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An approximate dispersion curve for the optical branch of the lattice vibration is used to estimate
the spin-lattice relaxation time attributed to optical phonons. The relaxation rate is found to be
T& 'oc exp( —axe»/kT), where coo; is an optical-phonon frequency at k=0. It is also found that if the band-
width of the optical mode is narrow, if the optical-phonon energy is low, and if the lattice vibration is even,
then the spin-optical phonon relaxation process can dominate the conventional acoustical processes. The
applications of the theory to some experimental results are also discussed.

I. INTRODUCTION

'ANY authors' ~ have shown that the dominant
- ~ electron spin-lattice interaction is through the

modulation of the Stark 6eld by the acoustic phonons.
The contribution to the spin-lattice relaxation attri-
buted to optical phonons has been neglected, because
the Bose-Einstein factor

E(co)= )exp( jtco/h T)—1] '

is small at low temperatures. Here co is the optical-
phonon angular frequency. This fact, however, is not
su6icient for us to ignore the importance of the spin-
optical phonon interaction, since the density of states
also plays an important role in the spin-phonon inter-
action. Usually, the phonon density of states of optical
modes is much greater than that of the acoustical ones.
In other words, the velocity of an optical phonon is
much smaller than that of an acoustic phonon. This

~&& =/~8(m'+ m)

m&m

+2P /m'

can easily be understood by noting that both an acoustic
and an optical mode contain the same number of states
and that the bandwidth of an optical mode is much
narrower than an acoustic-phonon bandwidth. For
instance, let us consider a one-dimensional case. Figure
1 shows a typical dispersion of a diatomic linear chain'
with m)m'. The bandwidth of the optical mode is
given by

Atd = (2P)"'I (1/m'+ 1/m) '" (1/m—') '"5, (2)

where P is the force constant between two adjacent
masses. Therefore, if the ratio of the two masses m'/m

is very small, the bandwidth of the optical mode will
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Fro. 1. Dispersion of optical and acoustical
branches of a diatomic linear chain.

Copyright 195'I by The American Physical Society.

See, for example, C. Kittel, Introduction to Solid State Physics.
Qohn Wiley lk Sons, Inc. , New York, 1957), p. 111.

154 215



CHAO —YUAN HUANG

+Pt
FIG. 2. A representative spin sys-

tem of a Kramers salt.
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Q

be very narrow. It follows that the density of states of
the optical mode is much greater than that of the
acoustical mode, since the numbers of states for both
modes are equal. Consequently, we can see that the
contribution to the relaxation to be attributed to optical
phonons might therefore be important. The theory
based on this fact will be given in Sec. II, and it will
be used in Sec. III to explain the experimental data
obtained by the author and others.

II. THEORY

l'er=E»Qs

where Q; is the normal coordinate transforming like
the jth irreducible representation of the molecular
cluster, " and v; is the associated electronic operator.
As pointed out by Van Vleck, the displacements of the
lth ion of the molecular cluster, (Xi,Fl,Zl), depend on
the ith mode of thermal vibrations in the form

Xl qdj4i cos('yli tti) p

pl;= k;(p.;mls+) „;yis+).;sio),

(4)

(5)

9 Chao-Yuan Huang, doctoral thesis, Harvard University, 1964
(unpublished) ."See, for instance, C. Y. Huang and M. Inoue, J. Phys. Chem.
Solids 25, 889 (1964).

For simplicity, we shall restrict ourselves to the
case in which only Kramers salts of the rare-earth ions
will be considered. The extension to non-Kramers salts
and to the transition-metal ions is straightforward. A
representative spin system of a Kramers salt is as
shown in Fig. 2, where 8 is the Zeeman splitting, ~y,

are the crystalline-field splittings,
~
a) and

~
b)

are the components of the ground Kramers doublet,
and ~&pi), ~&ps), ~ are the excited Kramers
doublets.

For the rare-earth ions, the spin-orbit interaction is
normally included in the wave functions. Hence only
the orbit-lattice interaction needs to be considered for
the calculation of the spin-lattice relaxation time.
Since the same technique used by Orbach' and the
author7' is to be used in this paper, we shall only point
out the differences between the present theory and
Orbach's theory.

The Van Vleck orbit-lattice interaction can be
written as4 ~

where q; is the ith normal coordinate associated with
the phonons, @„is the direction cosine of the wave q;,
while k; and A.„.are, respectively, its wave vector and
direction of polarization. The equilibrium coordinates
of this ion are (xio, yis, sis). Because only phonons with

long wavelengths are involved in the spin acou-stical

Pkorloss relaxatiorl, as given in Ref. 7, one normally
assumes that y~,&(1.This assumption is no longer correct
for the calculation of the spirl opti-ca/ pholon retisseatiori

time. For optical modes, oo(k) varies slowly with respect
to k, and the major contribution to relaxation comes
from large values of k where the phonon densities of
states are high. Then we can approximate the average
value as"

(( 0*;c»(vl' —~') I
').

(y„'). (cos'(yi; —b~)). = s, (6)

in which ( ), denotes the average. Furthermore,
Born and Huang" have shown that the transverse mo-
tion of the optical vibrations of 1arge wavelengths does
not produce electric fields. This means that only longitu-
dinal phonons of large wavelengths are important in the
spin-optical phonon relaxation. However, as we pointed
out earlier, the major contribution to the spin-optical
phonon relaxation comes from large values of 4, and
hence the transverse optical waves are as important,
as the longitudinal ones.

For lack of the detailed knowledge of the optical-
phonon dispersion an estimate of the relaxation time
closer than to within one order of magnitude is not
possible. In view of this fact, only very crude estimates
can be made. Kithin the crude approximation, we shall
assume that the results for the calculation for a di-
atomic linear chain still hold in a solid. For a narrow
band, we may approximate the dispersion of an optical
mode by a straight line as shown in Fig. 1, keeping the
same bandwidth. The approximated dispersion is then
expressed by

k = (n./2u(d io))(coo—ro), (7)

where u is the interatomic distance, and coo is the optical-
phonon angular frequency at k=0. In consequence of
this approximation, the summation over the phonon
states of the jth optical mode can be replaced by an
integration in the following way:

ar P
k'dk =—

i=1 2'

where E is the total number of unit cells in the crystal,
V is the volume of the crystal, and coo; is the optical-
phonon angular frequency at k=0 which transforms
like the jth irreducible representation of the lattice
vibrations.

"This fact was pointed out to the author by Professor J. H.
Van Vleck, to whom he is indebted.

"M. Born and K. Huang, Dyrlomieol Theory of Crysta/ Lattices
(Clarendon Press, Oxford, England, 1954), p. 87.
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In practice, the optical-phonon energy is much
greater than the Zeeman splitting b. Consequently,
optical phonons can only contribute to the two-
phonon processes. In a two-phonon process, only
phonons with energies Aditi and A»+p are involved.
As a result, if Ahco&b and if Aco1 falls within the range
Mp& AQ&i& A(Mp —Bpp), then within this particular opti-
cal-phonon branch it is not possible to find the second
phonon of this particular two-phonon process having
the energy A»=A»+b. Hence, if Akron(8, then the
spin-optical phonon interaction cannot contribute to
relaxation.

In the remainder of this section, we shall derive the
expressions for T1 within our crude approximation.
Since the crystalline field splitting 6& plays an im-
portant role in the spin-lattice interaction, three cases,
based on the crystalline field splitting relative to the
optical-phonon energy, will be treated.

2x mV
8"y,=—N y

A 2'La(Aced))s

I &N(~) I &all'. «Ib&IN(~')&I'

X8(Acoi+ 8—Acos)(Mp& —Mi) (ppp&
—Ms) dcoid~s, (9)

in which Np is the population of spins in Ib), ppi and a&s

are, respectively, the angular frequencies of the first
and second optical phonons, IN(or)) and IN(o&')) are
the phonon wavefunctions, and V,fg is the e8ective orbit-
lattice interaction for a two-phonon process introduced

by Orbach. ' I'"or a Kramers salt, if h&&)hou, the "Van
Vleck cancellation" results. Taking this fact into
account, using Eq. (6), and making use of the facts
that Aero&)b, and ~1 co2, we Gnd

x'A2
8'y, ——

9X2'La(happ)]sp' ~

&al'I+P~&&+Psl~ I b) '
Q 2

40Qj

(opj—b, (o

(ppp~
—&i) (&»—»—&/A)

XN pN(») I N(coi+b/A)+1id». (10)

Here p is the density of the crystal, 6& is the energy
spacing between the ground-state doublet and the
excited state Ip~&, and N(&oi) is the Bose-Einstein
factor evaluated at z=co1. Similarly, the transition

Case A. Auo, (&~,

Let us first find the transition probabilities between
Ia) and

I b) via the spin-lattice interaction. The tran-
sition probability per unit time to go from Ib) to

I a)
can be written as

probability per unit time to go from Ia) to Ib) is

8', y=
9X2'I a(happ)]sp' ~

(Op j'

&al~ I+Pi&&+P~l~ I» '

Q 2

Npj—60l

(copg —(di) (copy —coi—b/A)

where (Nb —N,) is the population difference at the
time t when the spin system is characterized by a spin
temperature, and (Np —N, )p is the population dif-
ference at thermal equilibrium. If the bath temperature
is sufficiently low such that only the ground-state
doublet is populated, the rate equation can be written
as

d(N, —N.)
=2(Wp —W, p)

&al~ I+P &(+P I'lb) '

9X2sLa(~pp)3 ps i Q 2

X I
N p exp(8/kT) —N,j exp( —8/kT)

"pj

X (cop;—oui)4 csch'(hanoi/2kT)d». (13)
07Qj—BCO

By considering that co~ ~0,. for a narrow band, and
assuming that 8&(kT«Pmo;((A~, the last expression
becomes

&a I
~ I+P~&&+Pal ~;Ib& '

9XSX2 a (App)p g2

X(Np —N, ) exp( —@op;/kT). (14)

Therefore, the spin-phonon relaxation time attributed
to optical phonons is given by

1 x'A2

Ti 9XSX2sas(Aced)p' ~'

(al~ I+Pi&&+Pal~ Ib) '

Xexp( —Acpp;/kT) . (1S)

We see that the relaxation time of a Raman process
involving optical phonons depends exponentially on
the temperature, in marked contrast with a conven-
tional acoustical Raman process via which the relax-
ation time is inversely proportional to the ninth power
of the temperature.

XN.N(~i+&/A) LN(~i)+1&«i. (11)

The spin-lattice relaxation time is just a character-
istic time for a spin temperature to relax to the temper-
ature at thermal equilibrium, 'and. 'hence'is"defined by
the relation .',j

d(N p
—N, ) (N p

—N,)—(N p
—N, )p

(12)
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The spin-lattice interaction operator given by Eq.
(3) is invariant with respect to the symmetry trans-
formations of a crystal. Therefore, according to group
theory, both the electronic operator vj and the normal
coordinate Q; must transform according to the same
irreducible representation (the jth irreducible repre-
sentation). As a result, if Q, represents an odd vi-
bration of the lattice, vj is also an odd operator. For this
reason, the excited state

I p, ) must be within an excited
configuration in order that the matrix element
(ole, l+p~& is nonvanishing. This means that 6, is
greater than 10 000 cm . In addition, in a diatomic lin-
ear chain the lattice vibrations of optical phonons are
purely even at the Brillouin zone boundary at which
the density of states is the highest. Hence, the effective
spin-phonon interaction attributed to conventional
Raman process will be much greater than that at-
tributed to the processes involving optical phonons of
odd vibrations. Consequently, only optical phonons of
even vibrations are important in spin-lattice relaxation.

Case B. Ampj))&g

This case is very similar to the spin-lattice relaxation
in a multilevel spin system, discussed by Orbach and
Blume" and by others. ~'4 If we take into account that
M]~Mpj and assume that b(&kT&&AMp, , then the spin-
lattice relaxation rate is

mrs

2 IZ (~l~ I+p~)(+p~l~;Ib)l'
Tx 9 XSX2'a'(A(o) p' h' ~

exp( —hMoj/k T)
x . (16)

Mpj

The relaxation time of this process again depends
exponentially on the temperature, and hence this process
would be important at high temperatures. For a
Krarners salt, we must also exclude all odd vibrations,
because of the assumption that AMpj))~&, where AMpj is
in practice less than 1000 cm '.

Case C. A6bpj

This is essentially the case of a two phononresonan-t
process involving optical phonons, but there is a dif-
ference between this process and an acoustical Orbach
process. As we pointed out earlier, if AAM&b, and
AMpj+ AMy+ AMpj —8, then optical phonons do not con-
tribute to the spin-lattice relaxation. To date, most
relaxation times are measured at microwave frequencies.
It follows that in practice b((AM. Based on the same
argument presented earlier, if the crystalline Geld
splitting falls in the region AMpj&hg&AMpj —8, then
the two-optical phonon resonant process will not exist.
In spite of this fact, the transition probability of the

"R.Orbach and M. Blume, Phys. Rev. Letters 8, 478 (1962).
'4R. Bierig, M. Weber, and S. Warshaw, Phys. Rev. 134,

A1504 {1964).

Raman process attributed to optical phonons with
energies between AMpj —5 and AMp„.—AM is still very
great, since the energy denominators in the eGective
spin-lattice interaction AM —d, & are small. For this special
case, if the bandwidth AM is narrow, T~ will also depend
exponentially on the temperature. However, if the
crystalline held splitting falls in the range AMpj —8&~&
&AMpj—5M, an optical phonon Orbach process can
take place. Following the same technique used to calcu-
late the relaxation time of an acoustical Orbach
process, we find that the spin-lattice relaxation rate
of an optical phonon Orbach process is given by

Ã3A2

P P (vr/hl'&)csch'(h&uo, /2kT)
Ti 9x2 Lag )] p

((uo;—6(/h) 4

Xl(ol., l+p, )(+p, l~, lb)l
' —,(1&)

Q 2

where

(~0;—6&/h)' exp(hoot/kT)

3X24Lo,(d,co) ]3p ' ~ 6, exp(hero /kT) —1

X(l(ol~ I+p)l'+ I(+p l~ Ib)l') (»)
Here we have used the approximation that exp(hMO&'/kT)

exp(A&/kT). If there is only one excited state Ip&&

whose energy falls within the range AMpj 8+A$+ AMpj—AM for the jth optical branch, we have

7r

-I (oI'I+p~)(+p~! ~'Ib) I

'
Tg 3X2'La(her)]'p

X(I(ol~ I+I &I'+I(+p l~ Ib) I') '

(&o„—t1g/h) 2

X exp( h(oo, /k T) . (19)

Here we have assumed AMpj))kT))b. The factor
(Mo&

—6g/h) in the last equation demonstrates to us
that the spin-lattice interaction becomes stronger if the
phonons involved in the two-phonon process have high
values of k. This consequence is compatible with the
fact that the density of states is higher at the higher
values of k. For this reason, the restriction that AM be
narrow may not be serious.

As pointed out previously, when AMpj 6&, the energy
denominators in V,gf will be small, and hence there is a
strong Raman process attributed to optical phonons.
Therefore, if AMpj A~, then the relaxation time will be
short compared to those given by Eqs. (15) and (16),
even though A~ does not fall between AMpj—b and
AMpj —AM.

Combining the results obtained above, we 6nd that
the relaxation time of a Kramers salt of the rare-earth
ions depends exponentially on the temperature. The
exponential temperature dependence comes about
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because M$ Npj and AMpj)&kT. These two conditions
are just characteristic of the host lattice and have
nothing to do with the doped paramagnetic ions. In
view of this, we will expect that the relaxation time of
a non-Kramers salt of the rare-earth ions and a salt
doped with the transition metal ions will have the same
temperature dependence under the same conditions.

III. COMPARISON OF THEORY WITH
EXPERIMENTAL RESULTS

It has been shown~ that the relaxation rate of Nd'+
in yttrium aluminum garnet (YA10) from 7 to 20'K is
best fitted into an exponential form as

1/Ti=4. 5X10io exp( —75X1.44/T) sec ' (20)

where T is in degrees Kelvin. From the optical spectra
of Nd'+: YAlG, Koningstein and Geusic" have demon-
strated that the first excited electronic state is at 135
cm ' above the ground Kramers doublet. As a result,
Eq. (26) is certainly not the consequence of an acoustical
Orbach process. Nonetheless, Sievers and Tinkham, "
based on their data of far-infrared absorption, have
reported that the vibration around 80 cm ' is character-
istic of all the garnets. In consequence of this fact,
instead of being identified as due to an acoustical
Orbach process, Eq. (20) can be considered to be
attributed to an optical two-phonon process in which
optical phonons of energies h&o 6 are involved (Case
C). Another possible example for the verification of the
theory is the case of Nd'+ doped yttbium gallium gar-
nets in which the relaxation rate is well described by~

1/Ti ——17T+9.0X10"exp( —85X1.44/T) sec ' (21)

If the same argument for the Nd'+ doped YAlG is
taken, then the second term in Eq. (21) is also due to
an optical two-phonon relaxation process.

Recently, Hartman et a/. ' found that the relaxation
data of Cr'+ in MgO for temperatures from 80 to
150'K can be accurately fitted by

1/Ti =3X 10' exp(278 X1.44/T)
X [exp(278X1.44/T) —1] '

+6.1X10~exp( —490X1.44/T) sec '. (22)

Bennett et a/. " also fit the experimental data of Fe'+

"J.A. Koningstein and J. E. Geusic, Phys. Rev. 136, A711
(1964).

"A. J. Sievers, III, and M. Tinkham, Phys. Rev. , 129, 1995
(1963)."R.L. Hartmen, Alfred C. Daniel, J. S. Bennett, and J. G.
Castle, Jr., Bull. Am. Phys. Soc. 11, 313 (1966).

'8 J. S. Bennett, R. L. Hartman, and J. G. Castle, Bull. Am.
Phys. Soc. 11, 482 (1966).

in the same host from 44 to 300'K to the equation

1/Ti= 5X10~ exp(278X1.44/T)
X [exp(278X1.44/T) 1j—'

+8X 10' exp( —490X 1.44/T) . (22')

Since there is no electronic state at 490 cm ' above the
ground state, the second term cannot be due to an
acoustical Orbach process. Notwithstanding, Imbusch
et a/. "have identified the 490 cm peak in their Quor-
escent spectrum to correspond to an optical branch
of the MgO phonon spectrum. Therefore, the last terms
in Eqs. (22) and (22') are attributed to the spin-two
optical-phonon processes involving the 490 cm ' optical
phonons.

IV. CONCLUSION

Combining all the results for both spin-acoustical
and optical-phonon relaxation processes, we find that
the relaxation rate of a pair of time-conjugate states
can be written as

1/Ti aT+bT'+——cT'+d exp( —6/kT)
+f exp( —h~s/kT), (25)

where a, b, c, d, and f are constants. The first term in
Eq. (23) represents a direct process which normally
dominates at very low temperatures; the second term
exists only when the ground state has more than two
sublevels; the third term arises from a conventional
Raman process; the fourth term is due to an acoustical
Orbach process; and the fifth term describes a spin-opti-
calphonon process. According to the theory presented
in Sec. II and those experimental results discussed in
Sec. III, an optical two phonon p-rocess can dominate
acoustical two phonon pro-cesses at high temperatures,
provided that the bandwidth of an optical branch of the
lattice is narrow, the optical-phonon energy is not too
high, and the lattice vibration is even. Since only the
even optical phonons are involved in the spin-optical
phonon relaxation process, the relaxation-time meas-
urement could thus help identify optical modes of the
lattice.
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