3.9)

where X(0) is the one-electron density of allowed states
per unit energy for a given electron spin at the Fermi
level in the normal state.

Equation (3.6) can be solved for hp, giving two solu-
tions. The first is Case I:

~peI C
BOI,= exp'(~R —

op et),
eo'+ &o'—(-', A(oo) '

—~irgo) peI, C
& q i = expt'(aR —~pt) .

eo'+ ~o'—(-', It~o)'

(3.14)

ep being the BCS half-energy gap at the absolute zero of

2' See, e.g. , P. W. Anderson, Concepts in Solids (W. A. Benjamin,
Inc. , pew Pork, 1963), p. 164.

'Of course, b8& and 8 p& are actually real quantities, but in a
linearized theory it is perfectly acceptable and very convenient to
think of them as complex variables."Avoid confusing the excitation energy Aco0 with the cutoff en-
ergy her of Eq. (2.13).
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For simplicity, we restrict ourselves to situations where

b81, and bop~ depend on only one spatial coordinate E.
In (3.14), C, /c, and coo are constants independent of k,
R, and t. Equation (3.11) and (3.14) are consistent only
when a and coo satisfy the dispersion relation

X=—(»p/2ep),

U'=—(hoo/eo) .

(3.20)

(3.21)

Fortunately, the integral defining I(X) can be evaluated
analytically.

sea os

!E(0)VL1—($/t) 'j
p e'+ho'i

(1—X')'/'
I(X)=

1—X'
arcsin X—

(x'+1)'/' —Xi, p

(e2+g 2)1/2

X! d.= l. (3.15)
ke'+ dos —(-'heep) '

The second possibility is given by
—

g $A40pkoC

exp' (/rR post) &

so'+ ~o'—(-', »o) '

(ea'+&o') C
les= exp'(/tR topt) .—

es'+ ~o'—(s heep) '

(3.16)

The corresponding dispersion relation divers from Eq.
(3.15) only by the absence of the factor e'/(e'+ho') in
the integrand.

At this point it is necessary to consider the possibility
of charge unbalance due to the excitation. The net
charge density is proportional to

P 2ss=g cos8s—P cos8sp —P (sin8pp)88s

(1 X2)1/2 - ( 1 Xp
ssr+arcsin X—

!

2X kg' —X
(3.22)

where, in the last line, we have assumed U'&)1. For the
time being, we restrict ourselves to the case where

!X!«U', whereupon

I(X)+I(—X)= (1—X')+'/'X-' arcsinX. (3.23)

We shall make no attempt here to analyze exhaus-
tively the properties of the various solutions to the dis-

persion relation; in particular, to investigate the stabil-
ity properties (convective or absolute instabilities) using
the Sers-Briggs technique. '4 Rather, we restrict our-
selves to the case where both cop' and /t' are real (i.e.,
coo and /t are each either real or pure imaginary). For the
linearization procedure to be valid, boi, and by~ must be
small. Inspection of Eq. (3.14) shows that this can
happen only if

=—6oQ ( +ho) '/'h8 . (3.1/) (-,'Atop) '&~/4s. (3.24)

This quantity vanishes when we have an incoherent
superposition of many b8A, and by&, or when bOI, is an odd
function of ~1, as in the first of the above possibilities.
For the second of the above possibilities, where 68A, is an
even function of e~, the net charge need not vanish. The
resultant long-range Coulomb forces, not taken into ac-
count here, will drastically increase the characteristic
frequencies over what would be inferred from our dis-

persion relation, converting them into conventional
plasma oscillations with frequencies 104 times larger
than what the dispersion relation gives. Ke shall ignore
such plasma oscillations, and thus must eliminate the
second of the two above possibilities. Of course, the
latter possibility gives no charge unbalance when 60——0,
but then both possibilities have the same dispersion
relation, since the factor e'/(e'+ho') =1.

Returning to Eq. (3.15), erst consider Case I where

hp ——ep. With the aid of (3.6), (3.15) can be rewritten in
the form

(Ea)'= —&(0)VI:1—(ka)'jLI(X)+I(—X)j ( 1 )

where we de6ne

Thus, here, where 60——eo, a real X' must be smaller in
absolute value than unity. Equation (3.23) indicates
that I(X)+I( X) is real —and non-negative when
X'~& 1. Combining this with (3.18), we have (P/t)'&~ 0, or
hz is pure imaginary. De6ne

$'= (L—1+1/lv(0) V$"'. (3.25)

p„=—hm (ihcop/ih/t) . (3.m)

To calculate t/„, we return to Eq. (3.15), getting

(h/2()sr/ 2 E(0)V (os+g o)—1/s

=-,'Ã(0) V(hco) '

so that

(Note that E(0)V& 1.) For ih» lying in the range zero to
h/]', Atop is real, being 2ep at the lower end and zero at
the upper end. For i7is greater than h/$', Atop is pure
imaginary. In the limit of large ikf(., iA~O and iA~ are
proportional, the ratio being the phase velocity

I(X)—= -',X '(1—X')
r/„= po)$2X(0) Vg'/s, (3.27)

"R. J.Briggs, Etectrol Stream Irtteractioa rect/t P-tasmas (M.I.T.
X (xs+ 1) r/sdg, (3.19) Press, Cambridge, Massachusetts, 1N4), Chap. 2.
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) (t )'
ihM p ——ep exp- o(0)v (1—( /a) ')- (3.29)

For 0~& ii2Mp (~« irK is real, being A/p when iitMp ——0 and
zero when iAeoo= 60. For ikcoo~~ 6p AK is pure imaginary.
For the case A~=0, iAMO= 6p we have the characteristic
decay time"

r=h/« (3.30)

This indicates that the normal-metal phase at T=O is
unstable against decay into the lower energy supercon-
ducting phase.

IV. GINZBURG-LANDAU-LIKE SOLUTIONS

Let us return to Eq. (2.15) and look for static solu-
tions (i.e., sp x 82=0) without npahing the linearisation

approximation. We continue to make the semiclassical
approximation given by Eq. (3.1). By inspection, the
s component of s„xHp will vanish if we take the angle
222= po to be independent of k. We write'P

~=~,+.2~,= I ~I e+' (4.1)

H=B,+iB2=2)1+@V',2/a (4.2)

sp—=sis+ is22 ——
2 (sine 2)e+'". (4.3)

independent of whether Ap=60 ol zero. v represents
the maximum velocity with which a disturbance, de-
scribed by 801, and bpj„can move through the super-
conductor. An example is a moving normal-supercon-
ducting interface. On either side not too close to the
instantaneous location of the interface, a linearized
theory should be appropriate. Of course, in practice,
moving normal-superconducting interfaces are usually
associated with real magnetic Gelds, not taken into ac-
count here, which may limit the speed of motion to
values many orders of magnitude smaller than Eq.
(3.27).

Next we consider the solution Eq. (3.15) for Case II,
where 60——0. We have

1=22K(0) VL1—(&(()'] inL1+(2M/iMp)'j (3.28)

As before, restricting ourselves to coo' and ~' real, we see
that AMp is always pure imaginary (i.e., never real, aside
from zero). In the limit of large i' p, iA(( is proportional,
and Eq. (3.26) applies. When iAMp((AM, (3.28) simplifies
to

I
d

I
=cv(0) v singpd ps= N(0) vg ln(2hM/g),

or, equivalently,

I
~ I/«= (g/«) I 1—&(0)v»(g/«)0 (4 8)

If g were equal to «

'Id[�

', Eq. (4.7) would be the
complete analog of the famous Ginzburg-Landau
equation. "The fact that g(l 6

I ) cannot be expanded as
a power series in

I
4

I
shows that the two equations are

not the same. There are qualitative similarities, how-

ever, as can be seen by comparing the two functions

F (l~l)=—l~l —g(l~l),
F2(l~l)—= l~l —pp 'ltl [2.

(4.9)

Fi and F2 each rise from the origin at
I 6[ = 0 with the

same initial slope (unity), go through a maximum

I Ft =e $(0)Vep at
I ~I =e {1+X(0)V}ep,

= (2/9)~&«

and return to the origin at
I
6

I
= ep Lat which point Fi

has a slope of —E(0)V{1—E(0)V} ', F2 a slope of
—2j. For reasonable values of 1V(0)V, F2&~Fi.

In general, if we delne A=ht+ih2, we can always

write the tunneling Hamiltonian as

sc,=v-~ Iv ~l'. (4.10)

Similarly, the electron-electron interaction portion of

~sos can be written as —V 'I Al
'. The one part of K

which cannot, in general, be written in terms of 6 is the

portion —2 pp epspp. However, if we assume, as before,
that q 2 ——&p is independent of k and that 02 satis6es Eq.
(4.6), then Eq. (4.8) implicitly gives g as a function of

l~[ wane

We can eliminate the k dependence in this equation by
defining g such that

cos8&= ep(p22+g2)
—1/2 sine& g(p22+g2)

—1/2 (4 6)

whereupon we get

0~~2~+~ g—([~I)~/I~I =0 . (4.7)

Here we write g =g( I
6

I ) as a function of [ 5 I . This func-
tional dependence is given implicitly by the fact that

$3qB—sIHw =0, (4.4)

The vanishing of the x and y components of s2 x H2 can
now be written —2 p e(,spj, ———2X(0)

It; 0

2(e2+g2) —1/2(tp

or
{(costs)L1+PVasj—(ep/[d I) sinep}6=0. (4.5)

= —&(0)(h )'+v 'I~[g(l~l).

"See Ref. 13, p. 44.
6 By defining A=A&+i~2, we are making 6 a linear combina-

tiott of Cooper-pair anni/ntatgon operators Lsee Eq. (2.4)g, the
second-quantized analog of a wave function. If we had de6ned
6=61—iA2, it would have been the analog of the complex conju-
gate of the wave function. This distinction is important later when
we introduce real magnetic 6elds.

Thus the total Hamiltonian density is now, aside from

an ignorable additive constant,

~= v- LP[~.~l -
I ~I -

I ~lg(l ~l)1. (4.»)
If we now perform an operation analogous to that
carried out by Ginzburg and Landau, "i.e., if we invoke
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the Euler-Lagrange equation

(BSC/u, *)—= [(B/B~*)—v~ (B/Bv A'))X=0, (4.12)

we do rtot recover Eq. (4.7). The discrepancy results
from our putting in the constraint on 01, described by
Eq. (4.6) before performing the minitnization, rathfer
than performing the minimization of X, with respect to
arbitrary variations of the orientation of s1, (which leads
to the equation s& x HI, ——0).But, of course, if we had not
introduced Eq. (4.6) before doing the variation, we
would not have been able to express X as a function of
6 alone.

We next generalize the analysis of the erst part of this
section to the nonstatic situation where y~ ——q, still in-
dependent of k, now depends on time. The A indepen-
dence of q forces 8I, to be time-independent, as can be
seen from inspection of the s component of Eq. (2.15).
The x and y components of Eq. (2.15) can be written

where

BCo(R) =CE'

E—=—V~U

(5 2)

(5.3)

is the eGective, macroscopic electric field. The coeKcient
C is proportional to the mean capacitance per unit area
of junction and inversely proportional to the mean linear
dimension of the grains. The electric displacement D is
defined, as usual, by

given grain, but thetLe (can be differing values of U in
neighboring grains s(0 &mt there are electrostatic fields
in the barriers (associated with surface charge on the
two sides of each barrier). As before, we pass to the
centinuum model where U is position-dependent, U(R)
Tepresenting the electrostatic potential of the grain
located at R. The Coulomb energy associated with the
electrically charged barriers leads to a Hamiltonian
density

s»H ss(H»—+Ad q/dt) =0. (4.13) D—=4m (BXo/BE) =8m.CE, (5.4)
This differs from Eq. (4.4) only in that H»=2e& is re-
placed by Hss+Adrpldt. "In other words, as far as the
equations of motion are concerned, the one-electron
energy e& is replaced by eI,+ ', Ady/d-t Since .the density
of conduction electrons must remain fixed, the Fermi
level must change in time exactly in step with —',Ad@/dt.
Thus, in agreement with Josephson, ' Adqldt is twice the
electrochemical potential. In order that the range of the
attractive electron-electron interaction V» be sym-
metrically placed with respect to the Fermi level, we
must replace Eq. (2.13) by

I
es+sAdv /«l, I es+sAd~/dtI (A

=0 otherwise. (4.14)

As a consequence of (4.13) and (4.14), dp/dt disappears
from the equations of motion, and we once again obtain
Eq. (4.7) despite the fact that y is time-dependent. This
shows that our static Ginzburg-Landau —like equation is
still appropriate under certain nonstatic conditions.

V. ELECTROMAGNETIC PROPERTIES

The electrostatic potential energy —eU (—e being
the electronic charge) is, aside from an additive constant
which we can ignore, equal to the negative of the electro-
chemical potential, i.e.,

+U= (A/2e) (dy/dt) . (5 1)

For an ordinary superconductor, therefore, dip/dt should
be independent of position R. For the system considered
in this paper, i.e., microscopic grains of superconductor
with insulating barriers at all grain boundaries, this in-
dependence of U with respect to R will hold true over a

'VThis is equivalent to the situation in magnetic resonance
where a dynamic problem is reduced to a static one by shifting to
a rotating coordinate system. See, e.g., I. I. Rabi, ¹ F. Ramsey,
and J. Schwinger, Rev. Mod. Phys. 26, 167 (1954l.

J=——c(Ner/BA) . (5 6)

With the aid of Eq. (4.10), this becomes

J= V 'P(2e/A){i[8*VgA EVgA—*j
—(4e/Ac)

I
a

I
'A) . (5.7)

Specializing to the case already considered, where cpI,
——y

is independent of k,

J=—y—'P(4e/A) I
~ I'[v~p (2e/Ac)A—j (5.8).

Similarly, the displacement current is

(47r) '(dD/dt) = 2C(dE/dt)
= —(Ale)C(d'/dts)[v~q (2e/Ac)A), (5.9)—

where we have used Eqs. (5.1) and (5.5).
Consider the special case where

I
6

I
is position inde-

pendent. Using the fact that the reat magnetic field H
satisfies the equations

H=vgg xA, (5.10)

Vrr x H= (4a-/c)[J+(4a. ) '(dD/dt) j, (5.11)

i.e., 8m.C is the effective dielectric constant of the
material.

In addition to the pseudo magnetic fields Hs discussed
thus far, the presence of real magnetic Gelds can be in-
cluded in the equations of motion by replacing Vz by
V~+i(2e/Ac)A(R) in the tunneling Hamiltonian, A(R)
being the magnetic vector potential at R. Such a replace-
ment should be made in Eqs. (2.10), (2.11), (2.17),
(2.19), (2.21), (2.23), (4.2), (4.7), (4.10), and (4.11).In
addition, Eq. (5.3) must be replaced by

E= Vrr U c 'dA—/dt. —-
The electrical current density J can be obtained from

the relation
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we now get

p'tt' —e-'(c'/ch') jH =x-'H (5.12)

where we have deGned

e= c(8srC)
—"'

X= (V/2')' '(itc/4e(l Al).

(5.13)

(5.14)

The solutions of Eq. (5.12) represent bulk electro-
magnetic modes of our granular superconductor. They
are analogous to the two-dimensional electromagnetic
modes of an ordinary Josephson junction. Josephson's
wave equation LEq. (3.12) of Ref. 1j differs from (5.12)
only in that the Laplacian is two-dimensional and the
equation is nonlinear. As has been mentioned in the
Introduction, the linearity of (5.12) results from the con-
tinuum approximation~of Sec. II. The characteristic
velocity ~ of the wave equation is simply the velocity
of light c divided by the square root of the effective
dielectric constant SIC. The length ) can be rewritten
in terms of the London penetration depth Po and the
Pippard coherence distance $e of the superconducting
material forming the grains of our system. Since

Xe
——(mc'/4srnee') "'

gp
——(hot;/prep),

(5.15)

(5.16)

' For a description of type-II superconductors, see P. G. de
Gennes, Sttpercondlctt'otty of Metals and Alloys (W. A. 'Benjamin,
Inc., New York, 1966), Chap. 3.

we can express A as

~=~Le~&(0)Vl"'(lio4/5)(«/I A I) (5 17)

The coeflicient srl ersrlV(0) V)' ' is of the order of magni-
tude unity; for example, it is 1.6 when E(0)V=0.5.

In the static case, Eq. (5.12) is London's equation.
The only difference is that the effective penetration
depth X may be much larger than that appropriate to
any ordinary superconductor. It is only necessary to
make the effective coherence distance $ of our granular
superconductor sufGciently small, something which can
always be done by decreasing the density of tunneling
junctions. The fact that X/( can be made much greater
than unity suggests that the granular superconductor
has type-II behavior. "This is only partly true. The
analysis of this paper is appropriate only so long as one
can ignore circulating currents wihhiN a grain (as con-
trasted with currents, either conduction or displace-
ment, from one grain to another). This means that, no
matter how large X/$ is, one cannot hope to maintain
the individual grains superconducting above that mag-
netic Geld where an isolated grain would by itself be
superconducting. In principle, there should be an addi-
tional kinetic-energy term in the Hamiltonian density,
Eq. (2.9), this term resulting from current flow rcihhitt

a grain. Throughout this paper we have been implicitly
assuming that this term was negligible, relative to

K~~g, because of the smallness of the current densities.
%hen the only currents Qowing are those passing
through tunneling junctions, this is an excellent approxi-
mation. But the approximation may break down when

appreciable currents are circulating in the individual
grains.

The position-independent solutions of Eq. (5.12) are
electromagnetic oscillations with a characteristic fre-
quency

to—=e/X= (2el Al/AV)(v'/C)"'. (5.18)

The ratio (V'/C) is a property of the average junction in
the superconductor; it is proportional to the ratio of
reciprocal inductance per unit area of junction to capaci-
tance per unit area of junction. The inductance is associ-
ated with the tunneling energy K&, the capacitance with
the Coulomb energy K&.

Equation (5.12) was derived under the assumption.
that

I
b,

I
is position;independent. The simplest instance

of this is when 6= eo is position-independent, but there
can be cases where

I
&

I
is position-independent although

6 is not. This occurs when there is a uniform drift veloc-
ity of the Cooper pairs, appropriate for a suitably thin
film, whereupon I

5
I (ee. As the drift velocity increases,

I
A

I
decreases, so that to decreases and X increases. This

corresponds to an increase in the eRective inertia of the
Cooper pairs, or to an increase in the incremental in-
ductance (imaginary part of the microwave impedance).
The connection between changes in X and changes in
inertia can be seen very quickly by writing the London
equation

E= (4rr/c')l 2CJ/Ch, (5.19)

this being a direct consequence of Eqs. (5.1), (5.5), (5.8),
and (5.14). The coeKcient on the right-hand side of
(5.19) is a measure of the inertia of the Cooper pairs.

Gittleman et a/. ' have measured a dependence of
microwave reactance on dc current density in thin
superconducting films at temperatures too small for
quasiparticle excitations'a (normal carriers) at the cur-
rents used. These authors suggested that the source of
the dependence was the junctions of oxide or "dirt" in
the films, in agreement with the present theory.

The dc current density (in a suitably thin film where
we can ignore the vector potential) is given by

J..= —(4' v) pl A I2v, &.

But for the case IAI position-independent, our non-
linear differential equation for 6, Eq. (4.7), gives us

vtry as a function of I Dl, since

-~'l»~l'+1- l~l-'a(IAI) =o.
Thus

Jq.——&(4eg/@v) l~l'L1 —l~l 'g(l~l)3"' (5 2o)

"Both the real and the imaginary part of the microwave im-
pedance can depend on dc current density whenever there are ap-
preciable numbers of quasiparticle excitations, whose distribution
function is rearranged with changes in Cooper-pair drift velocity.
See R. H. Parmenter, RCA Rev. 23, 323 (1962).
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and we have the functional connection between J~, and
)6(. By differentiating Jp. with respect to

) 6), we find
that there is a maximum value of J&„namely

J.„,= (4.$/A V) ep'~. (5.21)

The numerical factor 6, of order-of-magnitude unity, is
a rather complicated algebraic function of E(0)V that
can be determined straightforwardly from Eq. (4.8), the
defining relation for g( ~

A
~
).

Vss ——V.—Vp if
~ es~,

~
eI

~

are both (App.
= —Vb if

] e„],) eI,
)

are both (Appp

but not both (Ace
=0 otherwise.

(6.1)

Here —Vq represents the Coulomb-repulsion contribu-
tion to the electron-electron interaction. Corresponding
to the fact that it is short range in real space (the
Debye screening length being about 0.5 A in a typi-
cal metal), —Vs is rather long range in momentum
space, and Aor& is comparable with the Fermi energy.
U represents the phonon-induced attractive contribu-
tion to the interaction. The mean phonon energy A~ is
much smaller than Ace~, corresponding to the fact that
U, is shorter-ranged in momentum space, and longer-

VI. MODIFIED INTERACTION POTENTIAL

Thus far, we have considered only a particularly sim-

ple model for the interaction potential V», that of Eq.
(2.13).We now wish to consider a slightly more general
model, namely $,'= 9'/(V, —Vp), $p'= V'/Vp. (6.3)

In terms of these quantities we can write the effective
pseudomagnetic field Hi. For

~
es

~

&~Are„

&is=2L1+4'|7z'j~i. ,

Hss ——2t1+4' 7ii'j~p. ,
H31 ——2&I,

while for Aoi, &~
~

ep
~

&&Ape p,

&is=2/1 —4'~z'j~i p,

Hps ——2L1—$p'Vip']As p,

Hak= 2Ep.

(6.4)

(6.5)

The semiclassical approximation, Eq. (3.1), allows

us to write

ranged in real space. Of course, in actuality the phonon-
induced attraction is short-range in space but time-
retarded, rather than being longer-range in space but
instantaneous in time. The latter should be thought of as
a suitably time-averaged approximation to the former.
It appears that both forms of phonon-induced attraction
lead to substantially the same results. "

Although we are modifying V», we shall continue to
assume 1"» ——V' independent of el, and e~ as before.
(This approximation will be discussed later in this sec-
tion. ) We define

~ra=~i. , ~sa=~p. , 0&~ ~ea~ ~&App. ;
(6.2)

2Ai. ——1V(0)V.

2hp, ——cV(0) V,

sln8g cos+g&p A(0)Vp

sin8p sinpppdep —$(0)Vp

sine~ cosy ~deI, ,

sin8I, sing ~de~,

(6.6)

25,p
———E(0)Vp sino' cosppdEy,

(6.7)

2hp p= —E(0)Us sin81, sin yj,dt. I, .

Initially, let us repeat the procedure of Sec. III and linearize the equations of motion according to Eq. (3.2). We
have

where
Al b a+ a, b+p8A1 by a+2 b a+82 , ayp (6.8)

2hp, ——1V(0)V,

2App= —E(0)Up

sin8ppdep —1V(0)Vs

sin01, 0del, ,

sin8I, ad&I, ,

(6.9)

"P.Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
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28Ag, =N(0) V
—5coa

28hgb= —N(0) Vb

0 —N(0) Vb(cosOb 0)80bd pb-
—Acob

(cos8bp) 88bd pb
&

(costtbp) 80bdpb,

(6.10)

282,0,——N(0) V,
—5&a

28hpb ———N(0) Vb

pb —1V(0)VbsinOI, p8yA, &I,
—

—f' Glb

sin8r, p5yqdeq.

sln8@P$ PA:Rib

(6.11)

n
' '

— e endentave — nd position-in pave the time- an

6k Sinekp —
OaeI, s —6 cos01,p ——0,

stituted in ost 1 to Eqs. (6.9), givewhich, when subst d o . ve

ns of motioniven by the equations osolutions given. y

ACOa ~6g Slne@p— pb6g s p
—6 cosOgp= 0 ~

60,——1V(0) l V,—Vb]60.

Apb= —1V(0)Ubd 0

'~'d 0—N(0) Vbh(0'+Do, ' 0—

'»d 0—1V(0)Vbhpb(0 +~0~

(6.12)

ations simplify toh above equationslier than Aoo, , aorkcob, t e a

pb a ~ ~a) ~

m, d pb both much sma
&

a a

1=N(0)LU.——Vb] ln 2A(u. 6,.—N

otentialsDining the effective p
—1L1+N(0) Vb in((ub/co,Vb =Vb (6.13)

we get

V=—V,—Vb',

—1/X(P) VApa= 2AM'

(6.14)

(6.15)

apb ———(v,'/v) ap. (6.16)

286),=N(0)l V,—Vb "'&eb«b —N(0) Vb"("'+~.)-

called Case I in analogydto - endent superconduc g
1 th t' d

p

u
'

the results or ~p
'

0 an

&k(ok +~oh

Substituting

+A

284gb =—N(0) Vb '"88bdob —1V(0)VbPb(ob +~0~ ) b &b

—A a)b

Pb(pb +~pb

(6.17)

2&0,=N(0)LV, —Vb 60, —N 0)vbhpb2 g 2 —1/2' ~pdtp-
—Avb

Ap, 8PbdEb&'(Pb'+~pb —
b

(6.18)

2R4b= —N(0) Vbhp, 0) Ubdpb2 1/2
(&k +~0m (Ob'+ ~pb

—A Nb +AG)a

b If 0~~ lpblmotion ofor 801, and bqj, .

—A40a

l' earized equ ations of mn now write the inE . (3.11), we can now
'

e mIn analogy with Kq. 3.
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~( Ae„ then

(obo+ ho, ') 88b—op[1+$,'Vxb')8hi, ———i
oAhp (d/dt) 8pb, ho, 8(pb —[1+$,'Vxb') who, ——+ oA(d/dt) 58b, (6.19)

while if Aoi. &~
~

ob~ &~Aoib, then

(ob +hob )88 b ob[1 kb 7R )8hlb —oAhpb(d/dt)8+b p hpblpb [1 $b VR ]8hpb=+oA(d/dt)Mb. (6.20)

As before, if there is only one nonvanishing 88I, and
5qh„ then Sh~„b= 8~2„b——0, and 88I„byI, are propor-
tional to exp —(ioipt), where

Ao&p
——&2(ob'+h'p b)"'

~8b= ~ihoa, b(ob'+h'o b) "'&bob

(6.21)

(6.22)

In these last two equations, we insert hp, if
~

ob
~
(Aoo„

hpb if AM~~&
~

ob
~

~& Aoob.

If there is a coherent superposition of many MI, and
Boob, all independent of the orientation of k, then there
are two possibilities coxnpatible with Eqs. (6.17)—(6.20),
just as in Sec. III. Either 801, and 8yI, are both odd
functions of ob (whence 8hi, b/0, who, b=o), , or both
88b and 8qb are ence functions of ob (whence 8hi, , b=o,
8hp. , b0 0).Actually, we can ignore the second possibility
for exactly the same reason as before (charge unbal-
ance). The first possibility is given by

~p, , beI,C, , b

88b = expi(~R —(opt),
ob'+ho b' —(-'Ao~o)'

—
~ ZACOp61bC&, b

expi(zR —boot) .
ob'+ho b' —(-'Aoip)'

(6.23)

(hpbCb 1—1V(0)[Vb—V )[1—($ ~)')F,

(ho,C, 1V(0)Vb[1—($,z)')F b

X(0)Vb[1+(Pb.)')F.
1+X(0)Vb[1+(gb~) ')F b

(6.27)

The coeflicient C, goes with 0&~
i ob~ &~Aoo, ; the coefli-

cient Cb with Aop, ~&~ obi &~Aoib. Equation (6.23) solves
Eqs. (6.19) and (6.20) provided that

ho C,=E(Q)[V,—Vb][1—($ ~)')F ho C,
—E(0)Vb[1—(&.~) ']FbhpbCb,

(6.24)
h pbC b = —E(0)Vb[1+(ebb) ')F,hp, C,

—E(0)Vb[1+ (&b~)')F bhpbCb,

where we have defined the integrals

(
(oo+h P)»P

(6.25)
o'+h ') o'+h '—(-'Aor )~l

(o'+hobo)»o

.. ko'yhoboi o'+hobo —(-'h o)'j

Equations (6.24) can be rewritten

1=X(0)V,xi[1—
(& b)']F . (6.30)

This is analogous to Eq. (3.15), appropriate for the
simpler form of interaction potential. One essential
difference between (3.15) and (6.30) is that, in the latter,
the interaction (V,—Vb) enters in determining the co-
herence distance $, [Eq. (6.3)] whereas the interaction
(V,—Vb") enters in the factor E(0)V,ix. In (3.15), on
the other hand, the same interaction enters in both
places. Since Aor, and Aorb are much bigger than

~
hob~,

we can take
bcab odo t~ p ~ p) 1/

= 1n~
~

. (6.31)
b(y~ O ( AN ) (CO~ M J

Under usual conditions
~
~p

~

will be much smaller than
co, or cob, whereupon Fb—1n(orb/o&, ). Thus, in the long-
wavelength limit where ~&&$b ', Vb" goes into Vb' [Eq.
(6.13)], the effective Coulomb repulsion for the time-
and position-independent solution, and V,ff becomes
the V of Eq. (6.14).

For the moment, let us restrict ourselves to the case
Vb&~ V, &~2Vb. It follows from Eq. (6.3) that $, )~ $b.
This inequality will tend to be enhanced by the fact
that KI,I,. is not really independent of ej, and eA, , but
rather decreases as

~
ob ~, ) ob

~

increase in size primarily
because of the energy denominator associated with the
virtual intermediate state. [See the discussion directly
following Eq. (2.6).) Thus, if $,'= 1'/(V, —Vb), one
might reasonably take $b'—(2op/Aor, )(V'/Vb), so that
$b could be an order of magnitude sxnaller than $,. This
means that

~
b~ may be comparable with $, ' and still

much smaller than gb
' Under the.se conditions, the

discussion of Eq. (3.15) is still applicable. In particular,
&or Case I we have A~ pure imaginary. For ik~ lying in
the range zero to (A/$ )[—1+1/E(0)V) ' ', A~p is real,
being 2ep at the lower end and zero at the upper end. For
larger i@~, Atop is pure imaginary. For large i7i~, the ratio
(iA&up/iAz) approaches the limiting phase velocity
o„=oo,),[2E(0)V]'t' (still subject to the proviso
~.

~

«t.b-').
In contrast, consider the case where V is slightly less

than Vb, such that V is still attractive and such that
( $, i

is still xnuch larger than
( $b ~. Now (, becomes pure

Finally, let us de6ne

Vb"=—Vb{1+E(0)Vb[1+($b~)')Fb) ', (6.28)

V,fg=—V,—Vb". (6.29)

Now (6.27) can be solved for the dispersion relation con-
necting orp and ~, the result being
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where

D,=hi, +ihP, =D pe+'",

~b= ~lb+&'~2b= ~b00
(6.32)

D.p= cV(0)V. sin0~de~

—Ã(0) Ub sin8bdpb, (6.33)

Dbp ———E(0)Vb slnolbd CIA, .

The two quantities 6,0 and Dbp are real (i.e., not com-
plex) but not necessarily positive. Define g„gb such that

g, cos8b ——pb sin80, 0~&
~

pb
~

&~Api. ;

gb cosgb= pb sineb, A00. ~&
~

pb~ ~& Appb.
(6.34)

Equation (6.34), when substituted into (6.33), gives

Ap =X(0)[V Vb jg, ln(2Aco, /g, )
E(0)V bgb ln—(ppb/00. ),

hbp= —1V(0)Vb[g, 1n(2A00, /g, )+gb in(a&b/00, )7,

imaginary and A~ becomes real. We thus have, for Case
I, a set of collective excitations for which both Acro and
A~ are real (i.e., collective oscillations, bounded in space
and time). In particular, there is one such mode charac-
terized by vanishing phase velocity, (00&/~) =0. But, as
has already been pointed out in the Introduction, this
implies that persistent currents may be unstable, "with
consequent loss of superconductivity in the literal sense
of the word, despite the fact that the individual grains
of our system are still in the thermodynamic supercon-
ductive phase. Nor can this possible breakdown of
superconductivity be blamed on the tunneling junctions
having exceeded their current capacity.

Let us return to the case previously considered, where
$, and )b are both real, with $&))b For.either Case I or
II, for ik~ sufficiently large, ikcoo becomes proportional
to ik~, e„being the proportionality constant. However,
as iA~0 continues increasing, Fb gets smaller [see Eq.
(6.31)7; while as iA~ increases, [1+(pbg)'7 gets smaller.
Both these occurrences enhance the effective Coulomb
repulsion V~", and thus decrease the net effective at-
tractive interaction, V,«, of Eq. (6.29). Thus iA000 ac'tll-
ally goes through a maximum and starts decreasing as
iA~ continues to increase. At a certain value of ik~,
ikcoo will vanish. This occurs at that iAI~: which makes
V ff —0 for Case II; for Case I the corresponding ihIf, is
somewhat smaller. At still larger ik~, AMO once again
becomes real.

In the remainder of this section, we will indicate how
the modified interaction potential of Eq. (6.1) sects
the Ginzburg-Landau —like equation of Sec. IV. As
before, we take yb

——00 independent of k. Define

which can be rewritten

g. 1n(2A(o./g. ) = [E(0)V.7
—'[d.p

—Abp 7, (6.35)

VII. FINITE TEMPERATURES

Thus far we have considered only T=O, the absolute
zero of temperature. Within the context of the effec-
tive-Geld approximation" [closely related to the semi-
classical approximation, Eq. (3.1), as has already been
discussed at the beginning of Sec. IIIj, it is easy to
generalize the isospin formulation of superconductivity
theory to finite temperatures. In the Hamiltonian den-
sity, one merely multiplies each factor of sb (and
VRsb) by the statistical factor (1—2fb), where fb is the
thermodynamic probability of occupancy of the quasi-
particle (one-electron) excited state indexed by wave
vector k. Thus

where p= 1/ART, and Eb is the quasiparticle excitation
energy.

This statistical treatment of the tunneling Hamil-
tonian [i.e., by multiplying each term in the double sum
of (2.6) or (2.10) by the factor (1—2fb)X(1—2fb.)7 is
completely equivalent to the statistical treatment nf the
electron-electron interaction Hamiltonian of the BCS
theory. ' Since both interaction Hamiltonians have the
same mathematical structure with respect to the opera-
tors sb [compare the double sums in (2.2) and (2.6)7,
this procedure is eminently reasonable. There is, how-
ever, one difference between the two Hamiltonians
which must be kept in mind. The phonon-induced elec-
tron-electron matrix element V~I,. is inversely propor-
tional to an energy denominator equal to the energy of
the typical virtual phonon involved in the intermediate
state. Since this energy is much greater than that of the
energies of the virtual quasiparticle excitations involved
in the intermediate state, it is an excellent approxima-
tion to assume that Vbb is independent of (1) any
temperature dependence in these quasiparticle energies;
(2) whether or not, in BCS terminology, ground pairs
or excited pairs are involved. Both assumptions were
used by BCS to demonstrate that (1—2fb) X (1—2fb )
is the appropriate factor to use in the double sum of Eq.
(2.2). In contrast, neither assumption is true in the case

gb ln(00b/00, ) = —[X(0)V.j '

X[6 p Abp(1 —V /Vb) j. (6.36)

Thus g, is a nonlinear function of (h, p
—Dbp), while gb is

a linear function of 6 p and Ago. The equations of mo-
tion, SI, & HA,

——0, now give the pair of coupled differential
equations

VR+1 6 p g (& p Abp)76 =0,
(6.37)

L kb ~R +1 ~bp gb(~up ~bp) j~b

We will not attempt to discuss these coupled equations
in this paper.
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of the tunneling matrix element V'22 (or V1,2''), simply
because quasiparticle energies alone are involved in the
energy denominator involved in V», this energy de-
nominator being temperature-dependent and a function
of whether or not ground pairs or excited pairs are tun-
neling. As a consequence, in addition to the explicit
temperature-dependent factor (1—2'), we must as-
sume that 1', and thus (, is impHcitly temperature-
dependent. We will not attempt to calculate the tem-
perature dependence of $ here, other than to point out
that ] will diverge as T approaches T„ the supercon-
ducting transition temperature, as a consequence of the
vanishing energy denominator. Thus the behavior of $,
as T~ T„ is similar to that of the conventional
Ginzburg-Landau coherence distance. " (But is it 2203

similar to the behavior of the Pippard coherence dis-

tance, which stays finite as T +T,.)—
Our prescription for introducing the statistical factor

means that formally the equations of motion LEqs.
(2.15) and (2.19)] are unchanged. It is only in the de-

fining equations for the various order parameters Le.g.,
Eq. (2.18)] that the factor (1—2') appears.

I.et us erst consider the nonlinear situation described
in Sec. IV. Equation (4.7), the Ginzburg-Landau —like

differential equations, is still appropriate. Only now

g(l 6
l ) is a function of temperature. To find g, we insert

(1—2') into the integral defining
l
6

l
Lthe right-hand

side of the equation preceding Eq. (4.8)], i.e.,

g(lhl) versus ill at any temperature. This is a conse-
quence of the fact that the integral of Eq. (7.5) cannot
be expanded in ill. To see this, rewrite (7.5) as

c2+
l
&

l
2a ) tanhy)

1=2'(0) Vn ide, (7.8)
i

where

(7.9)

Now y
' tanhy is an analytic function of y2 (at y=0), but

(2/P) y = & + I
&

I
42'+ 2

I
Z

I
'42(1 —42)

+ l
g

l
4~2(1 ~)2(g2y

l
g

l
2~2)—1

when expanded in powers of
l 6 l ', gives rise to a term

proportional to
l
Al4& ', causing the above integral to

diverge. Still more seriously, the factor (e2+ lhl242)/
(e2+

l
6

l
2a2), when expanded in powers of

l
6

l
', gives

rise to a term proportional to
l hi 2c ', also causing the

integral to diverge. This nonanalyticity of g(l 141
l ) versus

l hi can be traced to the functional form of the quasi-
particle excitation energy, Eq. (7.3).

In cases where the linearization approximation is to
be made, it is appropriate to take the quasiparticle
excitation spectrum to be that associated with the un-
perturbed time- and position-independent situation, i.e.,

—
(g 2++ 2) 1l2 (7.10)

l Al =E(0)Vg (1—2f~)(e12+g2) '"de2. (7.2)

For this case, the quasiparticle excitation energy EI, is

Ey = 22 cos04+
l
6

l
sin02 ——(e22+

l
5

l g) (&22+g2) '~2 . (73)

Defining the ratio

(7 4)

we can now rewrite (7.2) as

1 = iver(0) U42 (g2+
l
g

i
2422)

—'~2

X tanh{21pL(e + I
s

I
'12)("y I

a
I
'42') '"])d' (7 5)

In the limit
l hl —& 0, this becomes

(1/2) Pka)

As before, 60——e2(T) or zero, depending on whether we
are considering Case I or Case II, only now eo(T) is the
finite-temperature BCS half-energy gap. As far as the
dispersion relations for the collective excitations are
concerned, the only change from T=0 is the insertion of

(1—2fi) in the appropriate integrand. For the simpler
V21, , this is either Eq. (3.15) or (3.19), since the deriva-
tion of Eq. (3.18) from (3.15) still applies at finite T.
For the more complicated V», this is F, defined by
Eq. (6.25) and appearing in Eq. (6.30). )The statistical
factor can be approximated by unity, and thus ignored,
in Eq. (6.26), the defining equation for J'2.]

For simplicity, we now restrict ourselves to the sim-

pler V», where the dispersion relation is

AQ) g2 (~2++ 2) 1/2

1V(0)V[1—($14)2]
~2 g2 ~2 g2 X~ 2

1=E(0)U42 x ' tanhxdx, (7.6) Xtanhi 21P(e'+& ')'I ]de=1. (7.11)

which implies that 42 is finite in this limit (taking TWO).
Thus g vanishes linearly with lAl when T)0. For
example, for T near T„Eq. (7.6) gives

lim g(lal)= lall1 —X(0)U(1—T/T, )]. (7.7)
l~l ~o

1=X(0)Vi 1—(f14)2] L62 ( $~0)2]—1

X tanh(2'Pe) de. (7.12)

First we consider Case II, where 60=0. Then

Despite this, there is no power-series expansion of Making use of the fact that Ace»kgT, and assuming that
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A~))
~
A~0

~ &
we can rewrite (7.12) as

(t~)'=&(0)V[1—(8)']

&& (-,'PA, )' [x2—(~PA,)']-'x-'

&& tanhxdx+in(P/P, ) . (7.13)

Eq. (7.11) as

(]g)'= —E(0)V[1—(fsc)'][X(X)+J(—X)], (7.19)

where we deGne

J(X)—=
1—X' '

tanh[y(x + 1)'~ ]
CS~

2X 0 [(x'+1)"'—X](x'/1)'~'

('7.20)

Let us consider only the limit
~ Acro~(&4k&T, so that we

can replace tanhx by x in the above integral. The disper-
sion relation becomes

[1—($ )'] '($a)'/E(0) V—ln(T, /T) Just as in the case at T= 0, we see that X'&~1 and that
(f~)' &~0. We restrict ourselves to temperatures close to
T. (so that y«1). If we also take

~
Acro~(&4k~T„ then

In the static limit where ikcoo ——0, we get J(X)+J(—X)=-,'vry(1 —X')'". (7.21)
f~= {1+[%(0)V ln(T, /T)] ') '~' (7.15)

valid over the whole ternpefature range. This shows
that the static ~ goes from Q' at T=0 to zero at T= T,.
In the position-independent limit where ~=0, we are
limited to temperatures close to T, (in order that

~
A~0~

«4ksT). Here we get

iAMp ——(8/~) k~T ln(T, /T), (7.16)

this being proportional to the square of eo(T) near
T= T,. Finally, at T= T„ for small

~ j~~, we get

iA(op= [8k~T,/mX(0) V](i)~)' (7.17)

(i.e., both &oo and z are pure imaginary here).
Next we consider Case I, where hp = Ep(T). When a= 0,

we can solve Eq. (7.11) by inspection, getting

A(uo ——2 op(T) (7.18)

for all temperatures. In the same fashion that Eq.
(3.18) follows from Eq. (3.15) at T=O, we can rewrite

In the limit
~
$~~))1, this gives the dispersion relation

PP~)'= [mS(0) V/84T. ]{[2co(T)] [A(a ]')' ' (7.22)

In calculating the 6nite-temperature collective excita-
tions, we have assumed, for both Cases I and II, that
iAGlo+QAM. If we consider the opposite limit, we return to
the same result obtained in Eqs. (3.26) and (3.27),
namely, that iAcoo is proportional to iA~, the proportion-
ality constant being w„=~)[2K(0)V]'~' independent of
which case we are considering. Note that the tempera-
ture enters only implicitly through its influence on $ (so.
that, for example, v„—+ ~ as T~ T,).
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