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A theory is presented for the energy gap and the thermal conductivity in pure and impure tin. The central
features are taken from the papers of Markowitz and Kadanoff and of Hohenberg, and include anisotropy in
the pure material which is systematically eliminated by increased doping. First the usual theory of thermal
conductivity is generalized to allow for gap anisotropy. Next an anisotropic gap function for pure tin is con-
structed using experimental results of other investigators. Synthesizing these two stages yields a prediction
for the thermal conductivity of pure superconducting tin as a function of orientation and temperature. This
prediction is in fair agreement with the data of Guénault. Turning to the impure metal, we find that the gap
depends upon four quantities: energy w, angle 2, mean free path /, and temperature 7'. Simplifications are
introduced whereby the complicated dependences are separated into simpler factors. Stress is laid upon the
distinction between anisotropy in the gap edge and the effect of anisotropy on quantities such as the average
gap and 7. The gap edge is rendered isotropic by impurities well before the effect is felt by the other quanti-
ties. In fact it is the gap edge which is vital to thermal conductivity, since it is there that the carriers reside.
Predictions for thermal conductivity in impure tin are compared with data of Pearson ef al. and found to
show good qualitative agreement. In particular, a reduction in the ratio of superconducting to normal ther-
mal conductivity for certain sample directions is explained by the elimination of gap-edge anisotropy. How-
ever, this effect occurs at a much smaller impurity concentration than that predicted theoretically. This
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discrepancy and related matters are fully discussed.

I. INTRODUCTION

HIS paper will attempt to correlate our under-
standing of energy-gap anisotropy in a super-
conductor with the behavior of thermal conductivity.
It is well known that in a pure material the gap anisot-
ropy has a small influence on most properties that do not
single out a particular portion of the Fermi surface.
These include most of the properties discussed by BCS
as well as transport properties, where essentially all the
carriers contribute to a comparable extent. However,
when dealing with the latter, if one computes ratios of
the superconducting to normal-state values, then anisot-
ropy present in the normal state largely cancels out, and
one is left only with the gap anisotropy, which, though
small, is then very apparent.

If one considers the change in certain properties with
small additions of impurities, one often finds that the
main effect is a result of the washing out of anisotropy.
This is the case if, once again, one considers super-
conducting-to-normal ratios, since any influence of re-
duced mean free path on the normal-state parameters
then cancels out and one is left with the effect of reduced
mean free path on gap anisotropy. This effect is
generally also small but very apparent.

Until now treatments of anisotropy in pure and im-
pure materials have relied upon gross features such as
the mean-squared anisotropy around the entire Fermi
surface. No sustained attempt has been made at a
detailed comparison of gap anisotropy and anisotropy
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in other properties. However, there is now available
sufficient data on gap anisotropy and on the anisotropy
of thermal conductivity in the same material, namely
tin, to make a detailed comparison possible. The data
on gap anisotropy are summarized by Douglass and
Falicov! and are also supported by the conclusions of
Markowitz and Kadanoff (MK).2 The thermal con-
ductivity data were reported by Guénault® for pure tin
and by Pearson ef al.* for pure and impure tin.

A second motivation for this work follows from a
result of Pearson el al. In the low-impurity region,
K,"<KK,* and also K,*<K,. (The notation is con-
ventional. See Pearson et al.) Using these facts, Pearson
finds that K.*(T)/K .*(T) decreases with small amounts
of impurity. This result is surprising according to one’s
first line of reasoning. This is to note that Anderson’s
theorem® implies that any impurity-induced alteration
in a property which depends only on the energy gap is
due to washing out of anisotropy. But the washing out
process has been shown (by MK and Hohenberg®) to
cause a decrease in the ability of electrons to make full
use of the (anisotropic) pairing potential, and this
in turn always diminishes the effective gap. Now
K »(T)/K.»(T) is simply a gap-dependent integral,
except for ultrapure samples. (This will appear below.)
On this basis we would expect K, (T)/K.*(T) to
increase (i.e., to draw closer to unity) with small

!D. H. Douglass, Jr., and L. M. Falicov, in Progress in Low
Temperature Physics (North-Holland Publishing Company,
Amsterdam, 1964), Vol. 1V, p. 97.

2 D. Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563 (1963),
referred to as MK.

3 A. M. Guénault, Proc. Roy. Soc. (London) A262, 420 (1961).

4 G. J. Pearson, C. W. Ulbrich, J. E. Gueths, M. A. Mitchell, and
C. A. Reynolds, preceding paper, Phys. Rev. 154, 329 (1967).

8 P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

5P. Hohenberg, Zh. Eksperim. i Teor. Fiz. 45, 1208 (1963)
[English transl.: Soviet Phys.—JETP 18, 834 (1964)]. i
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amounts of impurity. Thus we appear to have an
anomalous experimental result to explain.

We shall now call attention to a rather unexpected
feature of the current theory of a doped anisotropic
superconductor. This feature is central to the present
work. A prediction of MK is that, as far as critical
temperature is concerned, anisotropy is substantially
eliminated from the system when §&/I=3; & is the
coherence length, / is the mean free path. Hohenberg®
uses a model similar to that of MK to investigate,
among other things, the washing out of gap anisotropy
at T=0. The prediction is that anisotropy is sub-
stantially eliminated when &i//~%. This prediction
was implied, but not stated, in that paper. It is not
widely appreciated that this difference in predicted be-
havior exists, namely, that anisotropy in the gap at 77=0
disappears at a mean free path a dozen times larger
(impurity concentration a dozen times smaller) than
it does at T'="T,. The present paper concurs with the
others and provides an explanation for this difference
in a later section.

In the succeeding sections of this paper, we set up
and solve a specific model of thermal conductivity in the
presence of gap anisotropy. There are three central
ingredients in the model, treated in turn: an anisotropic
generalization of a pre-existing isotropic theory, that of
Kadanoff and Martin? for thermal conductivity in the
superconducting state; a model of the gap anisotropy
specific to tin, adapted from Douglass and Falicov; and
a model of the impurity-induced reduction in anisotropy
based on the work of MK and Hohenberg. Finally, we
perform a machine computation to obtain the aniso-
tropic thermal conductivity of the pure material, and
also the effect of impurities upon the anisotropy of
thermal conductivity.

It turns out that we can go some distance in the
explanations and correlations called for by this intro-
duction. In particular, the effect observed by Pearson is
attributed to the elimination of anisotropy of the ther-
mal conductivity ratio by impurities, which results in a
decrease in this ratio for his sample orientation. However,
the magnitude of the effect is greater than predicted,
and it occurs at a lower impurity concentration.

II. ANISOTROPIC THERMAL CONDUCTIVITY

The effect of an anisotropic gap on the thermal
conductivity can be displayed by a straightforward
extension of the theory of Kadanoff and Martin.” This
is most easily done using the Boltzmann-equation ap-
proach of Tewordt.® One weak point in this type of
approach is that it treats excitations as quasiparticles,
whereas we know from the more general Green’s-
function analysis that the excitations are more complex
than the quasiparticle picture. Nevertheless, it is hoped
that any errors brought about by this weakness will

7 L. P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961).
8 L. Tewordt, Phys. Rev. 128, 12 (1962).
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cancel out in the difference between the doped and un-
doped cases.

For transport in an anisotropic medium the current
and the temperature gradient (or field, in the electrical
problem) lie in different directions. The angle £ between
these directions will be small for small anisotropy. A
factor of (cos£)™ will appear in any expression for
conductivity, but one may use cos{=~1—§£2 Anticipat-
ing that the eventual correction term to the ratio
K#/K.» will be §(£2—%,2) (where this quantity is
temperature-dependent), we shall now call attention to
the smallness of this quantity.

Simple tensor relations determine £ in any case where
one knows K, and K,, the relevant conductivities
parallel and perpendicular to the ¢ axis. The result is

g=~%(K,/K,—1) sin26. (I1.1)

This is a maximum at §=45°, and it is zero at §=0°, 90°.
From values of K tabulated by Guénault and Pearson,
we find that K,/K,, differs from one typically by 209
for the purities of interest in the present paper. Thus
the correction term to K,5/K,” is less than 19, and in
fact is exactly zero for the angles of greatest interest to
us. For this reason, ¢ is later neglected.

Returning to Tewordt’s method, the relaxation times
for scattering of electrons by phonons and by impurities
are denoted [ 2Tpn* (k) T and 7imp®, respectively, so that
the Boltzmann equation takes the form

kz € 6fk0 dT 1

— = ]zrpm<k)+

}(fk_fk0)~ (I1.2)

Timps

The various quantities making up this expression have
the meanings given by Tewordt in his equation (4.1).
Solving for fx— fi® and substituting into Tewordt’s
equation (4.6), one obtains

1 [cosé, I
4 mekT
(€k2+Ak2)1/2—| &k
Xsechz[ (IL.3)
T 2Tt (K) -+ 1/ 7imp®

for the superconducting-state thermal conductivity.
Here, Ay is the energy gap which is a function of crystal
direction @ as well as quasiparticle energy w. The
normal-state thermal conductivity is found simply by
taking A, =0. Transforming the momentum integrations
into energy and angular integrations, and forming the
ratio K.¢/K ., one obtains

Ks(T) 9 cosén [ T\?
“wreil )
K(T) 8t COSESL T,

2 T
X / d¢’ / cos?d’ sinf’d¢’
0 0

% © sech?(w/2kT)
./o a(T/T ) +e/w

e2

de. (11.4)
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We have used
wt=e+[AQ 0, T) . (IL.5)

In (I1.4) @'= (¢',¢’) are the polar and azimuthal angles,
measured relative to the sample axis. This expression is
therefore a function of the orientation of the sample
axis relative to some arbitrary direction. As pointed out
in Ref. 4, the parameter ¢ is the ratio of the thermal
resistivity due to scattering of electrons by phonons to
that due to scattering by impurities, evaluated at
T=T.. The remaining quantities have the same mean-
ings as in Ref. 4. The full dependence of A, upon all the
parameters of interest can be denoted by writing

Ac=AQ0,0,T), (IL6)

i.e., angle, energy, mean free path, temperature.
g gy P p

III. ENERGY GAP IN PURE TIN

Having determined an expression for the thermal
conductivity of a superconductor in terms of an
arbitrary energy gap, it is necessary to examine the
anisotropy of the gap in the pure substance. In the pure
material, A(w)=~A(A) for energies w of interest. The
variation of the energy gap [i.e., A(A)], evaluated at
T'=0, with crystal direction in pure tin has been the
object of extensive experimental investigation. These
investigations include the work of Morse,? Mackintosh,©
and Bezugli.!

The experimental results have been tabulated by
Douglass and Falicov! in their figure 5.16. Since the data
came from acoustic-attenuation measurements, the gap
reported is actually an average over a plane perpen-
dicular to the direction of sound propagation. In the
text accompanying Fig. 5.16 of Douglass and Falicov,
they present further gap values obtained from tunneling,
a technique which sees the gap in a specific direction.

Using the values presented there, one must unfold the
equatorial averages to obtain A(Q). There are simply
not enough data to do a thorough unfolding. However,
the twin assumptions of an elliptical 6 dependence and
a simple ¢ dependence having the symmetry of Fig. 5.16
(which has the symmetry of the crystal, as it must)
allow us to write down a formula consistent with the
bulk of the data:

2A(Q)/ (kT.)=3.1+1.2 cos?0—0.3 sin?f cos8¢ (IIL.1)

at T=0. We find that (2A(Q))=3.5k T, which happens
to agree with the BCS value. (Angular brackets denote
an average around the Fermi surface.) If we put
AQ)=(A@))[1+a(@)], we find ({a(Q)]?)=0.012. We
recall that the theory of MK? determined that the

?R. W. Morse, T. Olsen, and J. D. Gavenda, Phys. Rev. Letters
3, 15 (1959) ; 3, 193(E) (1959).

10 A. R. Mackintosh, in Proceedings of the Seventh International
Conference on Low Temperature Physics (University of Toronto
Press, Toronto, Canada, 1961), p. 240.

nP.A. Bezug]li, A. A. Galkin,and A. P. Korolzuk, Zh. Eksperim.
til ’I(‘(;gglf:i]z. 39, 7 (1960) [English transl.: Soviet Phys.—JETP 12,
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value of {(a?) for tin which produced best agreement with
critical temperature measurements on impure samples
is (a?)=0.019. It should be noted that the value of
(@) is probably underestimated by the present pro-
cedure since properly unfolding the equatorial averages
should produce greater variations in ¢(Q). [ Notice that
the function ¢(Q) is not to be confused with the param-
eter ¢ defined in Sec. II.]

As far as the temperature dependence of the aniso-
tropic gap is concerned, we assume that

AQD)=A@f(1), (I11.2)

where f(T) is the temperature variation given by the
BCS theory® for the isotropic gap. This assumption is
consistent with the theory of MK as well as with the
experimental results of Hebel,®* Masuda,* and Masuda
and Redfield.!®

IV. THERMAL CONDUCTIVITY IN PURE TIN

Upon substituting Eq. (IIL.1) into Eq. (II.4) and
performing the integrations, one obtains the thermal
conductivity as a function of temperature. However, if
(I1.4) is used in the form shown above, the result will
be valid only for the particular case of the sample axis
lying parallel to the [0017] axis. To obtain K,/K," for
an arbitrary direction it is necessary to express the
angles 6, ¢ in terms of the angles ¢, ¢’ and the orienta-
tion (a,B) of the sample axis relative to the [001] axis.
This is easily done by using the Euler transformation
matrix for coordinate system rotations which gives

(IV.1a)
cos ¢ sinf= cosB cos¢’ sind’ —sinB cosa sing’ sind’
-+sing sina cos®’, (IV.1b)
sinp sinf=sinB cos¢’ sin’+ cosB cosa sin¢’ siné’
— cosf3 sina cosé’ .

cosf=sina sing’ sinf’+ cosa cosf’ ,

(Iv.1e)

These expressions together with (I1.4) can now be used’
to find the thermal conductivity for any crystal direc-
tion in pure tin. However, the presence of the parameter
@ in (I1.4) unnecessarily complicates the analysis and
for the present purposes it will be sufficient to assume
that a=0. Inspection of the values of @ in Ref. 4 shows
that this assumption is not too bad an approximation
for any of the samples. It is even fairly good for the
“pure” sample where ¢=0.28. At any rate, the effect of
a small ¢ in Eq. (IL4) is negligible except near T'=T..
Assuming that ¢=0, and ignoring ¢, Eq. (IL.4) then
reduces to the simple form
Kes ) 9 27 /2

= dga'
Ken s 0 0

cos2¢’ sinf’do’

X[GY+G4+2Gy], (IV.2)

12 T, Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

BT, C. Hebel, Phys. Rev. 116, 79 (1959).

4Y. Masuda, Phys. Rev. 126, 1271 (1962).

15Y. Masuda and A, G. Redfield, Phys. Rev. 125, 159 (1962).
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with
G/=y[1+exp(y)], (Iv.3)
Gy=2yIn[1+exp(—y)], (IV.4)
® xdx
/= ———— IV.5
? /; 1+exp(x+y) V-9

where y=A(Q,T)/kT. The integral G5’ has been tabu-
lated by Rhodes.!® In this work the temperature de-
pendence of the gap is assumed to be the same as that
given by the BCS theory.? Equation (IV.2) can then
be evaluated numerically and the results of these cal-
culations are shown in Fig. 1.

The two solid curves represent the upper and lower
limits on the spread of the theoretical results. The lower
solid curve is for a=0°. The higher solid curve is for
a=90° regardless of the value of 8. That is, on the basis
of the anisotropy function (IIL.1), the thermal con-
ductivity is completely insensitive to the value of 8.
This is a completely expected and satisfying result since,
for a uniaxial crystal, there should be no azimuthal
dependence of conductivity.

The comparison of theory to the data of Guénault is
also shown in Fig. 1. We made the particular choices of
Guénault’s samples as follows. We selected two samples
having @=90° (denoted by L in the figure) and two
having a=0° (denoted by ||). The samples were required
to have @ small in accord with previous discussion, but
not so small that the samples could not be considered
“pure.” Agreement between theory and experiment is
satisfactory. If one were to increase the variation of
a(2) in order to make (a%)=0.019 instead of 0.012 (see
Sec. III), one would find better agreement in a com-
parison like that of Fig. 1.

V. ENERGY GAP IN IMPURE TIN

We need to know the behavior of the gap with regard
to variations. in four quantities. These are energy w,
angle @, mean free path /, and temperature 7. In the
case of the pure material where /— o, the standard
model of an anisotropic superconductor? yields a gap
which is independent of w and whose 7' dependence is
given simply by multiplying A(2) by the BCS T
dependence. These simplifying features are no longer
present when [ is finite. What we have available to us is
the current model of a doped anisotropic superconductor
which has been solved at =0 ¢ and at I'=T..2 In fact
the kind of solution depends upon the range of w or /
considered. We therefore specialize our considerations
immediately to the ranges of interest to us. The range
of I is large (I>>&) corresponding to low doping.
Regarding A as a function of w, we note that Eq. (I1.4)
requires knowledge of different ranges of w at low than
at high temperatures: ie., w=A(T) for low T and
w=kT for high T'. This originates in the Fermi factors.

16 P, Rhodes, Proc. Roy. Soc. (London) A204, 396 (1950).
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F1c. 1. Theoretical curves for the ratio K. (T)/K,(T) as
calculated using the anisotropic energy gap in pure tin. Also shown
are some experimental points of Guénault. The parameter a is the
ratio of the thermal resistivity due to scattering of electrons by
%hor;t‘)ns to that due to scattering by impurities, evaluated at

=T,

We need to know the gap over essentially the entire
temperature range. We can extend the solutions at 7'=0
and T'=T, over a large range by assuming that the BCS
T dependence is a multiplicative factor as it is in the
pure case. Notice that this may very well be true in
each limited energy range of interest to us whereas we
stated before it is not true in general. The final result
over the entire temperature range is a smooth connec-
tion of these two solutions. We rely heavily in this
section on the papers of MK and Hohenberg.
According to MK a good approximation for A is

A(Q)w’l)= A0<l)+A1(w}l)a(Q) ’ (Vl)

at least when T'— T'.. Since we plan to use a multipli-
cative temperature factor, we suppress the symbol 7.
In the ideally pure case, when [—wo, Aj(w)=A,.
Because A, is independent of w, Eq. (V.1) reduces to
the BCS result when a(Q)=0. Equation (V.1) is exact
when the impurities scatter isotropically. Notice that it
says that the angular dependence a(R2) of the pure ma-
terial is preserved while the effect of doping is to reduce
A;. We see that the condition which allows us to solve
our enormously complicated problem is that the full
dependence of A on @, w and T breaks up into de-
pendences that are separately specifiable.
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F16. 2. Schematic theoretical curves for A(QJ,7) at a fixed
temperature for extreme and average gap values, plotted versus
reciprocal mean free path; & is the superconducting coherence
length. Adapted from Hohenberg, Ref. 6.

Using Eq. (V.1), MK find

*@ } L v

A(Q,w,l)=Ao{1+——~—

1—1i/Quwr)
where 7 is the mean free time corresponding to /. For
properties such as the density of states or the quasi-
particle energies, the important quantity is the real part
of A% This contains in its denominators the expression

d=1+ Quwr)2. (V.29

(It is not essential to change from I to 7. Theoretical
papers generally use = while experimentalists prefer /.
The connection between them is I/£=rAor.)

We know that Egs. (V.1) and (V.2) must be reason-
able in a finite range below 7', since we can always per-
form an expansion of the integral equation for the gap
in powers of A% whereupon the zeroth-order solution is
exactly that at 7'; and the correction terms are of order
(A(T)/kT)?. This is a standard trick used when working
near T,. It was used most effectively (and originally) by
Gor’kov'” to derive the Ginzburg-Landau'® equations
from the microscopic theory. We thus have a formula for
the “high-temperature gap.”

By far the greater temperature range below 7' is not
accessible through this trick. This range may be reached
by extending the Hohenberg theory, which he works out

7 L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
[English transl.: Soviet Phys.—JETP 9, 1364 (1959)].

18V, L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Tiz.
20, 1064 (1950).
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in great detail for 7=0. His results may be summarized
as follows. For any finite / the gap is strictly isotropic,
which means that for any direction of propagation
there exists an excitation having a minimum energy E,
and this energy is independent of direction. However,
there is a circumstance which completely overthrows
this apparent isotropy and that is that the density of
states near E, is exceedingly small for those directions
Q such that A(Q) is much different from £, when [ — .

Thus we are to some extent justified in making the
following assumption for the “effective gap,” which we
still denote by A(2,/) and which is the energy at which
the density of states has a sharp increase; we assume
that Eq. (V.1) applies also at 7=0. (Again we are
concerned with the value w=A.) This assumption is
consistent with the results of Hohenberg. Adapting his
Eq. (31) to the special notation and assumption of this
paper, we have

A1)~ Ao(0){1— () 2780 r—0) 7'},  (V.3)

for concentrations small enough that the right-hand side
is not close to zero. We outline a derivation of (V.3) in
an appendix.

For the same region of concentration, his Eq. (38)
tells us that

Ag()=A¢(0){1—7{a®)(167A00| 7—=0)'}. (V.4)
Since a?~ (0.02) for tin (as well as typically), we see that
A1 (l) decreases far more rapidly than A¢(/) with reduc-
tion in mean free path. The complete behavior of
A(Q,0) is shown qualitatively in Fig. 2 for three values
of Q. The three directions are chosen to represent the
extreme and the average values of ¢(2). On the abscissa
I~! is plotted. Our figure is adapted from Fig. 1 of
Hohenberg’s paper, but one point of difference is that
we are making use of the knowledge of the correct
cutoff procedure, which appears in MK. This procedure
is to cut off frequency integrations at +wp, as did BCS.
When this is done A(?) flattens out at a relatively high
value instead of continuing to decrease as ! becomes
small. We call the gap which appears in Egs. (V.3) and
(V.4) the “low-temperature gap.”

Before we introduce the low- and high-temperature
gaps into the formula for thermal conductivity, we call
attention to two related surprising features of the MK
and Hohenberg model. One feature appears in Fig. 2
and that is that anisotropy in the gap edge A|,_a dis-
appears at an impurity concentration very much smaller
than the concentration needed to cause the average gap
A to level off. The other feature becomes manifest when
we compare the behavior of A; to the behavior of T..
If we eliminate 7 and Ag in Eq. (V.3) in favor of / and
£, we find A;— 0 when &/I=%. This is in marked
contrast to the prediction of MK that it takes a value
£o/1=3 to effectively saturate the reduction in 7.

These features may be understood by noting that it is
only right at the gap edge that anisotropy is eliminated
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at low doping. This is undoubtedly due to the singular
density of states. Anisotropy in A; away from the gap
edge persists to much higher concentrations. Since both
Ao and T, are related to the entire gap function,
Ao+A1a(Q), over the entire energy range —wp <w<wp
through the integral equation known as the gap equa-
tion, this implies that both Ay and 7. should continue
to decrease at the higher concentrations.

We now return to considerations of importance to
thermal conductivity. It is apparent that the value of =
which reduces the low-temperature value of A; in
Eq. (V.3) to zero brings (2wr)~2 in (V.2a) (the high-
temperature expression) to a value (Ag|r—o/w)2(a?)!2.
But the important values of w are of order 2T and
therefore, typically,

(2wr) 22 (A| 1o/ kT )¥a?)2~04K1.  (V.5)

It thus appears that relatively little anisotropy is lost to
important excitations near T, for the same value of 7.
In this paragraph we have allowed ourselves the simpli-
fication of extrapolation of the linear dependence in
71in (V.3).

What do we mean by “low temperature” and ‘high
temperature”? The low-temperature extension of the
gap equation inserts tanh(3w/kT) into the integrand.
But the tanh factor =1 if w/kT=1; also the minimum
value of w is A(T). Moreover, it has been remarked that
the high-temperature-gap equation contains terms of
order (A(T)/kT)2. Clearly the terms mean lower or
higher than the temperature for which A(T)=kT,
which occurs when 7'=0.97..

In summary we present our formulas for the low-
temperature and high-temperature gaps. These are,
respectively,

A(QywrlyT) zAO(OO )f(T)
X[14+a(@){1— (a2 rge (2071} ] (V.6)

and

A@w, L, T)=Ao(2) f(T)[1He@].  (V.7)

f(T) is the BCS temperature dependence, while for tin
a(Q) is given by

a(Q)=3.5"1{—0.4+1.2 cos?60—0.3 sin? cos8¢}. (V.8)

VI. THERMAL CONDUCTIVITY OF IMPURE TIN

We are now in a position to compute the thermal
conductivity of impure tin using Eq. (I1.4) in the same
fashion as for pure tin. We use Egs. (V.6)-(V.8) to
obtain so-called ‘low-temperature” and ‘‘high-tempera-
ture” solutions. In a temperature range around 0.97
we interpolate smoothly between the two. The machine
calculation is hardly more complicated than in the
pure case.

In Fig. 3 we plot two of the many possible curves
yielded by our machine program. The higher one is for
the pure material with orientation a=90°. The lower
one is for doping heavy enough to eliminate anisotropy
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Fic. 3. Theoretical curves for K, (T)/K,*(T) in pure and

moderately impure tin. The data is that of Pearson for pure and
slightly impure tin.

in the low-temperature region 7°'<0.97.. We have
reason to believe that these are the most sensible curves
to compare with the data of Pearson ef al.* We shall
discuss this point after we have made the comparison.
Also in Fig. 3 we have plotted the data of Pearson et al.
for their purest sample as well as for their low-doping
samples, those having roughly 0.01%, of impurities. The
data of Guénault, obtained only for pure and ultrapure
samples, do not appear on this graph because we feel it is
most meaningful to confine ourselves to a case where the
pure and impure measurements were performed by the
same group.

If we contend that the experimental impurity con-
centrations and orientation correspond to the theo-
retical curves in Fig. 3, then it is seen that theory is
consistently higher than the data. However, the com-
parison does not end there because it is possible that
there exists a systematic discrepancy common to both
the pure and impure cases. If we wish to isolate the
effect attributed to the washing out of anisotropy by
impurities, it is sensible to plot the difference curve
between pure and impure theoretical results. This we
show in Fig. 4. Similarly we plot the difference between
pure and impure data. (Included in Fig. 4 for compari-
son are some relevant data taken by Hulm.) The
favorable feature of Fig. 4 is the similarity in the shapes
of the curves. In particular they both reach a maximum
in the vicinity of T=0.5T,. The unfavorable feature is

19 J. K. Hulm, Proc. Roy. Soc. (London) A204, 98 (1950).
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0.033 at. 7p Hg sample.

that even the assumption of total destruction of anisot-
ropy in the gap edge fails by a factor of almost 2 in
bringing theory into line with experiment. We have
yet to criticize this assumption but we shall do so toward
the end of this section.

We now address ourselves to the question of the
orientation of the samples which we included in our
comparison. The value of a for Pearson’s four samples
is frankly unknown, but more recent samples of tin and
tin alloys have been shown to grow preferentially in
directions perpendicular to the [001] axis.2? However,
Tearson’s samples were not grown but were extruded.
Pherefore such a preference cannot be assumed. At
least it is clear that all four samples have common
orientations, from the fact that the room-temperature
resistivity was the same for all four samples. Since this
quantity is rather anisotropic itself, clearly this means
that the value of « is about the same for all. The com-
parison in Figs. 3 and 4 would be senseless if this were
not so.

The foremost weakness in the present analysis resides
in the fact that the gap edge would have to become
isotropic at 0.019, of impurity in order to fit experiment.
This concentration corresponds to £//=0.03 which is
% of the necessary value according to theory. We are
therefore far from quantitative agreement with experi-
ment. Further experiments with doped single crystals
of tin are in progress.

» J. E. Gueths, C. A. Reynolds, and M. A. Mitchell, Phys. Rev.
(to be published).
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VII. CONCLUDING REMARKS

The first major conclusion of this paper is that
Guénault’s measurements of thermal conductivity in
relatively pure crystals are well explained quantitatively
by a model which simply injects anisotropy in the gap
into the standard theory. The second major conclusion
is that the changes in the thermal conductivity ratio
with light doping may be fitted qualitatively by a model
which simply injects impurity-dependent anisotropy
in the gap into the standard theory. As noted in the
introduction, if the thermal conductivity ratio were
assumed to be isotropic, one could infer an average gap
which increases with light doping, apparently contrary
to the theory of Anderson. However, we now under-
stand this effect as resulting from the elimination of
anisotropy in the thermal conductivity ratio, which
imperfectly reflects the actual gap anisotropy. Thus an
effective gap inferred from the thermal conductivity
ratio is itself anisotropic, and is not the true average gap.
The samples used in Pearson’s experiments were
evidently oriented such that the effective gap was near
a minimum, and consequently increased when the
anisotropy was reduced.

The failure of the model to produce quantitative
agreement breaks up into two quite separate questions.
The first has to do with a discrepancy of order 2 and
may well be due to the circumstance, already cited,
that our anisotropy function e(2) underestimates the
variations in the gap. As further information is reported
on this quantity, a more complete ¢(Q) is bound to
improve the agreement. The second concerns the factor
of 8 in the doping strength. This poses a real problem.
We recall that the decrease in Ag and T’ saturates at a
doping of 19} or so. The surprising prediction (which
by now is no longer surprising) that anisotropy in the
gap edge vanishes at a doping of 0.19, gives us the
benefit of an order of magnitude. There is evidently
another order of magnitude to account for to bring
theory into line with the samples of 0.019, doping. If,
for a reason we do not yet understand, scattering at
the gap edge is even stronger than it is in our model,
here again the agreement will improve.

It should be emphasized that we see no reason to
abandon the current model of a doped anisotropic
superconductor in order to seek a resolution of this
puzzle since the model has been triumphant in explain-
ing the observed behavior of 7. and Ay, as discussed in
great detail by MK and Hohenberg. The present paper
is the first sustained attempt at an understanding of
the detailed angular variations in the gap rather than
just its mean-square value around the Fermi surface.
It should come as no surprise that there are important
points left to clear up.

We should remark that this entire analysis is made
possible by the fact that the nominally pure sample of
Pearson is not pure but is sufficiently impure to make
the parameter a, discussed previously, smaller than 0.3.
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Ordinarily the largest effect produced by doping a pure
material would be to drastically reduce a. (Such is the
case for Guénault’s purer samples.) This reduction is not
important when ¢ is already much less than one.

We wish to call attention to the fact that we have
ignored anisotropy in the normal density of states. This
quantity enters both in the gap equation and in the
equation for thermal conductivity, where it really enters
twice: in the number of carriers and in their mobility.
A more complete theory will have to take account of
this.
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APPENDIX

Equation (V.3) expresses the dependence on 7 of the
anisotropic part of the gap, A;. We here outline a
derivation of (V.3). To understand the derivation the
reader should already be familiar with the article by
Hohenberg.®

Hohenberg’s Eq. (31) says, in our notation,

Amin(l)zAmin(oo){l_}_<a2>ll4/ (ZTAO)} . (Al)

But Apmin(0)=A¢[1+amin ]. This is a definition of ¢nin,
the value of a(Q) for the direction (Q) in which the gap
has its minimum value. We are interested in a linear
approximation for the decrease in A; between 7=«
and 7=the value at which A;— 0 in this approxima-
tion. We therefore find the value of 7 for which
Amin(?) = A and Eq. (V.3) immediately follows. Hohen-
berg’s Fig. 2 shows that this result is fairly good for all
directions Q. Equation (V.3) results from an approxima-
tion which coalesces the effects of doping on a complex
gap into the real part alone.
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Mixéd State of Type-I Superconducting Films in a
Perpendicular Magnetic Field
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Thin films of type-I superconductors are shown to exist in a variety of quite distinct mixed states, de-
pending on their thicknesses. The most interesting of these states consist of hexagonal arrays of vortices of
larger than unit quantum number. Their general character falls between that of the ordinary mixed state, a
triangular array of unit vortices which occurs for sufficiently thin films, and the intermediate states con-
sisting of islands of superconducting phase in a matrix of normal phase which occurs for sufficiently thick
films. The theory is developed in Abrikosov’s high-field approximation, which gives solutions of the Ginz-
burg-Landau equations that are exact in the limit as the applied field approaches the second critical field
H,,. Two critical thicknesses are found and determined as functions of the Ginzburg-Landau parameter «.
The first and smaller critical thickness is the maximum film thickness for which the ordinary mixed state
will exist near H. The second critical thickness is the maximum for which a second-order field transition
occurs at Hz. The new types of mixed state are stable for values of film thickness intermediate between

these two.

INTRODUCTION

THEORETICAL model given by Tinkham! has
indicated that sufficiently thin type-I films as-
sume the mixed state when placed in a magnetic field
normal to their surface. Maki? has recently shown that
the Ginzburg-Landau (GL) equations predict this. He
derived an approximate value for the maximum thick-
ness a film may have in order that it should have a
1 M. Tinkham, Phys. Rev. 129, 2413 (1963); Rev. Mod. Phys.
36, 268 (1964). Experiments on narrow strips of Sn by R. D.
Parks and J. M. Mockel, Phys. Rev. Letters 11, 354 (1963), show
structure in resistance versus perpendicular magnetic field due to
the presence of vortex structure. J. Pearl, Appl. Phys. Letters 5, 65
(1964), discusses a model for such vortices and the forces between

them.
2 Kazumi Maki, Ann. Phys. (N. Y.) 34, 363 (1965).

second-order transition to the mixed state at the upper
critical field H 5. We have looked in greater detail at the
solutions of the GL equations in the neighborhood of the
upper critical field using Abrikosov’s high-field ap-
proximation® properly modified as in Maki’s paper to
take into account the field energy. In brief, our results,
which apply near H,,, are that very thin films exist in
the state consisting of a triangular array of vortices
which was first determined by Kleiner, Roth, and Autler
(KRA).* Films of intermediate thickness, however,
make a second-order transition as the field is decreased

3 A. A. Abrikosov, Zh. Eksperim. i. Teor. Fiz. 32, 1442 (1957)
[English transl.: Soviet. Phys.—JETP 5, 1174 (1957)7].

4 W. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev. 133,
A1236 (1964).



