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Ordinarily the largest effect produced by doping a pure
material would be to drastically reduce a. (Such is the
case for Guisnault's purer samples. ) This reduction is not
important when a is already much less than one.

We wish to call attention to the fact that we have
ignored anisotropy in the normal density of states. This
quantity enters both in the gap equation and in the
equation for thermal conductivity, where it really enters
twice: in the number of carriers and in their mobility.
A more complete theory will have to take account of
this.
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APPENDIX

Equation (V.3) expresses the dependence on r of the
anisotropic part of the gap, A1. We here outline a
derivation of (V.3). To understand the derivation the
reader should already be familiar with the article by
Hohenb erg. '

Hohenberg's Eq. (31) says, in our notation,

A-;-(i) =A- -(~)(1+(~')il'/(2rAo)) .
But A; (~ )=hsL1+a; ].This is a definition of a
the value of u(Q) for the direction (Q) in which the gap
has its minimum value. Ke are interested in a linear
approximation for the decrease in D1 between r= 00

and 7=the value at which 6» —+ 0 in this approxima-
tion. We therefore 6nd the value of r for which

;„(l)=As and Eq. (V.3) immediately follows. Hohen-
berg's Fig. 2 shows that this result is fairly good for all
directions Q. Equation (V.3) results from an approxima-
tion which coalesces the effects of doping on a complex

gap into the real part alone.
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Thin Glms of type-l superconductors are shown to exist in a variety of quite distinct mixed states, de-
pending on their thicknesses. The most interesting of these states consist of hexagonal arrays of vortices of
larger than unit quantum number. Their general character falls between that of the ordinary mixed state, a
triangular array of unit vortices which occurs for sufBciently thin Glms, and the intermediate states con-
sisting of islands of superconducting phase in a matrix of normal phase which occurs for sufBciently thick
Glms. The theory is developed in Abrikosov's high-Geld approximation, which gives solutions of the Ginz-
burg-Landau equations that are exact in the limit as the applied Geld approaches the second critical Geld

H, 2. Two critical thicknesses are found and determined as functions of the Ginzburg-Landau parameter g.
The first and smaller critical thickness is the maximum Glm thickness for which the ordinary mixed state
will exist near H,2. The second critical thickness is the maximum for which a second-order Geld transition
occurs at H, 2. The new types of mixed state are stable for values of Glm thickness intermediate between
these two.

INTRODUCTION

THEORETICAL model given by Tinkham' has
~

~ ~

~

indicated that suKciently thin type-I 6lms as-
sume the mixed state when placed in a magnetic Geld

normal to their surface. Maki' has recently shown that
the Ginzburg-Landau (GL) equations predict this. He
derived an approximate value for the maximum thick-
ness a film may have in order that it should have a

' M. Tinkham, Phys. Rev. 129, 2413 (1963);Rev. Mod. Phys.
36, 268 (1964). Experiments on narrow strips of Sn by R. D.
Parks and J. M. Mockel, Phys. Rev. Letters 11,354 (1963), show
structure in resistance versus perpendicular magnetic field due to
the presence of vortex structure. J.Pearl, Appl. Phys. Letters 5, 65
(1964), discusses a model for such vortices and the forces between
)hem.

'. gazurqi Maki, Ann. Phys. (N. P.) 34, 363 (1965).

second-order transition to the mixed state at the upper
critical 6eld H,2. We have looked in greater detail at the
solutions of the GL equations in the neighborhood of the
upper critical 6eM using Abrikosov's high-6eld ap-
proximation' properly modihed as in Maki's paper to
take into account the 6eld energy. In brief, our results,
which apply near H, 2, are that very thin 6lms exist in
the state consisting of a triangular array of vortices
which was 6rst determined by Kleiner, loth, and Autler
(ERA).» Films of intermediate thickness, however,
make a second-order transition as the field is decreased

' A. A. Abrikosov, Zh. Eksperim. i. Teor. Fiz. 32 1442 (1957)
LEnglish transl. : Soviet. Phys.—JETP 5, 1174 (195 )g.

4 W. H. Kleiner, L. M. Roth, and S, H, Autler„Phys. Rev, 133,
A1236 (1964).



346 GOR DON LASHER

l,2

0.8

0.4

. f

0.4
I I 1

0.5 0.6 0.7
FlLM THICKNESS d

+FLUXON AREA ~C'0/B

f

0.8

We wig use solutions of the linearized GL equation
and determine their magnitude by minimizing the GL
free-energy functional including the inhomogeneous
fields generated by the supercurrents of those solutions.
This procedure is equivalent to Abrikosov's approxima-
tion for the bulk type-II mixed state in the neighbor-

hood of H, 2, provided we replace the right-hand side of

Eq. (1) by (8/z)P which gives P the unit-cell area ap-
propriate to the average Aux density 8, and provided
we include the remaining term

l
1—(8/lr)]f in the free

energy.
We have found it convenient to work in terms of the

Fourier components g& of the absolute square of the
order parameter satisfying (1),

(2)

where co is normalized to have a two-dimensional space
average of unity, gp

——1, p is the two-vector (x,y), and
the magnitude E of co is to be determined. The field

which is produced by the supercurrents implied by the
order parameter (2) and the vector potential Ap can be
written exactly in terms of these coeS.cients, '

H(r) —Bz= (N/2K) {—0(s)Lpp(x, y) —1]s

+p'(gg/2k) vLexp(ik 0—k
l
s—-', d

l )

Fro. 1. The function D(~,d) where s=0.5, de6ned by (6) and
giving the free energy (7) corresponding to various solutions of the
linearized GL equation (1).

through H, 2 onto one of a variety of states depending on
their value of GL parameter ~ and thickness. Still
thicker films will make a transition into an intermediate
state at field magnitudes greater than H, 2 but less than
the bulk critical field H, .

DERIVATION OF HIGH-FIELD
APPROXIMATIOH

Consider the two-dimensional periodic solutions of the
linearized GL equation. '

((i/z)&+Apj'P(x, y)=P, curlAp=Bz, (1)

where 8 is the average Aux density and equals the
applied field for a thin film in a perpendicular magnetic
field. The z dependence of P for B=H.s may be neg-
lected because the solutions of Eq. (1) depending on z

have eigenvalues corresponding to much smaller values
of B.They therefore give corrections to f which vanish
as 8 approaches H, 2.'

' G. Eilenberger, Z. Physik 180, 32 (1964) and subsequently G.
Lasher /Phys. Rev. 140, A523 (1965)g have shown that Abriko-
sov's approximation for the mixed state in bulk type-II specimens
near B,2 is the lowest order term in an expansion of the exact solu-
tion in powers of (H, s B)/B. (The author regrets n—ot being aware
of Dr. Kilenberger s work at the time of publication of his paper. }
F. M. Odeh (to be published) has proved that such expansions
converge and indeed represent the exact solutions of the full
nonlinear GL equations. The same type of series solutions could be
found for our case of type-I thin Qlms. The terms arising from the

—exp(ik 0 kl z+sd l)7}, (3)

where the primed summation excludes the term with
k=0, and 8(s) =1 for d/2)s) —d/2 and zero other-
wise, and k is the magnitude of the vector k.

By substituting these expressions for the order
parameter and magnetic field into that for the GL free
energy' and integrating over all values of s and a unit
area in the x,y plane, we obtain the density of free
energy in the x,y plane,

(aF 8')= Ndg(a 8)/—z]—+ 'N'dP— (-',a')Q-'
l ga l'—

&& (e s" 1+kd)/kd]—+d(A~'
l P l') (4)

where P is the average of te', P=P l g~ l

', and A~= A —Ap

is the periodic part of the vector potential with divA~= 0
and (A„)=0. The final term of the above expression has
the integration only symbolically indicated by the
angular brackets. When this term is neglected, the free
energy (4) has its minimum for

N = (z—8)/It. D(~,d),
where

D(K,d) =P (1/2z')Q'l gg l'(e—'"—1+—kd)/kd, (6)

with the result

(DF 8') = d(~ 8)'/2s'D(x —d) . — —(7)
s dependence of the order parameter would give corrections to the
absolute square of the order parameter and to the free energy of
order L(H, s—B)/Bg'.

The first term gives curl II=j inside the film according to
Kq. (7) of Ref. 8 (but note the difference in units), and the second
term makes divtI=0 g,t the surfaces of the film.
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This second critical thickness where D(x,d) vanishes
as the Quxoid quantum number approaches infinity can
be found from the following argument. The transforma-
tion of Eq. (8) accentuates the absolute value of the
order parameter at its maximum compared to its value
at other positions in the unit cell. In the limit of large v

the absolute square of the order parameter approaches
an array of two-dimensional Gaussians of the form
exp( —sxBp') whose centers fall on the lattice dual to
the lattice of vortices and with a unit-cell area pro-
portional to v. For large values of v one may neglect the
overlap of these Gaussians as is already apparent from
Fig. 3 for v= 2. The second critical thickness can, there-
fore, be found by evaluating D(x,d) for the above
Gaussian form and setting the resulting expression
equal to zero. The result is indeed independent of the
area of the unit cell as this area approaches infinity and
gives the condition

2x' —1= (ger/23)L1 —exp(3s) erfc(b)],

where
(9)

This second critical thickness is plotted as the lower
curve of Fig. 3, and we will argue that this is the dividing
line between films which have the mixed state near H, ~

and those which have the intermediate state.
There is one respect in which the behavior of the high-

quantum-number mixed states will diGer from the v= 1
states They .have a much larger maximum value of

~ f ~

'
for a given average value and, therefore, will be dis-
torted by the eGect of the nonlinear terms in the GL
equations at much smaller values of (a 8)/x than is the-
case for the v=1 solution. That is, the simple 8
dependence of Eqs. (5) and (7) will hold for smaller
ranges of B.

We will briefly consider the nature of the normal-
superconducting transition with decreasing field for film
whose thickness is slightly greater than the second
critical thickness, i.e., slightly into the intermediate-
state range where D(x,d) has negative values for large
v. For values of the field not too diferent from H, 2——g
in these units, we can use the free-energy expression (4)
including the third term which is proportional to S' and

'If Maki had used this expression in his "local kernel" Lhis
Eq. (15)g instead of exp (—xBa') his result would, we believe agree
exactly with Eq. (9).

predict that there would occur a first-order transition to
this state at a field between H.~ and the bulk critical
field. One must, however, consider not a single given
state but rather must find which one of all the states
will give the largest value for the transition fieM. We
believe that the transition will occur into a state similar
to our high-quantum-number states and thus resemble
the intermediate state discussed by Davies" consisting
of islands of superconductivity surrounded by the nor-
mal phase. This discussion also predicts that critical
field versus thickness will begin increasing as the film
thickness increases past our second critical thickness.

To our knowledge, there exists no experimental data
to compare quantitatively with these predictions. Cody
and Miller" have recently obtained a curve of critical
field versus film thickness for Pb at 4.2'K. The value of
film thickness indicated by the cusp in this curve is, we
believe, of the same nature as the critical thickness of
Eq. (9), but the GL theory does not apply at such low
temperatures nor has any theory of the correction of
GL theory to the required order in 0' and for a relatively
clean material been given. The critical thickness ob-
served by Cody and Miller was 9000 A, whereas Eq. (9)
with x=0.5 and H, s

——400 G gives 1900 A.
Results on Sn films by tunneling have been given by

Collier and Kamper, "but most of their film thicknesses
fall below our critical value and thus their observation
of a second-order transition at H, 2 is merely consistent
with our predictions. Their thickest film has parameters
which fall in the region of our high-Auxoid-number
solutions. Whether this accounts for the diferent results
for this film can only be convincingly demonstrated by
a considerable extension of our work to apply it to
values of the field much less than the critical field. The
slope of their measured tunneling resistance versus field
does appear to be somewhat greater at H, 2 for this film,
and this is consistent with out smaller value of D(x,d)
for the higher quantum number solutions.
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