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It is interesting to note that there is a close simi-
larity between a superconductor and a laser and that
many of the equations appearing here are analogous
to the equations used in the description of lasers.”? In
that case the role of A is played by the electric field E.
Both systems can in many respects be regarded as
nonlinear oscillators.® At its operating point the
impedance of a self-sustaining oscillator is zero and the

12 W. E. Lamb, Phys. Rev. 134, A1429 (1964).
13 M. Lax, Bull. Am. Phys. Soc. 11, 111 (1966); and (to be
published).
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vanishing of the resistance and the reactance corre-
spond, respectively, to Egs. (19) and (29).
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The properties of a granular superconductor are studied with the aid of the isospin formulation of the
microscopic theory of superconductivity. The system consists of grains of homogeneous superconductor
separated by insulating but tunnelable barriers (Josephson junctions). The general nonlinear equations of
motion are set up for the isospins, “spin up” representing the absence, and “spin down” the presence, of a
given Cooper pair. These equations are like torque equations for each isospin moving in an effective pseudo-
magnetic field due to all the other isospins. Linearized solutions result in various single-particle and collective
excitations. A certain class of nonlinear solutions is shown to satisfy a Ginzburg-Landau-like differential
equation. The effects of electric fields (within the junctions) and real magnetic fields are studied, one result
being that there are bulk electromagnetic modes, analogous to the surface modes known to be associated
with a single isolated Josephson junction. Consequences of changes in temperature and changes in effective

electron-electron interaction are studied.

1. INTRODUCTION

IN this paper we wish to examine the properties of a
particular kind of granular superconductor; namely,
one where each grain consists of a homogeneous super-
conductor, but at each grain boundary there is a thin
insulating layer (e.g., oxide). Each layer is thin enough
that it can be tunneled by the Cooper pairs of the
superconductor; in other words, we have a Josephson
junction! at each grain boundary. For simplicity, we
assume that the junctions take up a negligible fraction
of the total volume of material.

For such a superconductor, the energy density of the
BCS theory? is augmented by a tunneling-energy den-
sity, the latter being directly proportional both to the
linear density of tunnel junctions® and to the Cooper-
pair transition amplitude for an average junction of unit
area. We are free to imagine the tunneling-energy den-

* Present address: Department of Physics, University of
Arizona, Tucson, Arizona.

1B, D. Josephson, Advan. Phys. 14, 419 (1965).

2 7. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957). o

3 By linear density, we mean the average number of junctions
intersecting an arbitrarily oriented straight-line segment of unit
length.

sity as large or as small as we like, because of variations
in the number of junctions per unit length. We cannot,
however, let the tunneling energy be either too large or
too small because of the tunneling transition probability.
The upper limit is set by the limitation of second-order
perturbation theory (the Cooper-pair tunneling being
visualized as a two-step process, the intermediate step
involving the virtual state where only one of the two
electrons composing the pair has tunneled). When the
tunneling transition probability is too high, perturba-
tion theory breaks down.

The lower limit to the tunneling transition probability
is set by a physical process that has nothing to do with
superconductivity per se; it is the value of the tunnel-
ing probability at which the normal-metal conductivity
of the system (at temperatures where the normal phase
is thermodynamically stable) switches over to insulating
behavior, because there is a thermal activation energy
associated with electron tunneling.5 This activation en-
ergy is the energy required to change two neighboring,

¢ P. W. Anderson, in Lectures on the M any-Body Problem, edited

}zay E.I% Caianiello (Academic Press Inc., New York, 1964), Vol.
» p .

a ;6(13‘.) A. Neugebauer and M. B. Webb, J. Appl. Phys. 33, 74
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electrically neutral metallic grains into electrically
charged grains, one charged e, the other —e. Pre-
sumably, this change in electrical properties occurs sud-
denly at some critical minimum value of mean tunneling
transition probability. This is analogous to the idea of
the metal-insulator transition, as interatomic distance
is varied, as was first discussed by Mott.$

Thin films appear to have a particularly favorable
geometry for obtaining a granular metallic deposit of
the type being considered here.” In fact, the microwave
conductivity of thin films of tin and indium, as measured
by Gittleman et al.,® strongly suggests a granular nature.
This will be discussed further in Sec. V.

The general outline of this paper is as follows. In Sec.
II, the BCS Hamiltonian for the grains of superconduc-
tor and the tunneling Hamiltonian for the junctions will
be reformulated in terms of isotopic spin,? “spin up” in-
dicating the absence and “spin down” the presence of
Cooper pairs, just as was done by Wallace and Stavn'®
for the case of a single Josephson junction. This proce-
dure makes our problem formally analogous to ferro-
magnetism; in particular, the tunneling Hamiltonian
resembles an exchange Hamiltonian. This resemblance
will then be exploited by making the continuum approxi-
mation to the tunneling Hamiltonian in exactly the
same fashion that the exchange energy of the Heisen-
berg theory of ferromagnetism is approximated by a
continuum model in micromagnetics, the continuum
theory of ferromagnetism."* With the aid of the quan-
tum-mechanical commutation relations satisfied by the
isospin operators, the equations of motion and boundary
conditions will next be obtained. Continuing the analogy
with magnetism, these equations of motion are torque
equations for each isospin precessing in an effective
pseudomagnetic field due to the other spins.

In Sec. III, we begin the process of solving these
equations of motion. As a first step, what is known as
the semiclassical approximation in magnetism will be
introduced: namely, treating the isospin vectors as clas-
sical quantities. (Note that we are not making the
classical approximation in setting up the equations of
motion, only in solving them.) Once this approximation
is invoked, two solutions will be obtained almost by
inspection; these are the time- and position-independent
superconducting solution (BCS solution), and the time-
and position-independent normal-metal solution. The
tunneling energy vanishes in both cases.

6 N. F. Mott, Can. J. Phys. 34, 1356 (1956).
7 C. A. Neugebauer, in Physics of Thin Films, edited by G. Hass
and R. E. Thun (Academic Press Inc., New York, 1964), Vol. I,

. 1.
P 8 J. Gittleman, B. Rosenblum, T. E. Seidel, and A. W. Wick-
lund, Phys. Rev. 137, A527 (1965).
9 P. W. Anderson, Phys. Rev. 112, 1900 (1958).
10 P, R. Wallace and M. J. Stavn, Can. J. Phys. 43, 411 (1965).
111, Landau and E. Lifshitz, Physik Z. Sowjetunion 8, 153
(1935); W. F. Brown, Jr., Micromagnetics (Interscience Publishers,
Inc., New York, 1963); S. Shtrikman and D. Treves, in Magnei-
ism, edited by G. T. Rado and H. Suhl (Academic Press Inc., New
York, 1963), Vol. III, Chap. 8.

R. H. PARMENTER

154

To go beyond these two solutions is, in general, quite
difficult because of the nonlinearity of the equations of
motion. To get around this problem, we will linearize the
equations of motion, i.e., assume that the classical spin
vectors execute small-amplitude excursions with respect
to one of the two known time- and position-independent
solutions. There are two types of solutions to the
linearized equations of motion: single-particle-like and
collective. The former, being excited Cooper pairs, cor-
respond to flipping over one isospin in the pseudo-
magnetic field due to the other spins. The latter corre-
spond to collective excitations of all the isospins. Some
of these, giving rise to nonequilibrium densities of con-
duction electrons, are disallowed on physical grounds.
Other excitations, however, are consistent with charge
neutrality, and are related to real physical phenomena.
Examples of quantities which can thereby be calculated
are: (1) the decay-rate of the time- and position-inde-
pendent normal phase, which is energetically unstable
relative to the superconducting phase; (2) the maximum
velocity of a normal-superconducting interface.

In Sec. IV, we find a certain class of solutions to the
equations of motion not requiring the linearization ap-
proximation. For this class (and only for this class) the
problem can be re-expressed as a second-order nonlinear
differential equation for an order parameter. This equa-
tion bears a strong resemblance to that of the Ginzburg-
Landau phenomenological theory of superconductiv-
ity.1? There are differences, however; for example, the
nonlinear portion of the differential equation of Sec. IV
has no power-series expansion, in contrast to that of
Ginzburg and Landau. Although the equation is static
(i.e., it does not contain any explicit time dependence),
it applies to a certain type of time-dependent situation,
that where all the isospins are precessing at the same
constant rate. It will be shown that this angular fre-
quency is proportional to fwice the (time- and position-
independent) electrochemical potential of the super-
conductor, in agreement with Josephson.!

In Sec. V, we will generalize to the situation where
there is a constant electric potential within a given grain
of superconductor, but that this potential changes as one
moves from one grain to another. In other words, there
are electric fields in the tunnel junctions, and surface
charges on the individual grains. In the continuum
model, this is represented by a finite effective electric
field (but no bulk space charge) throughout the super-
conductor, with an electric energy density proportional
to the square of this field. We will also generalize to take
account of real magnetic fields (as distinguished from
the pseudomagnetic fields already introduced) by in-
serting the magnetic vector potential into the tunneling
Hamiltonian in the usual manner. The nonlinear differ-
ential equation of Sec. IV, in combination with Max-
well’s equations, will then lead to a wave equation for

12V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).



154

bulk electromagnetic modes of the superconductor.
These are the bulk analogs of the two-dimensional
junction electromagnetic modes predicted by Joseph-
son.! The differences between the wave equation of
Sec. V and that of Josephson is that: (1) The former in-
volves the three-dimensional Laplacian rather than the
two dimensional one; (2) the former is a linear, rather
than a nonlinear, wave equation. This linearity is a con-
sequence of the implicit assumption that the phase of
the order parameter changes only slightly in passing
through any one tunneling junction (introduced by
treating the tunneling Hamiltonian on the continuum
model).

In complete analogy with the usual Ginzburg-Landau
theory, we will see that the nonlinear differential equa-
tion of Sec. V implies a critical dc current density, and
that at currents less than critical, the microwave im-
pedance is a function of this dc current density.

In Sec. VI, we will investigate the consequences of
using a modified electron-electron interaction in the
equations of motion for the isospins. The more com-
plicated interaction is introduced for the usual reason:
to better approximate the fact that electrons in a super-
conductor interact not only attractively with the com-
paratively long-range phonon-mediated force but also
repulsively with the shorter ranged screened-Coulomb
force. It is well known!® that the latter repulsion is less
effective in suppressing the former attraction than was
originally thought to be the case in the BCS theory.?
The Coulomb-repulsion matrix element appropriate for
insertion in the BCS theory may be a factor of two or
three smaller than the normal-metal value. We will see
that the same effect may occur with many aspects of the
present theory.

However, in one regard, the consequences of using a
modified electron-electron interaction are drastically dif-
ferent for the granular superconductor than for the ideal
BCS superconductor. We will see that, when the normal-
metal Coulomb repulsive matrix element becomes
greater than the phonon-induced attractive matrix ele-
ment, new short-wavelength collective oscillations can
occur (these being solutions to the linearized equations
of Sec. IIT). These oscillations can have vanishingly small
phase velocities and thus may quench any nonvanishing
supercurrent in the granular superconductor.!* The

13 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 4
New Method in the Theory of Superconductivity (Consultants
Bureau Enterprises, Inc., New York, 1959), p. 83.

14 The phase velocity of any collective oscillation will set an
upper limit to the superfluid drift velocity of a superfluid system,
provided there is a finite matrix element for the process of generat-
ing such an oscillation by transferring energy and momentum from
the superfluid. The determination that such a matrix element is
nonvanishing requires a detailed investigation that we will not
attempt here. Once one assumes the matrix element to be finite,
the limitation on the superfluid drift velocity follows by elemen-
tary arugments. See, e.g., I. M. Khalatnikov, Introduction to the
Theory of Superfiuidity (W. A. Benjamin, Inc., New York, 1965),
p. 6. Note added in proof. It has now been proved that these collec-
tive oscillations cannot quench superconductivity. The analysis of
Secs. III and VI has been redone by linearizing with respect to the
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possibility thus exists that our granular system will lose
superconductivity, despite the fact that the individual
grains are still superconducting, and despite the fact that
the tunneling between grains is not a limiting factor.
Finally, in Sec. VII, we will show how the formalism
can be extended to finite temperatures. Concentrating
on the limit T'— T, we will recalculate some of the
quantities obtained in the previous sections at T'=0.

II. EQUATIONS OF MOTION

Consider the isospin model of a Josephson junction as
given by Wallace and Stavn.!® In their model the
Hamiltonian consists of

Je="50,+5Cp+3Cr. (2.1)

3¢z and 3Cr are BCS Hamiltonians? for the supercon-
ductors on the left- and right-hand sides of the junction,
respectively. Each BCS Hamiltonian is reformulated
in terms of isospins in the manner introduced by
Anderson,?

Hpes=—22_ 5k53k_z ka’(slkslk’+32ks2k'>- (2-2)
k

kk’

Here six, s, and sg; are the #, ¥, and 2z components,
respectively, of the isotopic spin vector sz, obeying the
commutation relation

Sk XSpr= iSkBkkl . (23)

Spin up represents absence, spin down presence of a
Cooper pair of wave vector k. The Cooper-pair annihi-
lation and creation operators are equal to sy and sz,
respectively, where

Skp=S$
b+ k1+'L'sk2, (2.4)
Sk—=Skr1—1S2.
There is a set of spin operators sz, associated with the
left-hand superconductor and appearing in the BCS
Hamiltonian 3Cz, and another set sz associated with
the right-hand superconductor and appearing in the
BCS Hamiltonian 3Cr. The two different sets of spin
operators commute, i.e.,

Siz XS r=0. (2.5)
The tunneling Hamiltonian
3Cr=—2 T'rw (161510 RS2 LS2k B) (2.6)

kk’

state of uniform, steady current flow (the state described at the
end of Sec. V). Itis found that, in general, all collective excitations
now violate the condition of charge neutrality, and thus are dis-
allowed physically. The only exceptions are those excitations
whose propagation vectors k¥ are perpendicular to the direction
of uniform current flow, but, of course, these are just the excita-
tions which are unable to quench the steady supercurrent in any
case. This restoration of the stability of superconductivity is
especially reassuring because of the fact that our continuum model
of a granular superconductor appears, at least in some respects,
to be a reasonable model for a conventional dirty superconductor.
The details of this work are now being written for publication,
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describes the physical process of a Cooper pair tunneling
through the junction. The matrix element T’ is pro-
‘portional to the square of the one-electron tunneling
matrix element associated with the junction, and Ty’ is
inversely proportional to the intermediate-state excita-
ttion energy corresponding ito an electron-like excitation
‘on one side of the junction:and a hole-like‘excitation en
ithe other side.

‘We now visualize our bulk superconductor to consist
of many small grains of pure superconductor with tun-
neling junctions at each grain boundary. We assume only
a small change in orientation of sy in isospin space as we
move across any junction. Let the position vector R
serve to designate which grain of superconductor we are
considering, so that s is a function of both k and R.
Passing to the continuum limit in real space, we must
replace Egs. (2.3) and (2.5) by

ss(R) x s (R") =148:(R)d1r-6(R—R). @.n

Assuming that the tunneling junctions take up a negli-
gible fraction of the total volume of the crystal, we can
write the Hamiltonian of the system as

= / 3(R)d?R, (2.8)

where the Hamiltonian density 3¢(R) is composed of the
two terms

3e(R)=3¢scs(R)+3¢r(R), (2.9)

3Csos(R) being given by Eq. (2.2) after substitution of
the R-dependent sz, and 3er(R) being given by

3r(R)=>" Tww{Vrsw Vrsw
prg
+ V gsa- Vesaw }+constant.  (2.10)

The matrix element T is directly proportional to
the matrix element Ty’ of an individual junction, Eq.
(2.6) (i.e., the reciprocal inductance per unit area of
junction), suitably averaged over all types of junctions,
and is inversely proportional to the mean linear dimen-
sion of the grains. The additive constant in Eq. (2.10),
a constant which we will henceforth ignore, is what
would remain of the tunneling energy if there were no
change in orientation of s; in passing through any junc-
tion.!4» The first part of Eq. (2.10) represents the lead-
ing term associated with a change in orientation of s. Itis
this term which plays the essential role in the equations
of motion for s; which we obtain presently. The passage
from Eq. (2.6) to Eq. (2.10) is completely analogous to
the replacement of the Heisenberg exchange Hamil-
tonian by terms proportional to the square of the spatial

ua Note added in proof. It is possible that this negative constant,
which represents an afractive coupling between Cooper-pair states
on opposite sides of a junction, plays a role in the experimentally
observed enhancement of transition temperature in thin-film
granular superconductors. See W. Buckel and R. Hilsch, Z. Physik
138, 109 (1954); O. F. Kammerer and M. Strongin, Phys. Letters
17, 224 (1965) ; B. Abeles, R. W. Cohen, and G. W. Cullen, Phys.
Rev. Letters 17, 632 (1966).
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gradient of the components of the magnetization vec-
tor in micromagnetics,'' the continuum theory of
ferromagnetism.

Following Wallace ‘and ‘Stavn,™ we make the approxi-
mation of treating 7 asa constant 7 independent of

k and k'. This allows ws ‘to rewrite Eq.((2.10) as

Fr(R)= 72T | Vi Zk: s 4| Ve Zk: sl?]. (2.11)

(Here we have dropped ‘the additive constant.) Note
that we can now augment the right-hand side of (2.11)
by the term
Tl Ve Z S 3kl 2
)

without modifying 3Cr(R). This follows from the fact
that

”0=—22 S3k (2.12)
k

is the total conduction-electron density, necessarily R
independent in order to maintain electric charge neu-
trality. This modified form renders the analogy complete
with micromagnetics!! in that 3 ; s; corresponds to the
magnetization vector.!® Similarly, in Eq. (2.6), if Twx’
is replaced by a constant independent of k and k’, then
the tunneling Hamiltonian can be rewritten (aside from
an additive constant) as

-~ 7" Z SiL* SR,
Kk’

the analog of the Heisenberg exchange Hamiltonian.

For the time being (until Sec. VI), we make the BCS
approximation for the electron-electron interaction po-
tential Vi, i€,

ViesV i |e&|, || <o,

=0 otherwise. (2.13)

(We are using a sign convention where a positive V
represents an attractive interaction.) Under such condi-
tions, s; will be parallel with the z axis in isospin space
for €;> #iw, while s; will be antiparallel with the z-axis
for ;< —7%w. This results from the one-electron terms
—2eS3 in the energy density. Therefore the & sums in
Eq. (2.11) have finite contributions only over the range
of & space | ex| <7iw, so that in effect T may be treated
as though it has the same range as does Vi in Eq.
(2.13). In giving this argument, we have talked as
though s; were a classical spin vector, which is not
correct. The argument can be recast in terms where only
the three spins
SIE Z Sk,

ex<—hw

SzE Z

| exl <tw

Si= X s

ek>hw

S%,

are assumed classical, an excellent approximation be-
cause of the large number of terms in each sum.

15 See R. H. Parmenter [ Phys. Rev. 137, A161 (1965)] for a dis-
cussion of a situation which differs from the present case only in
that Ty is diagonal with respect to k and k’ in the form of 3Cp
containing all three components of s;.
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We wish to set up the equations of motion for sx(R),
whose time derivative is given by

'Lﬁ(dsk/dt) = [sk,GC] , (214)

the right-hand side being the commutator of s; and 3¢,
the Hamiltonian of Eq. (2.8). With the aid of (2.7), this
can be rewritten

h(dsk/dt) =s; xH; , (215)

where

HkE - (53(3/881;) =— (6/8s,,——VR . 6/3VRSk)5C (216)

is, in suitable units, the effective pseudo magnetic field
seen by the isospin vector s;. It should be understood
that H; has nothing to do with real magnetic fields that
may be present and will be considered later (Sec. V).
Note that Hy is defined as the negative of the so-called
variational derivative'® of 3C with respect to s;. The
%, ¥, and z components of Hy, are, respectively,

Hu=2[3 Viesww+ Ve 2 Tiwrsw],
g k!

Hou=2[2 Vipsow+Ver 2 Tiwsaw], (2.17)
P2 L

Hgp=2e¢;.

It is convenient to define the two order parameters

A=Y Viwsw ,
Z (2.18)

A= Viwsaw.
k/

Because of Eq. (2.13), A1x=A1, Asx=A; are independent
of k for | ex| <#w; otherwise Ayz=Az,=0. In the former
case, we have

Hy=2[14£Vz¥]A,,
H2= 2[1"" EZVR2]A2 N
Hy=2¢y,

(2.19)

where we have dropped the % subscript from H; and H..
The characteristic length £ has been defined as

p=T/V. (2.20)

In calculating the commutator of s; and 4C in order to
obtain Eq. (2.15), one must perform a partial integra-
tion, with respect to R, of the gradient terms in 3¢ in
order to avoid having to evaluate the commutator of
sir and Vgsi (1=1, 2). This partial integration!? leads
to the appearance of Vg% in Hj. But it also leads to
a delta-function contribution to H; on the surface of

18 See, e.g., H. Goldstein, Classical M echanics (Addison-Wesley
g;st)lishmg Company, Inc., Reading, Massachusetts, 1950), p.

w An analogous procedure is used in the second quantization of
Schrddinger’s equation. See, e.g., L. I. Schiff, Quantum Mechanics
(McGraw-Hill Book Company, Inc., New York, 1949), p. 338.
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the superconductor,® given by
Hi5=2£%(0A4/9n)ds,
Hos=2£%3Ay/0n)dg,

s being the surface delta function and (9/9#) the gra-

dient normal to the surface. In order to avoid patho-

logical behavior of (dsy/df) at the surface, we must
require

(2.21)

st xHg=0. (2.22)

Because of the fact that H, is restricted to the x-y plane
of isospin space, the only way to satisfy (2.22) is to make
H, vanish. Thus the boundary conditions are that
Ez(aAl/an) =0 P
£2(8As/8m)=0.
The obvious generalization of (2.23) at an interface be-

tween two different granular superconductors is that
£2(dA;/9n) (i=1, 2) be continuous at the interface.

(2.23)

III. COLLECTIVE EXCITATIONS

In deriving Eq. (2.15), the equations of motion for
s, we have properly taken into account the fact that
the components of s, are noncommuting quantum-
mechanical operators (or matrices). At this point we
introduce the first of two approximations used in solving
Eg. (2.15). Specifically, we replace s;(R) by the classical
quantity

Slk=% Sil’lok Cosy,

(3.1)

Sop=1% sinfy, singy,,
Ssk=7% cosly,

so that s;(R) is a classical vector of magnitude } point-
ing in the direction denoted by 6;(R) and ¢x(R). In the
theory of magnetism, this is known as the semiclassical
approximation!?; it leads to the consequence that the z
component of total spin is not a constant of the motion.
In the theory of superconductivity, this corresponds to
the total number of electrons not being a constant of
the motion.

The accuracy of this approximation in superconduc-
tivity theory is closely connected with the accuracy of
the effective (or molecular) field approximation of mag-
netism,?® as applied to superconductivity. The latter
approximation is actually much more accurate in super-
conductivity than it is in magnetism, simply because
the effective field acting on a given spin is due to many
other spins in superconductivity, but due to only a few
other spins in magnetism. Thus, in superconductivity,
one can treat the effective field as a classical field, cal-
culated classically. [In other words, substitution of Eq.

18 The idea of a delta-function surface magnetic field in micro-
magnetics was introduced by C. Kittel and C. Herring, Phys. Rev.
717, 725 (1950).

19 P, W. Anderson, Phys. Rev. 86, 694 (1952).

20 See, e.g., R. Kubo, Statistical Mechanics (North-Holland
Publishing Company, Amsterdam, 1965), p. 302,
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(3.1), via (2.18), into (2.19) does not lead to appreciable
error in H;.] But this means that the semiclassical
approximation is accurate, since the classical and quan-
tum mechanical equations of motion for a spin in a clas-
sical magnetic field are identical.?

This first approximation, Eq. (3.1), we shall use
throughout the remainder of the paper. A second ap-
proximation, to be used in this section, consists of

linearizing the nonlinear equations of motion. Let
0= 6o+ 66
k k0+ ky (3.2)
er=ort+oor,

where both 6, ¢ and 6ro, ¢ro are solutions. We assume
805, d¢y are small in the sense that we need keep only
terms independent of, or linear in, some 86, or 8¢z in the
equations of motion. Furthermore, we take 0o, ¢ro to be
the time- and position-independent solutions. (Without
loss of generality, we may assume ¢o=0.) Define

A0=%V Z sinﬁk,o,
kl

§A1=3%V 3 (cos8i0)00 , (33)
kl

8A:=3V Y (sinfro)dorr .
k’

To the accuracy of the linearization procedure, we have
A1=A¢+04Aq, 3.4)
Ag=58A,.

For 60 we have the equation of motion

€x Sineko—Ao C050k0= 0 y
so that

sin0k0= Ao(ek2+A02)"1/2, C059k0= ek(€k2+Ao2)_1/2. (35)
Substituting into (3.3), we get

#iw
A=1N(O)V A, / (@A e,  (36)
—hw
fw
5A1=%N(O)V/ er(ex®+ 20" 200 der, (3.7)
—hw
#iw
30— 3N (0)VAg / (a2 AD B gider, (38)
—hw

where N(0) is the one-electron density of allowed states
per unit energy for a given electron spin at the Fermi
level in the normal state.

Equation (3.6) can be solved for Ay, giving two solu-
tions. The first is Case I:

Ag= o= 2hwe /N OV | 3.9)
€0 being the BCS half-energy gap at the absolute zero of

21 See, e.g., P. W. Anderson, Concepts in Solids (W. A. Benjamin,
Inc., New York, 1963), p. 164.
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temperature. This is the time- and position-independent
superconducting solution. The second is Case II:

A0=0, €k>0,
<0,

This is the time- and position-independent normal
solution.

Substituting Egs. (2.19), (3.2), (3.4), and (3.5) into
(2.15), keeping only terms linear in 86 or d¢x, we get

(&4 Ao?) 005 — ex[ 14 £2V2]0A,
= — A/ o,

Aod or— [14 £V 2600 = +37(d/d1) 56y,

The latter equation comes from either the x or the 2
component of Eq. (2.15); the former equation comes
from the y component.

First we consider the situation where there is only
one nonvanishing 86z and ¢y, so that in the limit of an
infinite crystal, A;=6A,=0. Rather than considering
one single-particle excitation, we might equally well
consider an incoherent superposition of single-particle
excitations, where the signature of 86; and 8¢ is a
random function of €. The random signature will in-
sure that 6A;=6A,=0. Under these conditions, 86, and
d¢r are proportional?? to e~ as can be seen by in-
spection of Eq. (3.11), where

hwo= :|:2(ek2+A02)1/2, (312)
860r= il o(ex2+ A2~V oy (3.13)

For the case Ag= €, #isg is just the energy of an excited
Cooper pair.?® It should be noted that 86,=0 for the
case Ap=0.

Next we consider the situation where there is a co-
herent superposition of many 86; and 8¢y If each 66,
and d¢; is proportional to some spherical harmonic
(I0) of the orientation of k, then once again 6A; and
6A; will vanish and the single-particle solutions will
ensue. If each 86, and 6 ¢y is independent of the orienta-
tion of k, then two possihilities exist, as can be seen by
inspection of Egs. (3.7), (3.8), and (3.11). If 80, is an
odd function of e, then §¢r must also be odd. This
means that 64,70, but 6A,=0. On the other hand, if
86 is an even function of e, then ¢, must also be even;
and 5A1= O, 5A2;£0

The first possibility is given by

so that 6z=0 for
(3.10)

0k0=1r fOI‘

(3.11)

Aoékc ( )
00y=———— expi(kR—wyt) ,
e+ A= (bon)? ’
(3.14)
—2ihw0e,C
dpr= expi(kR—wot) .

&’ A0 — (37w0)?

2 Of course, 86 and 8¢y, are actually real quantities, but in a
linearized theory it is perfectly acceptable and very convenient to
think of them as complex variables.

28 Avoid confusing the excitation energy %w, with the cutoff en-
ergy 7w of Eq. (2.13).
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For simplicity, we restrict ourselves to situations where
80, and 8¢, depend on only one spatial coordinate R.
In (3.14), C, , and w, are constants independent of k,
R, and t. Equation (3.11) and (3.14) are consistent only
when « and w, satisfy the dispersion relation

NOV[1-(507] / - (

e2
€2+A02>

(e+A%)12
(———————-——)de= 1. (3.15)
62+A02'— %hwq)2
The second possibility is given by
‘_%ihwvoC
80=———— expi(kR—wdl) ,
€2+ Ag*— (3 /100)*
(3.16)
(e +AHC
dor expi(kR—wqt) .

&x*F Ao*— (371wo)

The corresponding dispersion relation differs from Eq.
(3.15) only by the absence of the factor e?/(e?-+A¢?) in
the integrand.

At this point it is necessary to consider the possibility
of charge unbalance due to the excitation. The net
charge density is proportional to

3. 2sp=2_ cosfi=2y, cosfro— 2, (sinfro)d0;
% % % %

=—Ap Z (€k2+A02)_1/250k . (317)
k

This quantity vanishes when we have an incoherent
superposition of many 665 and d ¢, or when 86; is an odd
function of ¢ as in the first of the above possibilities.
For the second of the above possibilities, where 86y is an
even function of ¢, the net charge need not vanish. The
resultant long-range Coulomb forces, not taken into ac-
count here, will drastically increase the characteristic
frequencies over what would be inferred from our dis-
persion relation, converting them into conventional
plasma oscillations with frequencies ~10* times larger
than what the dispersion relation gives. We shall ignore
such plasma oscillations, and thus must eliminate the
second of the two above possibilities. Of course, the
latter possibility gives no charge unbalance when Ay=0,
but then both possibilities have the same dispersion
relation, since the factor €2/(e24A¢%)=1.

Returning to Eq. (3.15), first consider Case I where
Ao= ¢. With the aid of (3.6), (3.15) can be rewritten in
the form

(&)?=—N)V[1— (&) I (X)+I(—X)], (3.18)
where we define
IX)=iX"1(1—-X? [@+1)v2—-XT7
’ X (x241)"12dyx, (3.19)
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X= (hwo/2€o) ) (3.20)
U'=(hw/e). (3.21)

Fortunately, the integral defining I(X) can be evaluated
analytically.

1<X>=9:§ﬁ[afcsin[)f - (@%&)]}:v

(1—Xx?)12 1—-Xx2
%’————-—{%w—l—arcsin[X—-( )]} s
2X U-X
: (3.22

where, in the last line, we have assumed U">>1. For the
time being, we restrict ourselves to the case where
| X |« U', whereupon

IX)+I(—X)=(1—X?+/2X1 arcsinX .

(3.23)

We shall make no attempt here to analyze exhaus-
tively the properties of the various solutions to the dis-
persion relation; in particular, to investigate the stabil-
ity properties (convective or absolute instabilities) using
the Bers-Briggs technique.?* Rather, we restrict our-
selves to the case where both wy? and «? are real (i.e.,
wo and « are each either real or pure imaginary). For the
linearization procedure to be valid, 86 and 8¢, must be
small. Inspection of Eq. (3.14) shows that this can
happen only if

37100) < Ao®. (3.24)

Thus, here, where Ag= ¢, a real X? must be smaller in
absolute value than unity. Equation (3.23) indicates
that I(X)+I(—X) is real and non-negative when
X?2< 1. Combining this with (3.18), we have (£)2<0, or
#ik is pure imaginary. Define

g=t—1+1/NO)V]/2.

(Note that N(0)V < 1.) For %« lying in the range zero to
#/¢, fsg is real, being 2¢, at the lower end and zero at
the upper end. For ¢/« greater than #/¢, #iw, is pure
imaginary. In the limit of large i7«, i%wo, and %k are
proportional, the ratio being the phase velocity

v,= lim (thwo/ifik).

1hK->00

(3.25)

(3.26)

To calculate v, we return to Eq. (3.15), getting
fw
(/2% 2=NO)V f (€4 AgD)~V2e3de
0

=NV (hw)?,

so that
2, =wt 2N(0)V]V/2, 3.27)

24 R. J. Briggs, Electron-Stream Interaction with Plasmas (M.I.T.
Press, Cambridge, Massachusetts, 1964), Chap. 2.
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independent of whether Ag=¢ or zero. v, represents
the maximum velocity with which a disturbance, de-
scribed by 80, and §¢r, can move through the super-
conductor. An example is a moving normal-supercon-
ducting interface. On either side not too close to the
instantaneous location of the interface, a linearized
theory should be appropriate. Of course, in practice,
moving normal-superconducting interfaces are usually
associated with real magnetic fields, not taken into ac-
count here, which may limit the speed of motion to
values many orders of magnitude smaller than Eq.
(3.27).

Next we consider the solution Eq. (3.15) for Case II,
where Ag=0. We have

1=3N(0)V[1— (&)*]In[1+(2w/iw0)"]. (3.28)

As before, restricting ourselves to we? and «? real, we see
that 7w, is always pure imaginary (i.e., never real, aside
from zero). In the limit of large i#wo, 7%k is proportional,
and Eq. (3.26) applies. When #/iwe<<7iw, (3.28) simplifies

to
. exp[—N—((l;);<fZK)2)] . (3.29)

For 0K w0 e, %k is real, being %/§ when i#wo=0 and
zero when i#iwg= €. For 792> o, #ix is pure imaginary.
For the case k=0, i#iwo= €9, we have the characteristic
decay time?

T="%/¢. (3.30)

This indicates that the normal-metal phase at 7=0 is
unstable against decay into the lower energy supercon-
ducting phase.

IV. GINZBURG-LANDAU-LIKE SOLUTIONS

Let us return to Eq. (2.15) and look for static solu-
tions (i.e., sy X Hy=0) without making the linearization
approximation. We continue to make the semiclassical
approximation given by Eq. (3.1). By inspection, the
z component of s; % H;, will vanish if we take the angle
or= ¢ to be independent of k. We write?

AEA1+'LA2= {Ale*‘“’, (41)
H=Hy+iH=2[1+£VR7A, “.2)
sp=S1+159x="1(sinfy)et?e, 4.3)

The vanishing of the x and y components of s; x Hy, can
now be written

ssH —spH3,=0, (44)

or
{(costr)[1+£VE2]— (/| A]) sinf}A=0. (4.5)

25 See Ref. 13, p. 44.

26 By defining A=A;+7A,, we are making A a linear combina-
tion of Cooper-pair annihilation operators [see Eq. (2.4)], the
second-quantized analog of a wave function. If we had defined
A=A;—iAs, it would have been the analog of the complex conju-
gate of the wave function. This distinction is important later when
we introduce real magnetic fields.
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We can eliminate the % dependence in this equation by
defining g such that

cosfr= ex(ex2+g2) 12, sinfy=g(ex>+gD)~12, (4.6)
whereupon we get
£veiA+A—g(|A])A/[A]=0. *.7)
Here we write g=g(| A|) as a function of | A|. This func-
tional dependence is given implicitly by the fact that

|A| =N(0) V]hw sinfyder=N(0)Vg In(2%w/g) ,

0

or, equivalently,
|A]/eo=(g/e[1—N(0)V In(g/e0) ]

If g were equal to ¢ 2|A|3, Eq. (4.7) would be the
complete analog of the famous Ginzburg-Landau
equation.!? The fact that g(| A|) cannot be expanded as
a power series in |A| shows that the two equations are
not the same. There are qualitative similarities, how-
ever, as can be seen by comparing the two functions

Fi(|a])=a]—g(lAD),
Fy(|aD)=]A]—e[A]°

(4.8)

4.9)

F; and F, each rise from the origin at |A| =0 with the
same initial slope (unity), go through a maximum

[Fimx=¢NO0)Ve at |A|=e{1+N(0)V}e,
F2 max™— (2/9)\/3_60 at l Al = %’\/360] ,

and return to the origin at |A| = ¢ [at which point F
has a slope of —N(0)V{1—N(0)V}~%, F: a slope of
—27. For reasonable values of N(0)V, Fy2 F1.

In general, if we define A=A;+iA,, we can always
write the tunneling Hamiltonian as

sor=V-1£|VzAl2. (4.10)

Similarly, the electron-electron interaction portion of
JCpcs can be written as — V1| A|2 The one part of 3¢
which cannot, in general, be written in terms of A is the
portion —2 3" exsar. However, if we assume, as before,
that ¢i= ¢ is independent of k and that 6; satisfies Eq.
(4.6), then Eq. (4.8) implicitly gives g as a function of
|Al], while

7w
—2% eSa=— ZN(O)/ e(e2+g?)1de
k 0

= —N(0)(Aw)>+ V1| Al g(|A]).

Thus the total Hamiltonian density is now, aside from
an ignorable additive constant,

ge=V-1[£2| VeAl2—|A|2— Al g(|A[)].

If we now perform an operation analogous to that
carried out by Ginzburg and Landau,'?i.e., if we invoke

(4.11)
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the Euler-Lagrange equation
(93¢/86A*)=[(9/0A*)—V - (8/dVRrA*)J3c=0, (4.12)

we do not recover Eq. (4.7). The discrepancy results
from our putting in the constraint on 6 described by
Eq. (4.6) before performing the minimization, rather
than performing the minimization of 3¢ with respect to
arbitrary variations of the orientation of s (which leads
to the equation s, x Hy=0). But, of course, if we had not
introduced Eq. (4.6) before doing the variation, we
would not have been able to express 3C as a function of
A alone.

We next generalize the analysis of the first part of this
section to the nonstatic situation where ¢;= ¢, still in-
dependent of k, now depends on time. The % indepen-
dence of ¢ forces 8; to be time-independent, as can be
seen from inspection of the z component of Eq. (2.15).
The x and y components of Eq. (2.15) can be written

ssxH — si(Hsp+#do/df)=0. (4.13)

This differs from Eq. (4.4) only in that Hg,=2¢ is re-
placed by Hsx+#%dp/dt.?" In other words, as far as the
equations of motion are concerned, the one-electron
energy e is replaced by e;+3#%d¢/dt. Since the density
of conduction electrons must remain fixed, the Fermi
level must change in time exactly in step with 3#%do/d!.
Thus, in agreement with Josephson,! %#d¢/dt is twice the
electrochemical potential. In order that the range of the
attractive electron-electron interaction Vi be sym-
metrically placed with respect to the Fermi level, we
must replace Eq. (2.13) by

Vie=V if |a+3tde/dl], |en+3hde/dt| <tw
=0 otherwise. (4.14)

As a consequence of (4.13) and (4.14), d¢/dt disappears
from the equations of motion, and we once again obtain
Eq. (4.7) despite the fact that ¢ is time-dependent. This
shows that our static Ginzburg-Landau-like equation is
still appropriate under certain nonstatic conditions.

V. ELECTROMAGNETIC PROPERTIES

The electrostatic potential energy —eU (—e being
the electronic charge) is, aside from an additive constant
which we can ignore, equal to the negative of the electro-
chemical potential, i.e.,

+U=(#/2¢)(dp/ds). (5.1

For an ordinary superconductor, therefore, d¢/dt should
be independent of position R. For the system considered
in this paper, i.e., microscopic grains of superconductor
with insulating barriers at all grain boundaries, this in-
dependence of U with respect to R will hold true over a

27 This is equivalent to the situation in magnetic resonance
where a dynamic problem is reduced to a static one by shifting to
a rotating coordinate system. See, e.g., I. I. Rabi, N. F. Ramsey,
and J. Schwinger, Rev. Mod. Phys. 26, 167 (1954).
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given grain, but there can be differing values of U in
neighboring grains so that there are electrostatic fields
in the barriers (associated with surface charge on the
two sides of each barrier). As before, we pass to the
continuum model where U is position-dependent, U(R)
representing the electrostatic potential of the grain
located at R. The Coulomb energy associated with the
electrically charged barriers leads to a Hamiltonian
density

Je(R)=CE?, (5.2)

where

=—VeU (5.3)

is the effective, macroscopic electric field. The coefficient
C is proportional to the mean capacitance per unit area
of junction and inversely proportional to the mean linear
dimension of the grains. The electric displacement D is
defined, as usual, by

D=4r(33Cc/E)=8xCE, (5.4)

i.e.,, 8rC is the effective dielectric constant of the
material.

In addition to the pseudo magnetic fields H; discussed
thus far, the presence of real magnetic fields can be in-
cluded in the equations of motion by replacing Vz by
Vr+1(2¢/%c)A(R) in the tunneling Hamiltonian, A(R)
being the magnetic vector potential at R. Such a replace-
ment should be made in Egs. (2.10), (2.11), (2.17),
(2.19), (2.21), (2.23), (4.2), (4.7), (4.10), and (4.11). In
addition, Eq. (5.3) must be replaced by

E=—vaU—c1dA/dt. (5.5)

The electrical current density J can be obtained from
the relation

=—c(83Cr/0A). (5.6)
With the aid of Eq. (4.10), this becomes
J=V-1£2(2¢/%) {i[A*V gRA— AV A*]
—(4e/hc) | A|?A}.  (5.7)

Specializing to the case already considered, where ;= ¢
is independent of k,

=—V-1£2(4e/n) | A| [ Vro— (2¢/7c)A]. (5.8)
Similarly, the displacement current is
(4m)~(dD/dt)=2C(dE/dt)

=—(1/e)C(d*/d*)[Vre— (2¢/hc)A], (5.9)

where we have used Egs. (5.1) and (5.5).

Consider the special case where |A| is position inde-
pendent. Using the fact that the real magnetic field H
satisfies the equations

H=VR xA y
Ve xH=(xr/c)[J+ @r)"1(dD/dt)],

(5.10)
(5.11)
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we now get
[Vei—v2(d?/d®) JH=\2H, (5.12)
where we have defined
v=c(87C)~12, (5.13)
A= (V/2x)Y2%(fic/4et| A]). (5.14)

The solutions of Eq. (5.12) represent bulk electro-
magnetic modes of our granular superconductor. They
are analogous to the two-dimensional electromagnetic
modes of an ordinary Josephson junction. Josephson’s
wave equation [Eq. (3.12) of Ref. 1] differs from (5.12)
only in that the Laplacian is two-dimensional and the
equation is nonlinear. As has been mentioned in the
Introduction, the linearity of (5.12) results from the con-
tinuum approximationfof Sec. II. The characteristic
velocity v of the wave equation is simply the velocity
of light ¢ divided by the square root of the effective
dielectric constant 87C. The length A can be rewritten
in terms of the London penetration depth N\ and the
Pippard coherence distance £ of the superconducting
material forming the grains of our system. Since

No= (mc?/drnqee?) /2, (5.15)
£o= (fwr/me0), (5.16)

Wwe can express A as
A=r[ZrN(0)V]"*(Noko/ ) (eo/ [A]).  (5.17)

The coefficient 7[2wN (0)V]"2 is of the order of magni-
tude unity; for example, it is 1.6 when N(0)V=0.5.

In the static case, Eq. (5.12) is London’s equation.
The only difference is that the effective penetration
depth N may be much larger than that appropriate to
any ordinary superconductor. It is only necessary to
make the effective coherence distance £ of our granular
superconductor sufficiently small, something which can
always be done by decreasing the density of tunneling
junctions. The fact that N/£ can be made much greater
than unity suggests that the granular superconductor
has type-IT behavior.28 This is only partly true. The
analysis of this paper is appropriate only so long as one
can ignore circulating currents within a grain (as con-
trasted with currents, either conduction or displace-
ment, from one grain to another). This means that, no
matter how large /¢ is, one cannot hope to maintain
the individual grains superconducting above that mag-
netic field where an isolated grain would by itself be
superconducting. In principle, there should be an addi-
tional kinetic-energy term in the Hamiltonian density,
Eq. (2.9), this term resulting from current flow within
a grain. Throughout this paper we have been implicitly
assuming that this term was negligible, relative to

28 For a description of type-II superconductors, see P. G. de
Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin,
Inc., New York, 1966), Chap. 3.
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JCpcs, because of the smallness of the current densities.
When the only currents flowing are those passing
through tunneling junctions, this is an excellent approxi-
mation. But the approximation may break down when
appreciable currents are circulating in the individual
grains.

The position-independent solutions of Eq. (5.12) are
electromagnetic oscillations with a characteristic fre-
quency

a=u/\= (2| A| /BV)(T/C)V2, (5.18)

The ratio (7/C) is a property of the average junction in
the superconductor; it is proportional to the ratio of
reciprocal inductance per unit area of junction to capaci-
tance per unit area of junction. The inductance is associ-
ated with the tunneling energy 3Cr, the capacitance with
the Coulomb energy 3Ce.

Equation (5.12) was derived under the assumption
that |A| is position-independent. The simplest instance
of this is when A=, is position-independent, but there
can be cases where | A| is position-independent although
A is not. This occurs when there is a uniform drift veloc-
ity of the Cooper pairs, appropriate for a suitably thin
film, whereupon |A| < . As the drift velocity increases,
| A| decreases, so that & decreases and A increases. This
corresponds to an increase in the effective inertia of the
Cooper pairs, or to an increase in the incremental in-
ductance (imaginary part of the microwave impedance).
The connection between changes in N and changes in
inertia can be seen very quickly by writing the London
equation

E= (4r/cONdY/d1, (5.19)

this being a direct consequence of Egs. (5.1), (5.5), (5.8),
and (5.14). The coefficient on the right-hand side of
(5.19) is a measure of the inertia of the Cooper pairs.

Gittleman e al® have measured a dependence of
microwave reactance on dc current density in thin
superconducting films at temperatures too small for
quasiparticle excitations®® (normal carriers) at the cur-
rents used. These authors suggested that the source of
the dependence was the junctions of oxide or “dirt” in
the films, in agreement with the present theory.

The dc current density (in a suitably thin film where
we can ignore the vector potential) is given by

Jdc= - (46/%[7)52[ AI 2VR<,D.

But for the case |A| position-independent, our non-
linear differential equation for A, Eq. (4.7), gives us
Vze as a function of |A|, since

—£|Veo|4-1—|A|g(|A])=0.
Thus

Jao===(4et/AV) | A[1—|A[7g(|A[)]Y2, (5.20)

29 Both the real and the imaginary part of the microwave im-
pedance can depend on dc current density whenever there are ap-
preciable numbers of quasiparticle excitations, whose distribution
function is rearranged with changes in Cooper-pair drift velocity.
See R. H. Parmenter, RCA Rev. 23, 323 (1962).
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and we have the functional connection between J4. and
|A|. By differentiating J4, with respect to |A|, we find
that there is a maximum value of Jg4., namely

Jarie=(de&/hV)es’C. (5.21)

The numerical factor @, of order-of-magnitude unity, is
a rather complicated algebraic function of N(0)V that
can be determined straightforwardly from Eq. (4.8), the
defining relation for g(|A|).

VI. MODIFIED INTERACTION POTENTIAL

Thus far, we have considered only a particularly sim-
ple model for the interaction potential V., that of Eq.
(2.13). We now wish to consider a slightly more general
model, namely

Vie=Ve—Vs i |el,|ew|
==V; it |eal|ev]
but not both <7#w,
=0 otherwise.

are both <7,
are both <7w,
6.1)

Here — V', represents the Coulomb-repulsion contribu-
tion to the electron-electron interaction. Corresponding
to the fact that it is short range in real space (the
Debye screening length being about 0.5 A in a typi-
cal metal), —V; is rather long range in momentum
space, and 7w, is comparable with the Fermi energy.
V. represents the phonon-induced attractive contribu-
tion to the interaction. The mean phonon energy 7w, is
much smaller than 7%w;, corresponding to the fact that
V. is shorter-ranged in momentum space, and longer-

fwg

201,=N(0)V, /

—hwa

hwg

283,=N(0)V, /

—hwa

wd

281=—N(0)V, /

—hwa

hwp

200p= —IV(O)be

—hwp
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ranged in real space. Of course, in actuality the phonon-
induced attraction is short-range in space but time-
retarded, rather than being longer-range in space but
instantaneous in time. The latter should be thought of as
a suitably time-averaged approximation to the former.
It appears that both forms of phonon-induced attraction
lead to substantially the same results.

Although we are modifying Vi, we shall continue to
assume 7y =7 independent of e and e as before.
(This approximation will be discussed later in this sec-
tion.) We define

Ap=A710, A=A, 0% |e|<liws;
6.2)
A=Ay, Au=A0s, #w,<|ex| < Aws;
and
£2=T/(Va=Vs), &'=T/Vs. (6.3)

In terms of these quantities we can write the effective
pseudomagnetic field Hy. For | e| < #iwq,

Hy= 2[1+EG2VR2]A1(Z P

Hop=2[14£.2VE*]Asa, (6.4)
Hsyp=2ex;

while for #w, < | x| < #ws,
Hy=2[1—£*Ve¥]An,
Ho=2[1—£2V?]Ag, 6.5)

H3k=2€k.

The semiclassical approximation, Eq. (3.1), allows
us to write

sinf; cosprdey ,

fwd
sinfy, cospidey ,
—hw
’ (6.6)
hwp
sinfy, singrder,
—hwp
6.7)

sinf; singides.

Initially, let us repeat the procedure of Sec. ITI and linearize the equations of motion according to Eq. (3.2). We

have
Ata,p=2D0a,p+0A1a,6, A2e,6=00A72,s, (6.8)
where
hwa fiwp
2A0,=N(0) Va/ sinfyoder— N (0) Vb/ sinfyoder ,
—hwg —Hwp (6_9)

hwd

2005=—N(0)V, /

—hwp

30 P, Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

sinﬁkgdek )
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fiwg hwp
20A1,= N(O) Va/ (COSOko)ﬁokdék—N(O)Vb/ (COSBko)ﬁokdek y
—hwa —% )
’ (6.10)
Awd
20A1= —N(O)Vb/ (C080k0)50kd€k ,
—hwp
fiwg hwbp
26A9,= N(O) Va/ sinokgégakdek-N(O)Vb/ Sin0k03¢kd€k s
—~twg —hwp
. (6.11)
20A0p= —]V(O)Vb/ Sin0k05<pkdek .
—Hwp
For 6 we have the time- and position-independent solutions given by the equations of motion
€ Sin@ko'—Aoa C050k0=0, O< I ekl Sﬁwa, €k Sinoko— Ao(, C050k0=0, hwa< Iekl Shwb,
which, when substituted into Egs. (6.9), give
#hwa fwp
Aowu=N(0)[Va— Vb]AOa/ (4 A0e?) " 2de— N(O)VbAOb/ (e2+ApH) 1 2de,
0 +hwg
0 . (6.12)
Agp= —N(O)VbAOGf (€4 Ap2)~V2de— N(0) VbAOb/ (4 Agp?2)~V2de.
0 +hwa

Since Ag, and |Ags| are both much smaller than %w, or #ws, the above equations simplify to

1=N(0)[Vo— V5] In(2%we/Aoa) — N (0) Ve (Aos/Aoa) In(ws/wa) ,
(Aob/AOa) =— N(O) Vb ln(Zﬁwa/Ao,,)— N(O) Vb(AOb/Aoa) ln(wb/wa) .

Defining the effective potentials

V=V [14+N(0)Vs In(ws/wa) 17, (6.13)
V=V.—~Vy, (6.14)
we get
Aga=2Mics,e INOV | (6.15)
Bop=—(V4/V)Aga. (6.16)

This represents the time- and position-independent superconducting solution,’® and will be called Case I in analogy
with Eq. (3.9). The other solution of Eq. (6.12), namely, the time- and position-independent normal-metal solution
Aoa=A¢»=0, is analogous to Eq. (3.10) and will be called Case II.

Substituting the results for 6z into (6.10) and (6.11), we get

+iwae —fwa +iwp
25A1a= N(O)[Va— Vb:l ek(eﬁ—{—AodZ)_”z&deGk—N(O)Vb/ + ék(ékz—f—Aobz)”l/zaekdek 3
—hwq —hwp +hwa (6 17

+iva —fiwa +heb A7)

26A1= _‘ZV(O)VI,/ ek(ek2+ Aoa2)—1/250kdék—‘N(0)Vb/ + 61,;(65;2"‘ Aobz)_l/zsekdék s
—#wg —hwp +#wa
+7wa fwa +iwp
2642a=NO)[Vo—V5]Aw / (er2+A0a2) 2% order— N(0)VpAop / + / (ex?+Aop2) V2% order,
—liwg —hwh +3wa (6_18)

+iwa

—fiwg +hwp
(6k2+AOaZ)_l/25§0kd€k'-N(0)VbAOb/ +/ (ex?+ A2 V2 prder.

+hwe

20A0p= —N(O)VbAOa/

—hwg —#hwp

In analogy with Eq. (3.11), we can now write the linearized equations of motion for 86; and 8¢ If 0< | el
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K #iwg, then

(e 2042 80x— ex[ 14-£.2V 2 ]0A1,= — 57 A0a(d/db) b i,

while if #w, < | €] < #ws, then

(er* 205?80k — ex[ 1 — £33V R*]0A 1o = — 3% A05(d/d)d o1,

As before, if there is only one nonvanishing 66, and
Bk, then 0A1q,56=0A72,=0, and &6x, d¢; are propor-
tional to exp— (iwof), where

Fuso= =2 (12 A%4,5) 12, (6.21)

60,= :!:iAOa,b(ekz—}—A%a,b)—”?&pk. (622)

In these last two equations, we insert Ao, if | €| <7iwa,
Agp If 'hwaS I fkl < Fiws.

If there is a coherent superposition of many 86, and
d¢r, all independent of the orientation of k, then there
are two possibilities compatible with Eqgs. (6.17)—(6.20),
just as in Sec. III. Either 86, and d¢; are both odd
functions of €, (whence 8A1,,55%0, §A2,,,=0), or both
805 and 8¢y, are even functions of €, (whence 8A1,,,=0,
0As4,57%0). Actually, we can ignore the second possibility
for exactly the same reason as before (charge unbal-
ance). The first possibility is given by

60 AOa,bekca,b .( R t)
= exprkK—wot) ,
a2+ AOu,b2'_ (%hwo)2
(6.23)
_%ihwoekca,b
o= expi(kR—wqt) .

x>+ Aoa, b2 — (FAg)?

The coefficient C, goes with 0< | ex| < %w.; the coeffi-
cient Cp with %w,< | €| < #wp. Equation (6.23) solves
Egs. (6.19) and (6.20) provided that

AoaC,,= N(O)[Va"‘ Vb:”:l - (EaK)Z:lFaAOaCa
—N@O)V3[1— (£4)2]F s205C,

(6.24)
AgsCr=—N(0) V[ 14-(£k)*]F sA0aCa
—NO)Vo[1+4(£s0)2]F 005C,
where we have defined the integrals
fwa E2 (E2+ Aoa2)1/2
Fo= [ ( )( >de, (6.25)
0 €480,/ \e2+Aga?— (%hwo)2
Awp e2 (€2+A0b2)1/2
F,,E/ < )( >de. (6.26)
fiwa \€Agp?/ \€24-Agy?— (Fh0)?
Equations (6.24) can be rewritten
(Aobe) B 1—N@O)[Vs—V,J[1— (£x)%]F4
AgeClo NO)Vo[1— (¢k)2]Fs
N@O)V4[ 1+ *F,
__NO o[1+ (£)?] . 6.27)
14+NO)Vo[14(£ex)2]Fs
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Aoad op— [1+ 2V 10A0 = +1%(d/d8)86,, (6.19)

Aopdop—[1— £2VR210A0=+3#(d/dF)86:. (6.20)
Finally, let us define

Vo"'=V{1+N() Ve[ 1+ (Eex)2]F2}t,  (6.28)

Vets=Va—V3". (6.29)

Now (6.27) can be solved for the dispersion relation con-
necting wo and «, the result being

1=N(0) Veffl:l_ (EaK)ﬂFa- (630)

This is analogous to Eq. (3.15), appropriate for the
simpler form of interaction potential. One essential
difference between (3.15) and (6.30) is that, in the latter,
the interaction (V,—V3) enters in determining the co-
herence distance £, [Eq. (6.3)] whereas the interaction
(V.— V") enters in the factor N(0)Ves. In (3.15), on
the other hand, the same interaction enters in both
places. Since #w, and 7w, are much bigger than |Ags|,
we can take

Bwb ede wp2— Lo\ 12

P / 1n< ) . (6.31)

SN VIR R T e

Under usual conditions |wp| will be much smaller than
W, Or wp, whereupon Fy=In(ws/w,). Thus, in the long-
wavelength limit where kK&, V3" goes into V' [Eq.
(6.13)], the effective Coulomb repulsion for the time-
and position-independent solution, and Ve becomes
the V of Eq. (6.14).

For the moment, let us restrict ourselves to the case
Vi< Vo< 2V, It follows from Eq. (6.3) that £, &.
This inequality will tend to be enhanced by the fact
that 7 is not really independent of €, and e, but
rather decreases as |ex|, | e | increase in size primarily
because of the energy denominator associated with the
virtual intermediate state. [See the discussion directly
following Eq. (2.6).] Thus, if £2=7/(V,—V3), one
might reasonably take £3222(2¢0/%wa)(T/V5), so that
£; could be an order of magnitude smaller than £,. This
means that |«| may be comparable with £~ and still
much smaller than £~ Under these conditions, the
discussion of Eq. (3.15) is still applicable. In particular,
for Case I we have 7%« pure imaginary. For %« lying in
the range zero to (%/£,)[—1+1/N(0) VT2, #iw, is real,
being 2¢, at the lower end and zero at the upper end. For
larger i, #iwy is pure imaginary. For large i7«, the ratio
(thwo/ihk) approaches the limiting phase velocity
T =w.k2N(0) V]2 (still subject to the proviso
| k| <<E57Y).

In contrast, consider the case where V, is slightly less
than V3, such that V is still attractive and such that
| £] is still much larger than | £|. Now £, becomes pure
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imaginary and 7« becomes real. We thus have, for Case
I, a set of collective excitations for which both #w, and
#ik are real (i.e., collective oscillations, bounded in space
and time). In particular, there is one such mode charac-
terized by vanishing phase velocity, (wo/x)=0. But, as
has already been pointed out in the Introduction, this
implies that persistent currents may be unstable,¢ with
consequent loss of superconductivity in the literal sense
of the word, despite the fact that the individual grains
of our system are still in the thermodynamic supercon-
ductive phase. Nor can this possible breakdown of
superconductivity be blamed on the tunneling junctions
having exceeded their current capacity.

Let us return to the case previously considered, where
£, and &, are both real, with £,5>£;. For either Case I or
11, for i%k sufficiently large, i%w, becomes proportional
to 7, v, being the proportionality constant. However,
as ##iwo continues increasing, Fy gets smaller [see Eq.
(6.31)]; while as i#«k increases, [1+ (£3)%] gets smaller.
Both these occurrences enhance the effective Coulomb
repulsion V3", and thus decrease the net effective at-
tractive interaction, Ve, of Eq. (6.29). Thus i#iw, actu-
ally goes through a maximum and starts decreasing as
i#k continues to increase. At a certain value of 77,
1fiwo will vanish. This occurs at that % which makes
Veir=0 for Case II; for Case I the corresponding %« is
somewhat smaller. At still larger ik, %w, once again
becomes real.

In the remainder of this section, we will indicate how
the modified interaction potential of Eq. (6.1) affects
the Ginzburg-Landau-like equation of Sec. IV. As
before, we take ¢r= ¢ independent of k. Define

A= Ao, = tie
a A1a+1'A2a Agoe . y (6.32)
Ap=Agptilgp= Ayoet?,
where

hwa

sin@ kd €L

Au=N(0)V4 /

0
#fwp
—-N(O)Vb/ sinfrder, (6.33)
0

fwp
sinakde;, .

Ab0= ‘—]V(O) Vb/
0

The two quantities Ay and Ay are real (i.e., not com-
plex) but not necessarily positive. Define g, g5 such that

ga COSO%= €z s.inok, 0% | &] SHiwa; 6.34)
g cosbr=r€; sinfy, #w,< |ex| <fiws.

Equation (6.34), when substituted into (6.33), gives

Boa=N(O)[Vo— Vs ]ga In(27100/ ga)
—N(O) Vegs ln(wb/wa) ’

Ab0= —N(O) Vb[ga ln(Zhwa/ga)—i—gb ln(wb/wa)] ,
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which can be rewritten

8a 027030/ 8a) =[N (0) Vo I [Auo— Aso ], (6.35)
g In(ws/w,)=—[N(O)V, ]
X[Aw—Ap(1—Vo/V3)]. (6.36)

Thus g, is a nonlinear function of (Ag— Ay), while g is
a linear function of Aq and Agp. The equations of mo-
tion, s; x Hy=0, now give the pair of coupled differential
equations

[£G2VR2+ 1— AaO_lga(AaO_ AbO)]Aa =0 )
[—&2VR*-1—Apogs(Aao,Abo) JAs=0.

We will not attempt to discuss these coupled equations
in this paper.

(6.37)

VII. FINITE TEMPERATURES

Thus far we have considered only T=0, the absolute
zero of temperature. Within the context of the effec-
tive-field approximation?® [closely related to the semi-
classical approximation, Eq. (3.1), as has already been
discussed at the beginning of Sec. IIT], it is easy to
generalize the isospin formulation of superconductivity
theory to finite temperatures. In the Hamiltonian den-
sity, one merely multiplies each factor of s, (and
Vzsi) by the statistical factor (1—2f3), where f; is the
thermodynamic probability of occupancy of the quasi-
particle (one-electron) excited state indexed by wave
vector k. Thus

(1—2fi)=tanh(36Ex), (7.1)

where 8=1/ksT, and E; is the quasiparticle excitation
energy.

This statistical treatment of the tunneling Hamil-
tonian [i.e., by multiplying each term in the double sum
of (2.6) or (2.10) by the factor (1—2fx) X (1—2fw)]is
completely equivalent to the statistical treatment of the
electron-electron interaction Hamiltonian of the BCS
theory.? Since both interaction Hamiltonians have the
same mathematical structure with respect to the opera-
tors s; [compare the double sums in (2.2) and (2.6)],
this procedure is eminently reasonable. There is, how-
ever, one difference between the two Hamiltonians
which must be kept in mind. The phonon-induced elec-
tron-electron matrix element Vi is inversely propor-
tional to an energy denominator equal to the energy of
the typical virtual phonon involved in the intermediate
state. Since this energy is much greater than that of the
energies of the virtual quasiparticle excitations involved
in the intermediate state, it is an excellent approxima-
tion to assume that Vi is independent of (1) any
temperature dependence in these quasiparticle energies;
(2) whether or not, in BCS terminology, ground pairs
or excited pairs are involved. Both assumptions were
used by BCS to demonstrate that (1—2f3)X (1—2f)
is the appropriate factor to use in the double sum of Eq.
(2.2). In contrast, neither assumption is true in the case
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of the tunneling matrix element Ty (or Tix’), simply
because quasiparticle energies alone are involved in the
energy denominator involved in Ty, this energy de-
nominator being temperature-dependent and a function
of whether or not ground pairs or excited pairs are tun-
neling.* As a consequence, in addition to the explicit
temperature-dependent factor (1—2f%), we must as-
sume that 7, and thus £, is implicitly temperature-
dependent. We will not attempt to calculate the tem-
perature dependence of £ here, other than to point out
that £ will diverge as T approaches T, the supercon-
ducting transition temperature, as a consequence of the
vanishing energy denominator. Thus the behavior of &,
as T— T,, is similar to that of the conventional
Ginzburg-Landau coherence distance.!? (But is it not
similar to the behavior of the Pippard coherence dis-
tance, which stays finite as T — T.)

Our prescription for introducing the statistical factor
means that formally the equations of motion [Egs.
(2.15) and (2.19)7] are unchanged. It is only in the de-
fining equations for the various order parameters [e.g.,
Eq. (2.18)] that the factor (1—2fx) appears.

Let us first consider the nonlinear situation described
in Sec. IV. Equation (4.7), the Ginzburg-Landau-like
differential equations, is still appropriate. Only now
g(JAl) is a function of temperature. To find g, we insert
(1—2f%) into the integral defining |A| [the right-hand
side of the equation preceding Eq. (4.8)], i.e.,

fw

|A] =N (O)Vg / (1=2/) (e Veder. (1.2)

0
For this case, the quasiparticle excitation energy Fy is
E= ¢, costp+ | Alsinfr= (e2+ | Al g) (ex2+g)~V2. (7.3)

Defining the ratio

a=g/|A], (7.4)

we can now rewrite (7.2) as

ho

1=N(0)Va / (&4 A] 20102

0
X tanh{3B[(e2+ | A| %) (e2+ | A| 22)~V2]}de.  (7.5)
In the limit |A] — 0, this becomes

(1/2) Brw

1=N(0)Va / «~! tanhxdx,  (7.6)

0

which implies that « is finite in this limit (taking 7'#0).
Thus g vanishes linearly with |A| when 7>0. For
example, for T near T, Eq. (7.6) gives

Jlim g(la])= [AI[1=NOV(A-T/T]. (7.7)

Despite this, there is no power-series expansion of
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g(|Al) versus |A| at any temperature. This is a conse-
quence of the fact that the integral of Eq. (7.5) cannot
be expanded in |A|. To see this, rewrite (7.5) as

o <€2—|—[A[2a) (tanhy)de, 7.8)

52+IAI 202 ¥

1=—§-,8N(O)Va/

0

where
y=38(e+ | Al ) (e 4] Fad) 1,
Now y~tanhyis an analytic function of y? (at y=0), but

(2/8)%y*= e+ | Al % +2| Al %a(l—a)
+ !A| 4a2(1 —a)2(e2+ l A‘ 2042)_’,

when expanded in powers of |A|2 gives rise to a term
proportional to |A]4 2, causing the above integral to
diverge. Still more seriously, the factor (e24|A|%x)/
(24| Al %?), when expanded in powers of |A|2, gives
rise to a term proportional to |A|Z%e72, also causing the
integral to diverge. This nonanalyticity of g(|A|) versus
|A| can be traced to the functional form of the quasi-
particle excitation energy, Eq. (7.3).

In cases where the linearization approximation is to
be made, it is appropriate to take the quasiparticle
excitation spectrum to be that associated with the un-
perturbed time- and position-independent situation, i.e.,

Ek-'—‘ (Ek2+A02)1/2. (710)

(7.9)

As before, Ay=€(T) or zero, depending on whether we
are considering Case I or Case IT, only now €(7) is the
finite-temperature BCS half-energy gap. As far as the
dispersion relations for the collective excitations are
concerned, the only change from 7'=0 is the insertion of
(1—2f%) in the appropriate integrand. For the simpler
Vi, this is either Eq. (3.15) or (3.19), since the deriva-
tion of Eq. (3.18) from (3.15) still applies at finite T.
For the more complicated Vs, this is F,, defined by
Eq. (6.25) and appearing in Eq. (6.30). [ The statistical
factor can be approximated by unity, and thus ignored,
in Eq. (6.26), the defining equation for Fb.]

For simplicity, we now restrict ourselves to the sim-
pler Vi, where the dispersion relation is

NO)V[1—(&)7] /0 - <€2 iozxegizgzm)

X tanh[16(e2+A¢%) 2 ]de=1. (7.11)
First we consider Case II, where Ag=0. Then
o
1= NOVLI-(97[ L= GhooT e
0
Xtanh(3Be)de. (7.12)

Making use of the fact that #w>>kgsT, and assuming that
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7> | fiwo |, we can rewrite (7.12) as
(&)*=N(0)V[1—(¢x)*]

X{(%ﬂhwo)z [t (30T

Xtanhxdz+In(B/8.) ¢ . (7.13)

Let us consider only the limit |#w,|<<4k5T, so that we
can replace tanhx by « in the above integral. The disper-
sion relation becomes

[1—(&)°T'(&)*/ N (0)V—In(T/T)

+ &) (Ghwo/kT)=0. (7.14)
In the static limit where i%wo=0, we get
fe={1+[NO)V In(T/T)IyY2,  (7.15)

valid over the whole temperature range. This shows
that the static « goes from £ 'at 7'=0 to zero at T'=T..
In the position-independent limit where k=0, we are
limited to temperatures close to T (in order that |Zew,|
<K4kgpT). Here we get

thwo=(8/m)ksT In(T/T), (7.16)

this being proportional to the square of e(7) near
T=T.,. Finally, at T=T,, for small ||, we get

thwo=[8kpT /7N (0)V](2x)?

(i.e., both wp and « are pure imaginary here).
Next we consider Case I, where Ag= (7). When k=0,
we can solve Eq. (7.11) by inspection, getting

hw0= 2€o(T) (718)

for all temperatures. In the same fashion that Egq.
(3.18) follows from Eq. (3.15) at T'=0, we can rewrite

(7.17)
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Eq. (7.11) as
(8)*=—NO)V[1— () ]I (X)+IJ(=X)], (7.19)
where we define
J(X)E<1;;2> v tanhll:'y(xz—f—l)”z:] "
o [(a21)12—X](x241)1/2
X=hwo/2¢(T), (7.20)

U'=hw/elT),
v=1%Beo(T).

Just as in the case at =0, we see that X2<1 and that
(&)< 0. We restrict ourselves to temperatures close to
T. (so that y<1). If we also take |%wo|<<4k5T,, then

JX)+T(—X)=iry(1— X212, (7.21)
In the limit |£|>>1, this gives the dispersion relation
(80 = [N (O)V/8ksT W [2eo(T) = o]} 72, (7.22)

In calculating the finite-temperature collective excita-
tions, we have assumed, for both Cases I and II, that
thwehw. If we consider the opposite limit, we return to
the same result obtained in Egs. (3.26) and (3.27),
namely, that ¢%w, is proportional to ##«, the proportion-
ality constant being v,,=w£[2V(0) V]'/2 independent of
which case we are considering. Note that the tempera-
ture enters only implicitly through its influence on £ (so
that, for example, v, — ® as T'— T,).
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