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diBerence is negative. Triangle Xo. 2, on the other hand,
is obtuse, with the two particles, i and j, which interact
via the Lennard-Jones potential on one leg of the
obtuse angle. Thus the hard core of the third particle,
k, tends to push j toward z LFig. 9(b)$, so that if i and

j are nearest neighbors, they see more of each other' s
repulsive potential. The first term of EO3~ is larger than
the second, so the diBerence is positive. Since obtuse
and acute triangles occur in every lattice, there will

always be cancellation in the sum.
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In recent years intensive efforts have been made to develop, from erst principles, systematic corrections
to the established kinetic equations, and thereby obtain an understanding of the approach to thermal
equilibrium for arbitrary macroscopic systems. These efforts, dominated by Bogoliubov s synchronization
technique and "functional assumption, " have met with only partial success. In fact, the method of syn-
chronization has been shown to lead to serious difhculties when carried beyond the lowest order results,
so that an H theorem is lacking for the higher order terms. To discuss the problem in full generality, we con-
struct in this paper the direct perturbation .series. (and in the follow paper, Bogoliubov's synchronized
series) to alt orders in a parameter e that can be identi6ed with the potential strength. An explicit expression
is obtained for the ~th-order term of the s-body distribution function and a simple, systematic graphical
representation of all the terms is derived. The result is obtained by the use of a matrix formalism that allows
an effective decoupling of the Bogoliubov-Born-Green- Kirkwood- Yvon equations, and thereby, for a de-
tailed analysis of the perturbation series. Bogoliubov s basic result concerning the secular behavior of per-
turbation theory (P" t) is deduced here as a special case of a general theorem: The vth-order term for the
s-body distribution grows for large times as a polynomial in time whose leading power is fv/2g independ-
ent of s.

r. rmRODUCxrom

'HE aim of nonequilibrium statistical mechanics is
to determine the evolution in time of systems con-

taining a large number of interacting particles, and
thereby describe the irreversible"approach to thermal
equilibrium. From the basic dynamical equations one
seeks an equation of the form

ctf/ctt= Agfj, (1.1)

called the kinetic equation, where A is a functional of
the one particle distribution function f(x,p, t), and has
no explicit time dependence. Outstanding examples of
such Markovian' equations which correspond to dif-
ferent gaseous regimes, are the Boltzmann equation
for neutral, dilute gases, the Landau' equation for
weakly interacting, high-temperature systems, and the
kinetic equation with Debye shielding originally dis-
covered by Bogoliubov, ' and referred to as the Balescu-
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Guernsey-Lenard equation. These equations constitute
the lowest order term in expansions of Liouville's
equation appropriate for the regime considered. 4 In
this work we will be concerned with an expansion of
the Louville equation which we shall analyze to all
orders. '

(i) The outstanding opert problem in nonequilibrium
theory is that of determining systematically the higher
order corrections to these kinetic equations, if they
exist. For example, the Boltzmann equation is a valid
description of dilute, short-range gases, so that only
binary collisions are taken into account. This restric-
tion has the consequence that the transport coefEcients
are independent of the density. Furthermore, the bulk
viscosity coefficient is not given by the Boltzmann
equation (it vanishes identically). However, for dense
gases, (p) 5 atm, T 300'K), the transport coefficients
of monatomic gases are known to be density-dependent
and the bulk viscosity is nonzero. Therefore, a more
general theory is required which should yield the well-
established kinetic equations in lowest approximation.
If such general kinetic equations could be derived from

Physics (Moscow, 1946) LEnglish transl. :E. Gora, in StNCies in
Statistica/ Mechanics, edited by J. de Boer and G. Uhlenbeck
(North-Holland Publishing Company, Amsterdam, 1962), VDL I.g' G. Sandri, Ann. Phys. (N. Y.) 24, 332 (1963);24, 380 (1963).
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(8/Bt+Ha)pa = eLap ~' (1 2)

where H is a Hamiltonian operator and L a "phase-
mixing"operator to be precisely de6ned in Sec. II. If
one substitutes into Eq. (1.2) the power series

ps P evpsv (1.3)

and attempts to equate the powers of e, the correction
terms F'", v&2, are found to be unbounded in time
(see Sec. III).

Consider, now, the "synchronized series"

p'(&) =p'Cf) =Z e"p'"Cf) (1.4)

where the time dependence of E' is assumed to be wholly
determined by that of P'= f. The time depen—dence of
Ii' is therefore expressed through the kinetic equation

(1.5)

and determined, together with A." by successive ap-

a fundamental point of view, one would obtain a de-
scription of higher order effects as well as a deeper under-
standing of the approach to thermodynamical equi-
librium. The attempts in this direction have proved to
be only partially successful. A most signi6cant contri-
bution to this problem was made by Bogoliubov who
derived the Boltzmann and Landau equations by an
appropriate expansion of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy of equations. This
chain of coupled linear equations for the distribution
function of an s-particle cluster Ii' results from inte-
grating the Liouville equation for the system as a
whole over the phase spaces of E—s particles, and then
taking the limit of in6nite volume with 6xed denity
(bulk limit). Bogoliubov demonstrated that a direct
power-series expansion of Ii', in terms of an appropriate
parameter, resulted in "secular" terms, i.e., correction
terms that grow unbounded with time. He then ex-
ploited the existence of natural time scales in the
evolution of a gas to construct a "synchronized"
power series without secularities, and to derive with it
kinetic equations. Expecting that after a time of the
order of several collision times t„(1, rs/vah where rs is
the range of the interaction and vaq the thermal speed)
there should occur a simplification in the description
of the system, Bogoliubov required that the s-particle
functions Ii', s&1, depend on time only as functionals
of f ("functional assumption"). The form of the func-
tionals is completely determined in this approach by an
initial condition which expresses the assumption of
molecular chaos.

(ii) We give a compact account of the synchroeisatiox
@method, to establish terIninology and to give an equiva-
lence theorem essential to our discussion. We write the
BBGKY equations in the form

proximations. Substituting Eq. (1.4) into Eq. (1.2) and
comparing with Eq. (1.5) we 6nd for a homogeneous gas

We then have for Ii'

DspsOCf)+p g evDsp ( asviCf) (1 7)

where dl" is the single-particle phase-space volume
element and for any funci. ional X of f

5X
Dkg g kdl 1

We readily obtain by using the BBGKY hierarchy,
Eq. (1.2)

0 Dopa Pf)+Hspa 0

v & 1 D'F'"ff)+H'F'"Cf)
v—1

DkPa(v —si+LaPs+1(v —1) (1 g)

Note that 1 does not appear explicitly in Eqs. (1.8) and
enters Ii'" only through the kinetic equation. The
problem reduces to determining F'" and A" as functionals
of the arbitrary function f. Bogoliubov solves, in
general, the functional equation

D+psv+Hspav XsCf) (1.9)

The solution of Eq. (1.9) is determined completely by
assuming the following initial condition. Let Ss(r)
=—expPPr) be the "streaming operator" for k) 2. The
initial condition reads, for a homogeneous gas

lim S(7)p'Cf(y;, 1))= lim S(r) g f(y;,1). (1.10)

This assumption implies "molecular chaos" for the
initial state of the gas. This is, in effect, a de6nition of
the direction of time. The past is that direction in which
correlations vanish and the theory describes only the
evolution of the system in the direction of time in
which correlations grow through collisions. 6 ~ In this
manner, a kinetic equation can be obtained. Bogoliubov,
in fact, obtained the Boltzmann equation in 6rst order
of the expansion parameter nro', the "dilution" parame-
ter, and the Landau equation for the lowest order in
ps/kT, the effective interaction strength or "coupling"
parameter. He also obtained a kinetic equation for a
plasma which was later made more explicit indepen-

' M. Lewis, Phys. Rev. 134, A1410 (1964).
7 E. Cohen, FNndcmentgl I'roblems in Statistica/ Mechanics

(North-Holland Publishing Company, Amsterdam, 1962).
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dently by Balescu, ' Lenard, ' and Guernsey. "Only the
Grst-order equations were derived in Bogoliubov's
paper. The triple collision correction term to the Boltz-
mann equation was given by Choh and Uhlenbeck who
carried out the synchronized expansion to second order. "
The meaningfulness of this term is questionable since
it cannot be shown to rigorously satisfy an H theorem.
Furthermore, it has been shown that the higher order
terms in Bogoliubov's expansion diverge quite gener-
ally. "This conclusion has generated some controversy
as to the convergence of the relevant integral, but recent
calculations, in particular, of the transport coeKcients,
show that the viscosity and dif'fusion coeKcients for
two-dimensional models correspond to logarithmically
divergent quantities. " "For the weak-coupling regime,
Su has further discussed some of these difliculties. "

(iii) A departure from Bogolubov's method was
developed by Sandri' and Frieman, " who rederived
Bogoliubov's results by a systematic extension of the
time variable to a set of multiple time scales. This
method of extertsi oN has its origin in the "time-averaging"
methods used in nonlinear mechanics'P and in the
methods of "variable stretching" used in Quid dy-
namics. " "The method makes explicit the distinction
between physical time scales as introduced by Bogo-
liubov. In the method of extension, the slower process
in the problem, the relaxation of the one-body distri-
bution to its thermal equilibrium value, is described
by an independent "slow time variable" in contrast
to the "fast time variable" which describes the "relax-
ation" of the multibody distributions to functionals of
the one-body distribution. We show here how the
equations of Bogoliubov discussed above follow from
this more general point of view, '4 and thus establish
an equivalence theorem, Eq. (1.14), that plays a major
role in our analysis. The function F(t) is replaced by an
extended function F(rp, rr r„), that is required to
coincide with F(t) when

e R. Balescu, Phys. Fluids 3, 52 (1960).
P A. Lenard, Ann. Phys. (N. Y.) 10, 390 (1960).
'P R. Guernsey (unpublished).
u S. Choh and G. Uhlenbeck (unpublished).
"G. Sandri, Nuovo Cimento 31, 1131 (1964). See also Aero-

nautical Research Associates of Princeton Report No. 46, Prince-
ton, New Jersey, 1963 (unpublished)."J.Weinstock, Phys. Rev. 140, A460 (1965).

'4 E. Cohen and J. Doriman, Phys. Letters 16, 124 (1965).
'5 J. Sengers, Phys. Rev. Letters 15, 515 (1965).
'6K. Kawasaki and I. Oppenheim, Phys. Rev. 139, A1763

(1965).
'r J. von Leeuwen and A. Weijland, Phys. Letters (to be

published)."C.Su, J. Math Phys. 5, 1273 (1964)."E.Frieman, J. Math. Phys. 4, 410 (1963)."¹Bogolubov and Y. Mitropolsky, Asyrwptotic Theory of
Xonlirtear Oscillations (Gordon and Breach Science Publishers,
Inc., New York, 1961).

21 M. Lighthill, Phil. Mag. 40, 1179 (1949)."G.Sandri, Nuovo Cimento 36, 300 (1965)."D. Frank, D. Pfirsch, and S. Priess, Z. Naturforsch. 20,
147 (1965).

'4 D. Montgomery (unpublished).

(1.13)

Note the equivalence of Eq. (1.13) to Eq. (1.7) with

O'X[f]= BX/Brs (1.14)

The Bogoliubov limit, X[f7, is obtained from the
multiple time scale function X from the formula

where f is evaluated at rp= ~& r = e t and tt) 0. We
have thus obtained Bogoliubov's synchronized expan-
sion with a more general method which makes explicit
the natural time scales of the problem through the vI, .
It is informative to examine these time scales for the
various physical situations. For a neutral gas (such as
an inert gas) Nrp' is usually small and rtpp/kT is of order
one and the Boltzmann equation is appropriate. For a
"hot plasma" ("Landau gas"), rtrp' 1 but @p/kT is
small. The lowest order equation appropriate for this
regime was first given by Landau. Other regimes can
be analyzed by ordering ttrp' and gp/kT with respect
to e.

(iv) The major purpose of this work is to attack the
power series soluti -orts irt their entirety. Attempts in
this direction have, so far, been only partially con-
clusive. ""We adopt the point of view of the variation
of parameters and order ttrp' and Pp/kT for convenience
according to the weak-coupling scheme. We then
proceed to construct the vth-order term in the series
for both 6nite times and in the limit of large 7 p which
corresponds to Bogoliubov's synchronized solution.
Since we are interested here in the expansion to all
orders, it is necessary to use a compact operator forma-
lism. In Sec. II we develop the BBGKY hierarchy and
display for it a compact operator matrix representation
which provides an eBective "decoupling" of the hier-
archy and thus considerably simpli6es the analysis.
With this formalism, the functions Ii' are shown to be
composed of products of the operators I and L, called,
respectively, the interaction and phase-mixing oper-
ators, the "propagators" i, and "free-particle" dis-
tributions fp. This suggests a diagrammatic represen-
tation, and we have employed one throughout this
paper. Ii' may be written directly in terms of diagrams

~~ M. Green and R. Piccirelli, Phys. Rev. 132, 1388 (1963)."L.Garcia-Colin and A. Flores, J. Math Phys. 7, 254 (1966).

The freedom in the functional dependence of the
extended function is exploited to avoid the secular
terms. In fact, the condition for the removal of secular
terms on the fast time scale yields the kinetic equation.
The extension of the time axis given by Eq. (1.11) is
equivalent to the replacement

ct/Bt= it/itr p+ e(&/r)r&)+e'(&/&re)+ . (1.12)

Combining this with the power expansion for Ii '
[Eq. (1.3)j we have
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and operations performed on them. In Sec. III we dis-
cuss the power series expansions of the BBGKY
system to all orders. We 6nd it unnecessary to introduce
the correlation functions and we vrork directly vrith
the probability densities, Ii', themselves. The direct
perturbation series, Eq. (1.3), is constructed by dis-

playing explicitly the vth-order term. The secular
terms are classified in detail for any given order, vrhich
is easily done by the use of our graphs. We obtain the
general solution for F' and demonstrate that despite
the appearance of the secularities, the series may be
summed. and compared to the formal expression for Ii'
obtained by a Laplace transformation of the BBGKY
system. In the following paper the synchronized series is
constructed exploiting its connection to the multiple-
tirne-scale method discussed above. The use of this
expansion is shovrn to successfully eliminate all of the
secular terms. This condition corresponds to the cancel-
lation of certain disconnected graphs, those that we
call disconnected homogeneous. However, the method is
shown to introduce new terms that have a highly di-
vergent behavior. These nevr terms, which we call
supersecularities, appear in all but the lowest order of
the expansion and are given explicitly to vth order. We
vrill also exhibit the exact formal kinetic equation of the
synchronized theory in closed form. It is worth empha-
sizing that Bogoliubov's synchronized series which is
analyzed in this work corresponds to a eery special case
of the extended series. It is our belief that the analysis
of Bogoliubovs series, and of its de.culties, is a
necessary preliminary for a fully satisfactory theory of
irreversibility. The main results obtained in this paper
are summarized in Sec. IV.

II. THE BBGKY HIERARCHY

In this section we establish the notation and develop
the formal tools that are to be employed in the rest
of the vrork. We vrill study the solutions of the Liouville
equation with the method of variation of parameters;
i.e., vre shall examine the expansion of solutions in
power series.

For the purpose of nonequilibrium statistical me-
chanics, the Liouville equation is usually revrritten in the
form of the BBGKY hierarchy. This hierarchy is
extremely useful in that it permits the carrying out
of the limit of infinite volume (with finite density). A
major feature of our analysis consists in rewriting the
BBGKY hierarchy in a form that closely resembles the
Liouville equation itself. This is accomplished by the
introduction of some simple matrices and will allovr us
to exploit to advantage in the next two sections many
familiar results of linear operator analysis. This new
formalism is substantially simpler than any vre have
seen in the literature. It should be kept in mind that
our main interest lies in exhibiting explicitly the eth-
order term of the power series and, whenever possible,
the sum and properties thereof. Of very particular

interest are the asymptotic limit for large times and its
interchangeability vrith the process of summation to all
orders.

We consider a classical system of volume V containing
E identical particles of mass m interacting with a
repulsive pair potential U(~ x;—x;

~ )—= U;, of finite range
ro. We assume that no external fields are present and
that a specularly rejecting wall potential w(x, ) confines
the particles to V. We will consider only the "bulk
limit, " i.e., N~~, V~~ with n= E/V fi—xed and
6nite. The vrall potential becomes inoperative in this
limit and we simply omit it. The Hamiltonian for this
system is given by

iv p2 Ã
HN p + g UJ

&=1 28$
(2 1)

The canonical equations of motion obtained from
Eq. (2.1) are

y; zr QU;;x=—y= —g
~&i

(2 2)

We normalize the probability density in the 6E-
dimensional phase space, Ii N, by

dX1 dX~
dpi ' ' itpy F (xiipi' ' xivpg)t) = 1. (2.3)

U U

The Liouville theorem written in terms of the time
derivative that "follows the motion" is

DF~/Dt= 0,

or, in terms of Poisson brackets

(2.4)

BF~/Bt= jH~,F~}=Q [(BEP/Bx;) .(BF~/Bp;)
i=1

It is convenient to introduce the operators I, IC, and
H vrhere I;, is the tvro-particle interaction operator
given by

I;;= (V;U;;.V „,+V;U;;—.V.;).
m

(2.7)

E; is the one-particle kinetic energy operator given by

E;=v,'V;

—(BH~/Bp, ) (BF~/Bx;)j. (2.5)

Inserting Eqs. (2.1) and (2.2) into Eqs. (2.5), we
obtain

BF~/Bt= —P v; BF"/Bx;+1/m
1(i(Kz(j

(BF )
X (BU;;/Bx;) i i+(BU;;/Bx, ) ~ (BF /Bv;) . (2.6)

5 Bv;J
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and B' is the Hamiltonian operator for s bodies

(2 g)

The s-body kinetic energy and interaction generators
are

the unit of length, Vii, = (kT/m)' ' as the unit of velocity
and $o as the unit of interaction energy. Utilizing the
definition of F' LEq. (2.11)j and the normalization
LEq. (2.3)j, we readily obtain the dimensionless form
of Eq. (2.15)

E'=g E; and I'=P I;; 1&s&N. (2.9) 4o , /4o&+E"F" I"—F"= (Bro')
~

~L"F"+' (2.16)
at' kT ikTi

The Liouvi)le equation may now be written as

BF~/Bt+H~F~= 0.
where the primes have been introduced to denote di-

(2.10) mensionless quantities, e.g. ,
To derive the BBGKY hierarchy, we now introduce

the s particle distribution functions Ii' by

F'(xivi x,v„t) = F (dx,+i/v)

X(dp.+i)" (d»/V)(dp~) (211)

Integrating Eq. (2.10) over the phase space of all but
s of the particles, and using Eq. (2.11), we obtain the
hierarchy of coupled equations

gF'/cy+H'F'= P(N —s)/Vm j
S

X dx.yidp. +i Z V ~U;(,+o V„;F'+'. (2.12)

We introduce the "phase-mixing" operator L' by the
de6nitions

ro 8~E =—v
vii, jx j

Since we shall be dealing only with the dimensionless
equation (2.16) we omit the primes below. Introducing
the ordering of the parameters by Nro' 1, go/kT o,
the BBGKY equations become

BF'/8t+E'F'= oI'F'joL'F'+'. (2.17)

We shall treat Eq. (2.1/) extensively with the method
of variation of parameters. For this purpose, it is
convenient to make the s dependence in Eq. (2.17)
imp]icit. Let

Pl
Ii2

P 0

P8

L'=Z L'.+i L'+i=
i=1 ns

dx,+idv +iV~Ug, yi' V;. (2.13)
TOLD

The BBGKY hierarchy may now be written in the
compact form

I2 OL2

OL3

QP8 E—s
+HsF8 LsFa+1 (2.14)

OLe

The left-hand side of Eq. (2.14) constitutes the Liou-
ville equation for an s-particle subsystem. The right-
hand side, however, is not zero but gives the inter-
action of the subsystem with the other Ã-s particles.
It requires the distribution function F'+' because the
interaction potential is assumed to be a two-body
force.

We now take the bulk limit to guarantee an inIj.nite
Pojncare recursion time. After the bulk limit is carried
out, the BBGKY equations are still invariant under
time reversal. These are now given by

BF'/Bt+H'F'= mL'F'+' (2.15)

A. Matrix Formulation of the BBGKY Equations

We would like to make explicit in Eq. (2.15) the
parameters discussed in Sec. I. This may be accomp-
lished by making Eq. (2.15) dimensionless with ro as

where
BF/Bt+ KF= oTF,

T=l+L.
(2.18)

(2.19)

The form Eq. (2.18) of the BBGKY hierarchy closely
resembles the Liouville equation itself, Eq. (2.10).
This feature will be exploited at length in the following
development.

B. Formal Solution of the BBGKY Hierarchy

The solution of Eq. (2.19) can be written as

F(t) = /exp( —Kt+oTt) jF(0)= U(t)F(0). (2.20)

It will be useful to have an alternative representation
for this result. Let

P= Lexp(Kt) jF(t) .

We then write the BBGKY hierarchy in the useful
matrix form
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Kt) (2.21)(,), (Kt)T exp(—y= a'(t)A
gU= 1

+
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(2.30)
in a ower seriesExpanding P in a p

ed distribution,La ]ace transformor, for the a(2.22)

we find )yo ——F(0)7

$0+6/1+ 6 ($2+ ' p

i F(0)1

+K p
(2.31)

y„(t)= dti
0

0

)& [T(ti)T(t,) T(t.)]F0

t

dt P
0

d tribution functiontotic limit of the is riThe time-asympto ic
'

P* is obtained as usua rom

pQlimpZF'=limF(t) =F .
y-+0

ain from Eq. (2.31)We therefore obtain rom

F*=L-1-,~*T7-F(0), (2.32)

exp( —KX)dpi. (2.33t

4(t =)=F expo T(X)dX F 0 . (2.24)

e that substituting ae
'

the next section aWe will show in e

( )7 (o) ( )

where * is an inverse oWe can, there-

oo g

ical operator. e
'

n of the BBGKY
where P is e

exp(—

fore, rewrite h rmthe orm
hierarchy as

for the evolution operatorWe readily obtain or

U(t) = Lexp( —Kt)7F

x,Kli)T exp( —KX)dX&(exp e exp

power series
F=Q eF"

V

E . (2.18) yields asymp-o theBo BBQKY hierarchy, Eq.into B
totically for large(2.25)
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8U/Bt+KU=eT

ac — in Eq. (2.27)lace-transformingor by ap ac—

U(0)+ &TED U.
+K p+K

We have, however,

U(0) =1, KU(0) =0.
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A. The Asymjptotic Series for Large Times

We utilize the Taylor expansion [Eq. (1.3)] for F
which is taken to satisfy Eq. (2.18). In zero order we
obtain the equation

To prepare our general analysis of the secularities of
the power series, we prove in the next few paragraphs
several useful lemmas.

B. Lemmas
Bpo/Bt+ Kp'= 0

whose solution can be written as

F'(t) =exp( —Kt exp( —Kt)F'(0) .
For a spatially homogeneous gas, we have

(31)

To raise an operator to a power and to avoid confusion
with the cluster superscripts, we shall always include
the operator within square brackets [cf. Eq. (3.8)].23

We rewrite Eq. (3.8) as

F"*=[i*(I+L)]"F'. (3.9)

and therefore

p; 8
Elf'= — f'(V, ) =0

ss Bx;

8fo/Bt= 0.

We use the case v=2 for illustration. It will be im-
mediately clear that the extension to arbitrary v is
straightforward. We have

F2*=(Q'ei]2+ [i'*L]2+i.*f i.+i+i afi @L)po (3 10)

As stated above, we con6ne ourselves to a "simple
initial value problem" by requiring that all initial cor-
relations vanish. That is,

These general results are consequences of the spatial
homogeneity assumed for the gas.

pv(0) psO(0) —II fO (3.3)
Lemma 1:LFo=o

For the two-body function F"we have
The f' are "free-particle" functions. Equations (3.1)
yield I'fr'f2 ctx2d~2+1U12'+ lf1v(~1)f2 (1 2)

F"(t)=II f'= p"(o). (3.4)

The pth-order equation is (the order of the perturbation
expansion is always denoted by a Greek letter)

Bpv/R+ KF"=Tp" ' (3.5)

The solution of Eq. (3.5) is for all t

~Xsrt&2+sfy 12' +vlfl f2

dX2tf&2~12&vl ' &2fr fs

F"(t)= exp( —KX)TF~'(t—X)dX. (3.6)
=0 (3.11)

The time-asymptotic form of this function is best ob-
tained directly from Eq. (3.5). Since T and K describe
either short-range collisions or inertial motion, the
asymptotic value

pv(t) ~pva
t

is well defined (in particular, it does not contain. oscil-

latory terms). Equation (3.5) then yields (BF"~/Bt=0)

or, in terms of matrix notation

Lpo=0. (3.12)

Lemma 2: Phase Mi3oilg of a Free Particle Gives Zero

where we have set to zero the surface terms at in6nity
and made use of spatial homogeneity in the integration
by parts. The extension to many particles gives

Iap(a+i) 0 0

whose solution is

Kp"~= Tp

pv 4 K—17pv-1 sv

(3.7)

(3.8a)

This result is an extension of Lemma I above. Note
that because L is superdiagonal the cluster index that
follows an L' is stepped up by one. The function for F",
for example, is given by

From the initial conditions chosen above, we readily
see that the appropriate inverse of K is the operator
i'* defined by Eq. (2.33).We thuscan ,rewrite Eq. (3.7)

Pv 3v —i.aTPy —lsv

which, by simple induction, reduces to

F224 —(fel)2/ 41)2fofo+(psych)2gal)3fofofo

We consider the second term and write it out completely
in terms of particle indices. The indices on the fs
represent the incoming particles. Phase mixing by I
operators absorbs some of the indices and those remain-
ing on the extreme left denote the outgoing particles.

~7 A superscript on a round bracket will always denote a cluster
(3.8b) index. Subscripts are particle indices.
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For s=2 the latter will always be chosen as I and 2.
We have

Therefore, the correction term to f' appears in second
order. This is given by

i.-*(L-+L.) Bf2/B]~I 1F213v I1(f 2I)2fsf0

XP(i*I)„+(f*I)„+(i*I)„jf;f,of;. (3.13)

Consider the term

(3.15)

hs*L isL(K*I)»fi'fs'j fs'

f12 dxsdv3V1U13' VviLg I)»fi'f2 jf3'

=f'»* — dxsdvsvsUis V„iL(t *I)isf1'fs'7fs'

f2~f2(0)+ d$ I lgI)2fsf0

=f'(0)+iI-'8*I)f'f' (3 16)

fs cannot be a small correction to f0 for large times
(t 1/02). To see the general secular behavior, we look
at s=2. We examine the contributi. on to F22* given by
Eq. (3.13); in particular,

f12

=0,

dxsdvsU»V„1L(t'*I)»fi fs ) Vsfs
t »*t Lis(t *I)isfi'fs'j fs'=—f »*A.

The bracket is independent of x~ and also of xs because
of phase mixing by Li3. Writing out the bracket we have

00

where we have made use of the fact that the expression
in the brackets is independent of xs. Note that because
of the subscript rule, l »* is simply given by

X (V1U13 V.1+V3Ujs' V vs) fi'(vi) fs'(vs) . (3.17)

expL —(vi. Vi+vs. Vs)XjdX. (3.14)

In the example above f30 is the free particle and only
particles 1 and 2 interact. This result of phase mixing
on a free particle is independent of s.

Lemma 3

f~ acting on a "homogeneous" term (i.e., independent
of position) is linearly secular. Consider, in fact, any
term A in our expansion for F"*which satis6es

exp( —vis Vlsli)d~ V13U13(x13)

where vis—=vi —vs and xi3—=xi—xa.
Therefore

D.V 13U(xis —visd'j. ),

Then
v;A =0, v;A =0.

d vfvxpL —v; =V;+v; 7;)l jdld

A = dvisv. i (v.i—v.s)f'f' ddt.

V isUis V isU(xis vis&)d—xis

00 t

dXA =lim dA.A
9

gazoo

0

= (lim/)A .

C. Secularities

Homogeneous terms with the divergences discussed
in Lemma 3 occur for all F"*,v) 2 (for all terms con-
taining an L), and give rise to what is called a "secu-
larity. " For the one-body distribution, this secular
behavior may be seen directly without the use of Lemma
3. From the BBGKY equations we have

BF"/Bt= Bf'/Bt =L'fsf0= 0—
whence, for the simple initial-value problem

f1—fi(0)—0

dv»V „1 (V.i-V.s)f'f' dX g(v»X) . (3.18)

We see that A is spatially homogeneous and P»*A is
secular. This demonstration for s= 2, v= 2 may be seen
to hold for general values of s by simply adding free
particles to the expression for A. For higher values of
v we obtain a similar result plus other terms that increase
as higher powers of t. For vth order the greatest secu-
larity is of the form t &""' where Li/2j is the integer
part of v/2. At a given order of the perturbation expan-
sion all the powers lower than the maximum can occur.
We shall give in the next subsection a complete classi-
fication of secularities by means of a graphical analysis.
One may write expressions for Ii'" directly in terms of
the graphs and use them exclusively if desired. One gains
in convenience and insight into the behavior of the
various terms, and a one to one correspondence to the
algebra is maintained by appropriate rules.
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FIG. 1. Free particles.
Fro. 4. Skeleton for Lg*If'f'.

D. Grayh Theory

The components of the asymptotic limit for F" are
f', I, L, and f'*. These are represented as follows:

(1) Vertical undirected straight lines represent f'
S

and gfe (Fig. 1).
(2) The two-particle "propagation function" t *;; is

denoted by two directed lines and the general s-particle
propagator t

*' by the combination of Fig. 2.
(3) The "interactions" I,; are represented by a hori-

zontal line. For example, 1*;;I;,f;efP is represented in
Fig. 3. Remember that we have only two-body inter-
actions so that

I =g I;,=P I,;.
i&j i&j

properties. e(0) is the number of times that the oper-
ator 0 appears in the term considered and the symbols
I, L, and P represent either matrices or their elements.

e(I)+m(L) =v.

Ig'*)=v.

(3.19)

(3.20)

"Every interaction is followed by a single propagator. "
The operator product is read from right to left. (3.21)

These simple properties facilitate the construction of
terms to any order. The alternation rule, Eq. (3.21),
can also be expressed by saying that horizontal lines
(interactions) can touch no more than two-particle
lines. This property is the deining property of "normal"
graphs. Abnormal graphs that violate this property
will appear in the following paper and will be shown to
give rise to divergent terms that we call "superseculari-
ties."We do not discuss here in detail time derivatives

Fxo. 2. Propagators.

L121 n*Lrmfl f2 ~

(4) The "phase-mixing" operator

L'= J"dx'dv'V U(x x') V, —
is represented by a horizontal line with a cross indicating
the phase mixed variable. Thus, L'Q'*I)'fef' is repre-
sented in Fig. 4. A graph such as the one in Fig. 4 is
called a "skeleton. " It gives the form of the term but
does not tell which particle is phase mixed. A complete
graph is a labeled one as shown in Fig. 5. There is a
one-to-one correspondence between complete graphs
and the terms of the perturbation expansion.

From our general expression for Ii"*, i.e.,

&"'=D *(1+L)3"F'

we see that a term of order s will have the following

of the distribution functions and their graphs, since
these quantities play no basic role in the direct pertur-
bation expansion. For the study of the synchronized
series, however, time derivatives are crucial. We shall
see in the following paper that rules similar to those of
Eqs. (3.19)—(3.21) and Eqs. (3.24)—(3.25) are easily
constructed for the time derivatives as well.

There are two more useful terms to deGne: corrected
graphs and homogeeeols graphs. A connected graph has
no free particles in it.

Figure 6(a) is a disconnected graph while 6(b) is
connected. Figure 6(a) is also a particular type of dis-
connected graph called "disconnected homogeneous. "
Its connected part is just the graphical display of the
A given by Eq. (3.12) and used to illustrate a secular

Fio. 3. Two-particle interaction. FIG. 6. Skeletons for L*If'f'f'.

(a) (b)
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FIG. 10. Third-order
"kinetic" equation.

X

lemma l Lemma ~ sion. Since we have

Fzo. 7. Lemmas of III B.

behavior. A=L22(i*I)22fpf20f20 which corresponds to
Fig. 6(a) with the particles labeled 3, 1, 2, respectively.
All graphs in which all lines terminate in an I. (except
for free particles) are spatially in.dependen. t. Figure 6(b)
is the inhomogeneous skeleton for L'(&~I)2f0f0f0.
Figure 6(b) contains two terms of this skeleton L22()*I)22

Xfi0f20f20+L22(&~I)is fi0f20f20 with two others being
zero due to Lemma 2, and the last two corresponding to
Figure 6(a). These terms are obtained from a skeleton

by labeling the vertical lines in all allowable manners.

we obtain

F214 ()@I)2f0f0

8f'/Bt-L, 2(l *I)„fi'f,'

which is just the connected part of 6(a).We see again the
result of Eq. (3.16), the secular behavior of f'. Finally

gf'/R= L'F"-L'(t'If*If'f'+i'Ll'If'f0 f'). (3.23)

This is illustrated in Fig. 10.
One should bear in mind that because of the super-

diagonal n.ature of L, the number of incoming and out-
going particles is not the same for any term in F'"*
unless it contains only l's. In fact,

s=e(out),

s+e(L)=n(in),

(3.24)

(3.25)

FIG. 8. Secular terms
for s =4.

x

gf~/g~= LIP2(~ i)— (3.22)

The lemmas of Sec. III B are now illustrated by the
graphs of Fig. 7.

Higher order seculari ties are illustrated in Figs. 8
and 9.

The time rate of change of the one particle distri-
bution is given for order v by

where m(out) and e(in) denote the number of outgoing
and incoming particles, respectively. By way of example,
we give in Fig. 11 graphs that correspond to two-,
three-, and four-body functions with four initial par-
ticles (the three graphs appear in third order).

Before examining the synchronized theory, it is of
interest to note that one could develop a Gnite time
theory rather than an asymptotic one using the evolu-
tion operator of Sec. II $Eq. (2.25)j. To see this, we
expand Eq. (2.31) to second order. Our graph theory,
which has been constructed from Eq. (2.32) with f* as
the propagator, could as well be based on Eq. (2.30) and
used for finite-time expansions, with (p+K) ' as the
propagator. From Eq. (2.31) we have

We conclude this section with the skeletons for
8f2/Bt L'F22' which will be useful for future discus- p+K &+K +K

iL JL

X
]L

e &IF(t)ch.

X

I,

FIG. 9. Secular terms for j =6.
F 23

Fxo. 11.Examples of F".
F45
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Now, we insert Eq. (2.25) into the Laplace transform correct to second order

dk e "' 1+exp(—Kt) dhr exp(Ktr) eT exp( —Ktr)

+exp( —Kt) dkr exp(Khr) eT exp( —Ktr) dkr exp(Ktr) eT exp( —Ktr) F(0)

dt e o' dir exp( K—hr)eT
0 0

+ dt e &' dtr exp( —Ktr)eT dtr exp( —Ktr)eT F(0), (3.27)

so that 6nally

F= 1+ eT+ eT eT+
p+K p+K p+K

giving the result of Eq. (3.26).

IV. SUMMARY OF RESULTS

The simple relations (a)-(e) completely specify the
graphs that represent the distributions F'"*.For finite

(3 2g) times, the above rules apply for the Laplace transform

p of F'" provides l* is replaced by (p+K7 '. ln our
formulation, in contrast with that of Priogogine and
co-workers" "one deals directly with the particles and
their interactions.

We summarize here the main results obtained in this
paper. They are based on obtaining an explicit expression
for the vth-order term of the perturbation-series expan-
sion for the s-particle distribution function. The result
is obtained by the use of the simple matrices introduced
in Sec. IIA which allow effectively for a "decoupling"
of the BBGKY equations. The time asymptotic limit
for the vth-order distribution F" can, in fact, be written
in the compact form

1&y&[v/27, (4 7)

where Lr/27 is the integer part of t/2. Furthermore,

(ii) Classification of Secularities

For Axed order v of the perturbation expansion, there
is a secular term of the form 3& for all integral values
of y in the interval

F *=Lf*T7Fe. (4.1) 7=n(L) =n(in) —s. (4.S)

The following three theorems which are based on this
result, characterize the structure of perturbation theory.

(i) Explicit Construction of the vth-Order Term
for the s-Body Distribution and its

Graphical Reyresentation

For given order of the perturbation theory, v, the
following rules hold and uniquely specify P'"*. The
function F'"~ consists of a product of interaction oper-
ators (I and L) and of propagators (i*), operating on

As a consequence of Lemma 1 of Sec. III the maximum
number of phase mixings (L) that can occur in pth
order is fr/27 . As a corollary, the strongest secularity
in vth order is t(" '&. In Figs. 8 and 9 we show the 6rst
secularities. For example, for v=4 there is a linear and
a quadratic secularity. For v=6 is a linear, a quadratic,
and a cubic secularity as illustrated.

(iii) The Sum of the Asymptotic Values of E", F"*
Yields the Correct Limit

We showed in Sec. II that

)The number of times that an operator 0 appears is
denoted by n(0).7 taboo v=0v=0 t ~oc

Q ebmF"=bmQ c"F"=bmF. (4.9)

(a)

(b)

n(I)+n(L, )=t,
n(f*)=t

(c) Every interaction is followed by a
gator, reading from right to left.

(d) s=n(out) Ln(out) is the number
particles7.

(e) s+n (L)=n(in) .

(4.2)

(4 3)

single propa-
(4.4)

of outgoing
(4.5)

(4.6)

It is clear that this result is predicted on the limit of
large volume with 6xed density taken at the very start
of the development. The result may appear somewhat
surprising in view of (ii), above, which implies the
presence of polynomially divergent terms for u&2. The

"I. Prigogine, Nonequihibrigm Statistical Mechamics (Inter-
science Publishers, Inc. , New York, 1962)."R.Balescu, . Statistscol hfechanics of Charged Particles (Inter-
science Publishers, Inc., New York, 1963).
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f(t)/f(0) = 1—et+—ts—O(e'ts) .
2t

(4.11)

Although Eq. (4.11) is a series which converges to the
solution of Eq. (4.10), each term diverges for large

situation has, however, a well-known analog in the
model

df/dt= e—f, (4.10)

whose perturbation expansion yields a secularity of
order t" in vth order

times. In particular, the power series is not useful in
giving a small correction term to each proceding one.
For t)1/e the first few terms do not represent the
series at all. The knowledge of the secular structure of
the perturbation series is the essential key to the kinetic
theory inagurated by Bogoliubov. In this program, in
fact, the kinetic equation is the condition for the
removal of the perturbation theory secularity. We have
not considered in this erst paper the kinetic condition
which shall be analyzed in the following paper to u//

orders.
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Power Series of Kinetic Theory. II. Expansion with the
Functional Ansatz*
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We discuss the synchronized expansion of the Liouville equation (i.e., the expansion with the functional
ansatz"). We utilize the multiple-time-scale method and the equivalence theorem proven in the preceding
paper, which specializes this method to Bogoliubov s functional method. The technique is shown to success-
fully eliminate the secular behavior discussed in the preceding paper, to all orders in the series expansion for
the distribution function of an arbitrary number of particles Howev. er, new divergent terms (supersecu-
larities) are shown to appear in the higher order terms. The distribution functions and kinetic conditions
are given explicitly for ~th order, and are shown to be decomposed unambiguously as the sum of two con-
tributions: the "normal" (convergent) part and the "supersecular" (divergent) part. The normal part is
proved to be given exactly by the perturbation-theory result of the previous paper with ag secular terms
removed, while the supersecular part is constituted by divergent terms which are explicitly constructed. The
pth-order term can be written down without any knowledge of the lower order terms. Exploiting this result,
we resum the kinetic condition to all orders. The result, if convergent, constitutes the exact kinetic equation
applicable in principle to any system whose evolution can be characterized by the single-particle distribu-
tion function.

I. INTRODUCTION

~HE power of the functional ansatz was demon-
strated by Bogoliubov in deriving the lowest

order kinetic equations by a synchronized expansion of
the Liouville equation. In the preceding paper, ' here-
after designated as GSI, we have developed the direct
perturbation expansion to all orders, and discussed the
secular behavior of the terms which prevent the con-
struction of a kinetic equation. In this paper we prove
that the synchronized expansion, utilizing the functional
ansatz, not only eliminates the secularity in lowest

*Sponsored by the U. S. Air Force Once of Scientific Re-
search of the Oflice of Aerospace Research under Contract No.
AF49 (638)1461.

t This work is based in part on a Ph.D. thesis submitted to the
Heifer School of Science, Yeshiva University, New York, 1965,
with support of the National Science Foundation (NSFGP-3619).

)Present address: Plasma Research Laboratory, Columbia
University, New York, New York 10027.

' P. Goldberg and G. Sandri, preceding paper, Phys. Rev. 154,
188 (1967).

order as demonstrated by Bogoliubov, but eliminates
the previously discussed secular behavior to a// orders
of the expansion. The cancellation in lowest order
allowed for the construction of the kinetic equation.
However, in the higher order terms of the synchronized
expansion, new divergent terms that we call super-
secularities are shown to appear. We derive here the
general expression for the sth-order term of the syn-
chronized expansion and discuss its decomposition into
a normal and supersecular part. The normal part is
proved here to be given exactly by the perturbation
theory result of GSI with a// secular terms removed,
while the supersecular part is constituted by divergent
terms which are explicitly constructed.

We have shown in GSI that the direct perturbation
expansion, although each order of the expansion is
secular, yields upon summation the correct, finite dis-
tribution functions. In the light of this result we derive
here the sum of the synchronized kinetic conditions,
which corresponds to a kinetic equation which is valid,


