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Density Expansion of Quantum Transport CoefBcients
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A formal density expansion of transport coefBcients expressed in terms of momentum autocorrelation
functions is derived for a degenerate quantum gas (Bose-Einstein or Fermi-Dirac statistics) at any frequency
and for noncentral as well as central forces. The result to lowest order in density is reduced to the solution
of a well-de6ned quantum two-body problem, and the 6rst density correction is reduced to the solution
of a well-de6ned quantum three-body problem. It is con6rmed that at zero frequency one only needs the
asymptotic forms of the collision operator to calculate quantum transport coeKcients. It is further pointed
out that the coefficients of the third- and higher order terms of the density expansion diverge at zero fre-
quency, in analogy with the classical case. A "renormalization" is suggested which, it is believed, leads to
a nonanalytic density dependence for quantum gases distinct from the nonanalytic behavior associated
with degeneracy statistics.

I. INTRODUCTION
" 'T is well known that transport coefficients can be
~ - expressed in terms of autocorrelation functions. ' ' In
particular, autocorrelation functions of momentum
operators can be used to calculate self-diffusion coeK-
cients and electrical conductivities. (Other transport
coeKcients involve correlations of position as well as
momenta. The momenta correlation parts are called
"kinetic contributions" to the transport coeKcient. ) By
means of such expressions, Mori, and McLennan and
Swenson' have calculated transport coeKcients to
lowest order in the density for a nondegenerate quantum
mechanical gas. (The latter reference contains a corn-
prehensive list of articles on calculations of the elec-
trical conductivity of quantum systems; see Montroll
and Ward. ')

The purpose of the present article is to derive the
formal density expansion of any momentum auto-
correlation function for a degenerate quantum-me-
chanical gas [Bose-Einstein (B.E.) or Fermi-Dirac
(F.D.) statistics) in terms of operators which are de-
termined by the dynamics of isolated. groups of parti-
cles. The results are neither limited to zero frequency,
nor to central forces. The result to lowest order, in
density, is reduced to the solution of a well-defined.

quantum two-body problem, and. the 6rst-order cor-
rection is reduced to the solution of a well-defined

quantum three-body problem. This expansion is analo-
gous to the equilibrium virial expansion of a quantum
degenerate gas. Our derivation is based on the fact that
autocorrelation functions can be exactly expressed in
terms of the formal solution of the master equation. Our
results then follow by substituting the density expansion
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of the quantum master equation. ' ' This derivation is,
thus, similar to that of the density expansion of classical
autocorrelation functions. ' Other related discussions of
the density expansion of autocorrelation functions for
classical systems are to be found in Ref. 10.

The zero-frequency limit of the density expansion of
quantum autocorrelation function is examined in Sec.
III, where it is pointed out that the coefficients of the
third and higher ord.er terms of a density expansion
diverge, although the first two terms converge —for a
similar reason as in the classical case.' "A "renormali-
zation" is suggested which, we believe, lead. s to a
nonanalytic density dependence —distinct from the
nonanalytic behavior associated with quantum de-
generacy statistics. It is also confirmed that at zero fre-
quency one needs only to consider the asymptotic forms
of the collision operators in order to calculate transport
coefficients —in agreement with Balescu" and. Swenson. "

II. DENSITY EXPANSION OF THE AUTO-
CORRELATION OF MOMENTUM

OPERATORS

Let R; and indict jBR; denote —the vector position and
momentum operator, respectively, of particle i in a
system of Xparticles (X~ oo), and let V;,= V;;(R;—R;)
denote the interaction potential between particles i
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and j.The Hamiltonian H of this system is given by

1&i&j&N

representation —so that if D denotes the diagonal part
of an operator, then (9) can be written as

Hp=-
2tts '=i cjR'

a(E) =TrD i| «e K'—p(t)
0

(10)

Let us choose a momentum representation of sym-
If we let p denote any function of the momenta of the metrized free-particle states in all that fojlows. We can

E particles, denote an eigenfunction of the momentum operators of
the cV system particles by I k) so that

8
4=—4(—44, it-

c)Rt
!

~ —zIg

c/RKi
~ ~ t yBRs

where k; is an eigenvalue of —iht)/c/R;. We can further

correlat, on of ~ is defi~e by
choose the eigenfunctions Ik) to be properly sym-
metrized for Bose-Einstein or Fermi-Dirac statistics so

tO that our formalism can be applied to indistinguishable
~(&)=— «e "(W(f)}), (2) particles. The diagonal part of any operator A can be

p expressed in this representation by

(W (f)})—=»L{At (f)}P

{A(~)}—=-'[A (~)+4 (f)43,

g, (t)=~4 tH/ge i tK//4—

e t'~

(3) Da—=g Ik)(k!a I I )(k!

—=g Ik)Ag, s(k! .

peq=
Tre &~ But tl/ is a function of momentum operators and, hence,

is diagonal in any representation of free-particle states
so that (10) becomes

a(E)=Tv) dte 'Dp(t)—(13)

We now note that Dp(f) is the solution of the master
equation with initial value p(0)={lgp,u}.r s An exact
expression for the master equation is given in the form
of a density expansion in Eq. (48) of Ref. 7 and Eq. (3)
of Ref. 8. The latter equation, which is valid for arbi-
trary initial states [arbitrary p(0)], is given by

({A(f)})=»{4e"'Ve ""'"}p
—T+44 i tK//4{gp —}e+i tK//4

—=Trit p(/), (6) t)DP(t)
=[K'(f)+ P P,'(f)/Q p(0)

Btwhere we have defined the quantity p(t) by

p(])=e ttK//t{gp }e+i—tK//4

P(o) —={4P..}= l QP"+P. 4).
(7)

(g)

where Tr denotes the trace, P ' den. otes the product of
Boltzmann's constant with the temperature, and p« is
seen to be the normalized equilibrium density matrix of
the system. (The more general correlation function
P 'Js" «e 'Je/'tdX(it( —ifi'A)f(f)) will be considered in
Sec. IV.)

Since p«commutes with e+" '", and since TrAB
=TrBA, we can write (3) as'4:

Substituting (6) into (2), and assuming that the time
integration commutes with the trace, we have

a(E)=Tv( die Ktp(f) .

The trace of an operator, however, is identical to the
trace of the diagonal part of the operator —in any

44 U. Fano, Rev. Mod. Phys. 29, 74 (1957);Phys. Rev. 131,259
(1963). In these articles a "Liouville" formalism for quantum
statistical mechanics is proposed, and applied to the pressure
broadening problem.

where primes denote derivatives with respect to argu-
ments and Qn denotes the off-diagonal part of an
operator, i.e., QDp(0) —=p(0) —Dp(0). The quantity P, (/)
is defined in Ref. 7 in terms of the Hamiltonian of (s+1)
isolated particles. The properties of P, (/) which are of
present concern are that it is proportional to the sth
power of the particle density and it involves the
dynamics of (s+1) particles. The quantity K(/) is also
defined in Ref. 7 as a function of the collision operators
P, (t). )It is interesting to note here that K(t) is a
manifestation of degeneracy statistics and vanishes in a
representation of unsymmetrized free particle states. rg
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Equation (14) can be solved for the Laplace trans-
form of Dp(t), in terms of the collision operators P, and

Z, by multiplying both sides of (14) with e E', inte-
grating over t, and making use of the convolution
theorem. VVe thereby obtain

dte ~'Dp—(t)

=(E-E'LZ(E)+ Z A(E)l)-'
8=1

is due to degeneracy statistics and has no classical
analog. )

It can be seen from (18) and (19) that a(E) has been
expressed as a product of two density expansions.
Consequently, to obtain a(E) to a given order in the
density one must terminate both summations in (18).

To first order in the density a(E) is simply given by

(E)=T~« E%(E-)& '«Dp-. )

=2 A"(p;)»&&I (E—E'Pi(E)) 'I&)

X (Dp(0)+E$E(E)+ P P, (E)$0DP(0)), (15)
e=l

Z (E)= g IC, (E)—
s=1

(16)

such that Z, (E) is proportional to the sth power of the
density. A formal expression for Z, (E) can be obtained
from the definition of Z(E) in Ref. 2. It should be noted
(see the Appendix) that

Zt(E)=0, (12)

i.e., the expansion of Z(E) begins with second order
We now substitute (15) and (16) into (13) to obtain

the desired result:

a(E) =»LP(E E' Z LZ. (E)+A—(E)j) 'C'(E)j (18)
s~l

where C(E) has been defined by

C'(E) —=Dp(o)+E Z LZ. (E)+P.(E)j0np(o), (19)
8=1

Dp(0) = ,'D(gp„+p„P)=-{fDP„),
o p(0)={~0 ',)

(2o)

Equation (18) is a density expansion of any momentum
autocorrelation function at any frequency (replace E
by iE). That is, the collision operators P, (E) and Z, (E)
are each proportional to the sth power of the density,
and jrisolve the dyriamics of rio more thari s+I isolated
particles.

Explicit expressions for Pt(E), Ps(E), and Zs(E) are
given, for the readers convenience, in the Appendix.

I The operator P, (E) is separated from Z, (E) in (18) to
emphasize that P, (E) is a direct quantum analog of a
classical (s+ 1) particle collision operator whereas Z, (E)

where Z(E) and P, (E) denote the Laplace transforms of
Z(t) and P, (t), respectively, and we have used the fact
that P, (0)=P,'(0) =Z(0) =K'(0) =0.

I et us, for future convenience, write the formal
density expansion of Z(E) as

where lr denotes a symmetrized eigenfunction (for B.E.
or F.D. statistics) of momentum operators. Thus, to
first order, a(E) is determined by the solution of a
well-dehned quantum two-body problem. This is, to
evaluate (it

I
(E—E'Pt(E))—'I lr). This has been done by

Mori' for Boltzman statistics in the limit of E=O. (The
sum over lt can frequently, as in Mori's case, be replaced

by an integral over momentum. ) Equation (21) allows

us to calculate lowest order transport coeKcients for
degenerate gases at finite frequencies as well.

To second order in the density a(E) is given, ac-
cording to (18), by

(E)=TO(E E'L~ (E-)+A(E)+Z.(E)j)-'
X ({Wp.s}+EPi(E){40np.q) ) (22)

Equation (22) shows that the calculation of quantum
transport coeKcients I of the form (2)j to second order
in the density reduces to the solution of a well-defined

quantum three-body problem. Namely, to evaluate

~(2)= (E—E'I:Pi(E)+&s(E)+Zs(E)j) '
X ({QDp,s)+EPt(E) {$0np,s) ), (23)

which obviously satis6es

(E—E'LP, (E)+P,(E)+Z,(E)j)-'C(2)
={~Dp.,)+Eh(E){&0.,}. (24)

To third and higher order in the density there occurs
a divergence" at E=0 which we shall discuss in Sec. III.
For suKciently large E, however, the series in (18) can
be terminated above second order.

III. ZERO-FREQUENCY DIFFICULTY

The purpose of this section is to point out that the
coeKcients of the third and higher order terms in the
density expansion of quantum transport coeKcients
have a divergence at zero frequency. Our purpose is not
to completely resolve this difhculty, but to show where
it comes from, and to suggest a path for future in-
vestigations.

Let us, then, consider the zero-frequency limit

~s J. Weitistock, Phys. Rev. Letters 17, 130 (1966).
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of (18): difhculty obtains for the quantum case. In fact, it has
been demonstrated" that

a(0) =Tv/( —lirnE' Q LK, (E)+P,(E)j) 'C (0) . (25)
E~O s=1 P,'(i) =0(in&), (t ~~), (30)

This can be written in terms of asymptotic time-
dependent collision operators by noting, since P(0)
=P'(0) =K(0)=K'(0) =0, that

limE" P LK,(E)+P,(E))
E~O s=1

= lim
E-+0

QO M dn

t.K.(~)+P.(i)3
1 d]fh

so that (25) becomes

a(0) =Trit (—lim P PK,'(r)+P, '(&)j)-'C (0),
t~ @=1

C'(0) = (&Dp.,)+lim g t K, (t)+P, (t)1(foi~p, ),
taboo e=i

or

a(0) =Tr dhPLexp(t lim g LK,'(t)+ P.'(t) $)qC'(0) .
taboo e 1

(28)

Equations (25), (27), and (28) are equivalent expres-
sions for a(0). LThe relaxation form. (28) demonstrates
that the asymptotic collision operators must be negative
definite. This can be recognized as an underlying as-
sumption generally made in nonequilibrium statistical
mechanics which has never been proven to all orders,
and which is easily lost sight of when autocorrelations
are written in E space, as in (25).$ An immediate conse-
quence of (27) or (28) is that one only needs the
asymptotic forms of the collision operators P, '(t), K,'(i'),
P, (/), and K, (t) to calculate quantum transport coefIi-
cients. Related results have been previously established

by Balescu" and Swenson" for the asymptotic operators
in the formal interaction potential expansion of trans-
port coefficients.

The utility of (25) or (27) as a density expansion
depends on whether or not the limit can be interchanged
with the sum,

when P,'(/) operates on a function of momenta only.
There is no corresponding difhculty with the terms
PK, (ae)+P, (ee)$(fo~p„) in C(0), it can be shown,
since Disap„vanishes as soon as all the (s+1) particles
of K, and P', separate from each other, whereas the
growth of K, (/) and P, (/) with t comes from configura-
tions in which these s+1 particles are all separated. The
divergence difficulty can be circumvented, analogous to
the classical limit, by expanding Q,=s" P,'(t) back into
two-body t matrices (quantum binary-collision opera-
tors) and then partially resurmning the resultant terms
into convergent groups. Thus if R, & &(t) denotes the
neth-order term in the 3-matrix expansion of P,'(/) —see
Ref. 7 for this expansion —then

m=1 @=3
(31)

and it can be shown that P, s" R,"'(t) converges to a
logarithmic dependence on the density. The logarithmic
dependence, as in the classical case, occurs because the
effect of this kind of "renormalization" is to cut off the
growth of Ps'(t) with t at approximately a mean free
time LR,&'&(/) ~ (mean free time)' 'j. The details of this

"renormalization, "which shall be reserved for a future

paper, is analogous to what has been done for the
classical limit of self-diffusion and the electron-gas

problem. ' "
A word of caution should be interjected here since

although this kind of "renormalization" leads to a
convergent result it may not be physically significant
when the de Broglie wavelength is greater than a mean

free path. In such a circumstance the resummation

should include terms from the 3-matrix expansion of

P.=4" K.'(t) This has no.t yet been investigated.

s(z)=—p ' dl 'f A(p( —aip(t)), (32)'

IV. THE GENERAL MOMENTUM
CORRELATION FUNCTION

For some transport coefficients, the imaginary part of
the symmetric part of the conductivity tensor, for
example, it is necessary to consider the more general
correlation function

and this requires that P,'(~) and K,'(~) exist. ln the
classical case' it was shown that P,'(~) does not exist
for s&3, although Pi'(~) and Ps'(ae) do exist. The same

which is somewhat more complicated than the correla-
tion function defined. by Eq. (2). By taking advantage

"K. Kawasaki and I. Oppenheim, Phys. Rev. U9, A1763
(1965);J. van Leeuwen and A. Weyland (unpublished).
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of commutation within the trace, however, we 6nd that where t;;, go and g;;& are given by

where
Q(-'»)4(t)&= TM~.(t),

~&(t) =eisa/o~„(p)e —itK/o

p (p)=e—~zr, ye

(33)

(34)

(35)

tz;=—(zLg'+iL;;+E) '(zL//'+E) '

go
=—(zL~'+E) '

g g;o= (i—LN'+iL;,+zL;o+zL;,+E) (AS)

We can now substitute (33) into (32), interchange the and L~ and L;; are quantum-mechanical Liouville
order of integration, and follow the steps of Sec. II to operators defined, with f denoting any function on

obtain which LN' and L;; operate, by

L~of=0')H—~o,fj=h'(H—~of fH~o)—,

L;,f=a Lv—...-fr=a- (v,,f—fv;,).
(A6)

(A7)

X (D/»(p)+EL'(E)+ Z P.(E)jO~/ (p))3 (36)
s=l

Comparing (36) with (18) it is seen that the more
general case introduces an additional complication of
the o8-diagonal elements of the equilibrium ensemble
since, in (36), we have

Dp~(P)=De " /.ofe"",

whereas in (18) we have

D/(P)={Wt o') ~

APPENDIX

Formulas for P&(E) and Po(E) can be obtained by
combining Eqs. (31), (A1), and (A5) of Ref. 7:

It is thus seen that go is the resolvent operator for free
particles, g;;q is the resolvent operator for three
interacting particles, and t;; (the two-body t matrix)
involves the resolvent operator for two interacting
particles. The important point to note is that Pq(E)
involves the solution of a two-body problem and Pz(E)
involves the solution of a three-body problem in an
explicit manner.

The first term in the density expansion of Z(E) can
be obtained by combining Eqs. (47), (45), and (A1) of
Ref. 7:

X(E)=D Q t;;Os) Q'4 go
i&j Jc&~

+higher order terms in density, (AS)

P (E)=— Z Dt'/go(E),
i&j &N

Pz(E)=— g D[g;;o go
—(t;;+t;g,+t o)g—o

i&j&k&N

—(t;;t;o+t;;t;o+t;ot,;
+t;ot~o+tyot;;+t; otu)go j p

(A1)

(A2)

where the prime on the sum over k(m denotes that we
omi. t all terms for which km=i j.

It is seen, from (AS), that the first term in the ex-
pansion of E(E) involves the solution of a two-body
problem, but is of second order in the density. This
term, as previously noted, is a manifestation of de-
generacy statistics and vanishes in a representation of
unsymmetrized planewave states.


