
PH YSI CAL REVIEW VOLUME 154, NUMBER 2 10 FEB RUARY 1967

Relaxation of the Superconducting Order Parameter*
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The creation and annihilation of quasiparticles in a superconductor through their interaction with the
phonon 6eld is examined. At low frequencies this appears to be the main mechanism leading to relaxation of
the order parameter in a superconductor. The relaxation time becomes long both close to T, and at low
temperatures. Close to l„a diffusion equation for the order parameter is obtained. The correlation in time
of the fluctuations of the order parameter is examined. A weak coupling between the amplitude and phase
of the order parameter is shown to lead to a slow diGusion of the phase of the order parameter.

1. INTRODUCTION

HE BCS' theory of superconductivity provides
an excellent description of the equilibrium state

of a superconductor. We consider here the mechanism
by means of which equilibrium is established. At a
6nite temperature in a superconductor, a dynamic
equilibrium exists between the quasiparticles and con-
densed pairs. Condensed pairs are continually breaking
up, forming quasiparticles above the gap, and quasi-
particles are recombining to form pairs. When a super-
conductor is disturbed from equilibrium, e.g. , by appli-
cation of a magnetic field or by heating or cooling, these
processes bring the number of excitations and hence the
energy gap 6 (order parameter) to their new equilibrium
values. In this paper, we examine the creation and
annihilation of quasiparticles through their interaction
with the phonon field as a mechanism leading to re-
laxation in the superconductor. This mechanism has
been considered by Schrieffer and Ginsberg' and by
Parmenter. ' The mean recombination time of excita-
tions v is obtained and a rate equation for the quasi-
particles is derived. The situation is very similar to
that in a mixture of fluids which can react chemically.
Close to the critical temperature T„ the rate equation
reduces to a diffusion equation for the energy gap h.
At temperatures low compared with T„ the recom-
bination time T is proportional to eeA, when P= (PT) '.
This is the case considered by Schrieffer and Ginsberg, '
and it arises because the number of excited electrons
available for pairing is proportional to e t'~.

There are other interactions which lead to recom-
bination of excitations and hence relaxation of the
superconductor. Burstein, Langenberg, and Taylor4
have considered the recombination of two excitations
accompanied by the emission of a photon. This leads
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to a recombination time v =0.4 sec and is a slow process
compared with that due to the phonons. The residual
Coulomb interaction between excitations will also lead
to recombination, but if this Coulomb interaction is of
the same order of magnitude as that between quasi-
particles in a normal metal, this is not an important
process. Abrahams and Tsuneto' have shown that in
the presence of time-dependent fields if there are fre-
quency components te) 2A of the fields (or of the energy.

gap itself) then pairs will be broken or formed. If the
fields vary su%.ciently rapidly in space, the above con-
dition on the frequency can be relaxed. Close to T,
they have shown that this also leads to a diffusion
equation for the energy gap. However, this process is
slower than that considered above.

The recombination time r is of interest in the case
of superconductors in some nonequilibrium situations.
At the present time there is little direct experimental
evidence relating to this process. However, v. does have
a significant effect on the electronic transport properties
of a superconductor, e.g., thermal conductivity. '

The recombination of quasiparticles (phonons and
rotons) in superfluid He II has been considered by
Khalatnikov. ' His method of deriving the rate equation
is followed in this paper. We also make a comparison
between the processes taking place in a superconductor
and those in He II.

2. THEORY

In a superconductor at a finite temperature, a dy-
namic equilibrium exists between quasiparticles and
condensed pairs. In certain respects a superconductor
can be regarded as a mixture of two fIuids and the
condition of equilibrium of the quasiparticles and con-
densed pairs can be derived in the same way as for
two Quids that can react chemically. If e„is the density
of excitations and e, is the superQuid density, then the
equilibrium condition is that the corresponding chemical
potentials p„and p, be equal. These potentials age

' E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966).
6 J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,

982 (1959), hereafter referred to as BRT.' I.M. Khalatnikov, Usp. Fiz. Nauk 60, 69 (1956);INtrodlcttort
to the Tlzeory of Superjluidity (V/. A. Benjamin, Inc. , New York,
1965).
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determined in the usual manner from the energy (or
any other thermodynamic potential) by

dE= TdS+tl„dent„+tb, d23, .

It is more convenient to regard E as depending on
23= 23+ 23„and qb„so that

dE= TdS+y, „dq3+ (tl, tl„—)dq3, .

The equilibrium condition of the normal Quid and
superQuid is then

t,—t „=(aE/a~, )s,„O. ——

It is interesting to note that this equation is precisely
the Ginzburg-Landau equation of superconductivity
in the absence of current Qow if we identify e, with

~P ~
', where P is the order parameter. '

Now let us consider how the equilibrium between
quasiparticles and condensate is established. It is inter-
esting first to examine the case of He II which has been
studied by Khalatnikov. ' The quasiparticles in He II
are phonons (p) and rotons (R) and Khalatnikov con-
sidered the following processes which change the number
of excitations:

Pl+P2+P3~P4+Pbi

p+ Rl~R 2+R3, (4b)

In Eq. (4a), three phonons collide producing two, or
vice versa, and in (4b) an energetic phonon collides
with a roton producing two rotons, or vice versa. There
are also scattering processes in which the number of
excitations of one kind does not change, and these serve
to bring the excitations into equilibrium among each
other. The processes (4) give rise to the second-viscosity
coeKcients in the two-Quid model of He II which in
turn accounts for the damping of first and second sound.

In a superconductor, the phonons play an important
role in bringing the quasiparticles into equilibrium with
the condensed pairs. The electron-phonon interaction
in the conventional form is

The first two terms lead to scattering of the quasi-
particles by phonons, but the third and fourth terms
give rise to processes in which the number of quasi-
particles is changed. These processes can be represented
by the equa, tions (where v is a phonon)

Ek+q~Ek+ v q 1

Ek~q+Ek pair+ v, .

(7a)

(7b)

8'ft~ 8 2 2
=——P fk= —P Ib.

Bt Bt V I V I
(9)

The collision term I, does not contribute in (9) because
the number of quasiparticles is conserved in this process.

We now consider a superconductor in which the
number of quasiparticles is not in equilibrium with the
value of the energy gap h. In this case, as discussed
above, we introduce an extra chemical potential p„'
which determines the number of quasiparticles. It is
most convenient to use a thermodynamic potential
C(T,tl, h, tl„'), as in the original work of BCS, except
that now the extra chemical potential p,„' appears. The
electron density p and quasiparticle density e„are
determined from

d4 = —Sd T—pdp —e„dp„'. (1o)

It should be noted that p„' corresponds to p„—p, in
(2). The energy gap is determined from

To determine the rate of change of the number of
quasiparticles we can use the Boltzmann equation
derived by BRT' in connection with the thermal con-
ductivity. In the absence of spatial variations the
Boltzmann equation is

8fk/Bt =I,+Ib,

where fk is the distribution function of the quasi-
particles of momentum k and the collision terms I,
and Ib arise from the scattering processes (7a) and

(7b), respectively. The rate of change of the number
density w„of quasiparticles is now

H,v= Q (VqbqCk+q )Ck,.+c.c.) .
k, q, o.

(5) (ac/aa), „„„,=o.

Part of this interaction has already been used in forming
the superconducting state but, as pointed out by BRT,
the part that leads to real transitions remains. When
written in terms of quasiparticle creation and annihi-
lation operators pkq, lt and pkq, i, Eq. (5) becomes

II.v= 2 &q&q/(Nkgqlk 2 k+00k)—
X (Vk+q0 7k0+Vkl Vk+ql)+ (qtk+q~k+Nk~k+q)

X (rk+q0 7kl +7k-bq17k0))+c c ~ (6)

It is possible to write down 4 explicitly by starting with
a Hami. ltonian X—p„Yz„, instead of the BCS Hamil-
tonian X, where n„ is an operator for the number of
quasiparticles in the superconductor. It is not difficult
to see that this amounts to replacing f(Ek) by

f(Ek tl ') = (1+eti(&k vn')) l — (1—2)

in the expression for C given by BCS. This indicates
that the modified gap, Eq. (11), is now

g 1 2f(Ek t -')-—1=—P
' We are grateful to Dr. L. Mittag for valuable discussion on

this point. where g is the coupling constant and the number of
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quasiparticles is

2
e =—P f(& t-') (14)

Bm„/Bt= —Fp„'. (15)

This equation relates the approach to equilibrium to
the departure from equilibrium. The cross section F is
easily evaluated using the method of SRT. We will

only give the results at temperatures close to T, and at
low temperatures.

The chemical potential p„vanishes in equilibrium and
nleasures the departure from equilibrium of the
superconductor.

We now take (12) to be an approximate solution to
the Boltzmann equation, Eq. (8). This requires the
assumptions that the quasiparticles are in equilibrium
among each other but not with the condensate and
that the phonons are in equilibrium and hence merely
act as a reservoir. These assumptions are not necessary
for the further development of the theory but should
often correspond to the physical situation. On sub-
stituting (12) in (9) and only retaining terms linear in
p,„' on the right-hand side we find

which was evaluated numerically. Note that p„'
vanishes in equilibrium because the equilibrium value
of 6 is given by 6„'=a/b.

The density of excitations m„ in. (15) varies most
rapidly with 6 and p„' close to T, rather than through
the explicit dependence on T and p. Equation (15) then
becomes an equation for the rate of change of the energy
gap 6:

(BN~ BN~ Bp~ ) B6
+

EM BtI,„' B6) Bt

The derivatives on the left-hand side are easily calcu-
lated from (14) in the limit Ph((1 and on substituting
in (18) we find

P'6 7i'(3) 4 dh
D'(S)+ D(a) — (a—ba )

D(~) P'a' dt

2F
(a bh') —(19)

Eg
where Ãg is the density of states of one spin at the
Fermi surface and D(h) has been given above.

If T(T, and a is positive, Eq. (19) can be linearized
around the equilibrium value of 6:

where

and

F=ACT3, Ph(&1

=47rC(h/k)'e 'e~, Ph&&1

C= 2mb'ri/~u'p~A4

(16a)

(16b)
~(t) = ( /b)'"+~. (t).

The equation. determining 6& is then

Bhg/Bt = —(1/r) ag,
where

(20)

(x+x')'e'+"
dxds—

(e +"—1)(e*+1)(e"+1)

7i.(3) 4
b= P', D(h) =ln +I.

T, 8s' hP

Tc

I is the integral

Here g is the dimensionless electron-phonon coupling
constant, u is the sound velocity, pz is the Fermi
momentum, and 0 is the Boltzmann constant. After
performing one integration, A was evaluated numeri-
cally. Using typical values for the constants, C~1042
erg ' cm ' sec '. At T„Eq. (16a) reduces to the
electron-hole recombination time and the T' dependence
arises from the phonon density. At low temperatures,
F becomes exponentially small because of the small
number of quasiparticles present.

Close to T, it is more convenient to use 6 as a
parameter than ti,„'.Then, expanding Eq. (13) in powers
of 6 and retaining terms linear in p„', we find..'= (2/P) I (a—»')/D(~)3,
where

da/dt= (F/2N, )aD(a—),
with the solution

(22)

Ph = expLln4+I —ce&'), (23)

where c is a constant and y=F/2N~. The order of
magnitude of the relaxation time in each case is, from
(16a),

F/Ng 10'T' sec ' (24)

The theory may also be extended to low temperatures
by linearizing (15) around the equilibrium value of the
energy gap. An equation identical to (20) is obtained
but with v given by

1 7)(3)t' I'
~ 1

(Pa«1) . (21)
2m' (N pl Dt'(6„)+7f'(3)/~'

The superconductor relaxes exponentially in a time ~
to its equilibrium state. The relaxation time 7- behaves
like Lln(T, —T)/T, $' close to T, and becomes long.

If T)T, and u is negative, the equilibrium value of
6 is zero. But if a gap was to form its decay, from (20),
it would be determined by the equation

I=2 Ch in@ sech'x tanhx~0. 1,
1/. = (2~)"(C/N, )(Pa) e-e (Pa&&1) (25)

where C is given below Eq. (16).
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(~,(t)a, (0))= (~,'(0)).— (26)

and, decays exponentially. The amplitude (AP(0)) can
be calculated by a thermodynamic argument'.

(aP(0))=kT(are/ass)-t=kT/4X, VAa„s, (27)

where V is the volume of the superconductor. The
amplitude of the fluctuations given by (27) is very
small. For a specimen with V=1 cm' it is found. that
(AP(0)) =6, ' only when (T,—T)/ T~~10 '. Such
Quctuations would lead to a lack of sharpness in the
transition temperature of a small specimen.

An interesting question which arises is how rapidly
the phase of the order parameter in a superconductor
diffuses. Ke will consider here the phase diffusion due
to the coupling of the amplitude and the phase of the
order parameter. Other sources of phase diffusion are
electromagnetic, density, and temperature Quctuations.

As shown by Gor'kov, " the time rate of change of
the phase is determined by the superQuid chemical
potential p, . Thus if

then
(29)

Close to T, the superQuid density is given by

n, =2mt It), Is,

where m is the total electron density and b is given below
Eq. (17).Thus

t =t+(1/2&~)~C'/~I~I'
=t + (3m/4&P~') (—&+&

I
~ I'). (30)

3. DISCUSSION

This relaxation process will be one contribution
limiting the lifetime of a quasiparticle. Other contri-
butions will arise from ordinary scattering processes.
The broadening of the energy levels A/r of the
quasiparticles due to this relaxation is much smaller
than 6 except very close to T,[(T,—T)/T~10 'j.

These results can be used. to examine the correlation
in time of the Quctuations of the magnitude of the order
parameter. Thus, from (20), the correlation function

&[~'(t )—~'(t )j')=I
k Ap, 'i

tJ

dt dt'
t2

X(~,(t)~,(t')). (34)

Substituting from (26) and supposing that (tt —ts)))r,
we And

where
([~'(tt) -~'(t,)]')=DI tt-t, I,

D= 2(3 mA/APg')'(AP(0))r.

(35)

(36)

When (hp(0)) is substituted from (27) it is seen that
this result is independent of 6«. Substituting numerical
values for the parameters appearing in (36), we Gnd

D 10 'r/V, (37)

when V is the volume of the superconductor. For
v =10—' sec, we then get a slow diffusion of the phase.

The relaxation equation (19) has the form of a dif-
fusion equation. In the presence of fields a term arising
from the kinetic energy of the supercurrents propor-
tional to (i7'—(2i%)A)'6 must be included on the
right-hand. side. It is natural to expect a erst time
derivative because then the future state of the system
is determined, by the value of 6 and other thermo-
dynamic variables. It has the unphysical property that
disturbances propagate with an infinite velocity. It
has been shown that second time derivatives of 6 do
appear, ' "but because of the large damping, a diffusion
equation is a good approximation.

Close to T„an equation similar to (20) has been de-
rived, by Abrahams and Tsuneto' in which the relaxation
of the quasiparticles is brought about by time-
dependent fields. The relaxation time for this process is

To determine the correlation function

(exp{i[(o(t&) —a (ts)$) )=exp[(2'/A) (tt—ts)]
X (exp{i[ce'(4)—~'(t2)$) ),

we will make a Gaussian approximation and replace
this by

exp[(2'/A) (t,—ts)] exp[ —
s ([es'(tr) —e0'(ts)]')j. (33)

From Eq. (32),

Substituting Eq. (30) into (29) and linearizing the right-
hand side by writing 6 =h,e+d, t(t), where h, n is the
equilibrium value of 6, we 6nd

1 14$(3)kT,
I, P~«1,

x'A kT,I
(38)

AB(o/Bt =2'+ (3m',Jp p') ar(t) . (31)

' T. M. Rice, Phys. Rev. 140, A1889 (1965)."L. P. Gor'kov, Zh. Eksperirn. i Teor. Fiz. 34, 735 (1958)
/English transl. :Soviet Phys. —JETP 7, 505 (1958)g.

As we are neglecting temperature and density Quctu-
ations, p is a constant and re =2yt/A+co'(t), where

AB(o'/Bt= (3m'„/ps')hr(t). (32)

with the restriction that the frequency co of the dis-
turbance must be greater than, 2A„. Comparison with
(21) shows that for low-frequency disturbances the
phonon mechanism of relaxation will dominate. The
mechanism considered by Abrahams and. Tsuneto
would be responsible for infrared absorption in the
superconductor.

n M. J.Stephen and H. Suhl, Phys. Rev. Letters 13, 797 (1964).
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It is interesting to note that there is a close simi-

larity between a superconductor and a laser and that
many of the equations appearing here are analogous
to the equations used. in the description of lasers. " In
that case the role of 6 is played by the electric field E.
Both systems can in many respects be regarded as
nonlinear oscillators. " At its operating point the
imped, ance of a self-sustaining oscillator is zero and the

"W. E. Lamb, Phys. Rev. 134, A1429 (1964).
"M. Lax, Bull. Am. Phys. Soc. 11, 111 (1966); and (to be

published).

vanishing of the resistance and the reactance corre-
spond, respectively, to Eqs. (19) and (29).
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The properties of a granular superconductor are studied with the aid of the isospin formulation of the
microscopic theory of superconductivity. The system consists of grains of homogeneous superconductor
separated by insulating but tunnelable barriers (Josephson junctions). The general nonlinear equations of
motion are set up for the isospins, "spin up" representing the absence, and "spin down" the presence, of a
given Cooper pair. These equations are like torque equations for each isospin moving in an eRective pseudo-
magnetic Geld due to all the other isospins. Linearized solutions result in various single-particle and collective
excitations. A certain class of nonlinear solutions is shown to satisfy a Ginzburg-Landau —like diRerential
equation. The eiIects of electric Gelds (within the junctions) and real magnetic 6elds are studied, one result
being that there are bulk electromagnetic modes, analogous to the surface modes known to be associated
with a single isolated Josephson junction. Consequences of changes in temperature and changes in eRective
electron-electron interaction are studied.

I. INTRODUCTION

" N this paper we wish to examine the properties of a
. . particular kind of granular superconductor; namely,
one where each grain consists of a homogeneous super-

conductor, but at each grain boundary there is a thin
insulating layer (e.g. , oxide). Each layer is thin enough

that it can be tunneled by the Cooper pairs of the
superconductor; in other words, we have a Josephson
junction at each grain boundary. For simplicity, we

assume that the junctions take up a negligible fraction
of the total volume of material.

For such a superconductor, the energy density of the
BCS theory' is augmented by a tunneling-energy den-

sity, the latter being directly proportional both to the
linear density of tunnel junctions' and to the Cooper-
pair transition amplitude for an average junction of unit
area. We are free to imagine the tunneling-energy den-

*Present address: Department of Physics, University of
Arizona, Tucson, Arizona.

' B. D. Josephson, Advan. Phys. 14, 419 (1965).
' J. Bardeen, L. N. Cooper, and J. R. SchrieRer, Phys. Rev.

108, 11/5 (1957).' Sy lirIeur density, we mean the average number of junctions
intersecting an arbitrarily oriented straight-line segment of unit
length.

sity as large or as small as we like, because of variations
in the number of junctions per unit length. We cannot,
however, let the tunneling energy be either too large or
too small because of the tunneling transition probability.
The upper limit is set by the limitation of second-order
perturbation theory (the Cooper-pair tunneling being
visualized as a two-step process, 4 the intermediate step
involving the virtual state where only one of the two
electrons composing the pair has tunneled). When the
tunneling transition probability is too high, perturba-
tion theory breaks down.

The lower limit to the tunneling transition probability
is set by a physical process that has nothing to do with
superconductivity per se; it is the value of the tunnel-
ing probability at which the normal-metal conductivity
of the system (at temperatures where the normal phase
is thermodynamically stable) switches over toiesllatirI g
behavior, because there is a thermal activation energy
associated with electron tunneling. ' This activation en-
ergy is the energy required to change two neighboring,

4 P. W. Anderson, in Lectlres ori the 3farly-Body Problem, edited
by E. R. Caianiello (Academic Press Inc., New York, 1964), Vol.
2, p. 113.' C. A. Neugebauer and M. B. Webb, J. Appl. Phys. 33, 74
(1962).


