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Theory of Quantum Crystals. II. Three-Body Term in the
Cluster Exyansion*
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In a previous paper, denoted as I, the ground-state properties of crystalline helium were studied by a
variational method which used a cluster expansion evaluation of the energy, Eo. The basic approximation
of that work was the truncation of the cluster expansion after the one- and two-particle terms, E01+E02.
We have tested this approximation by numerical computation of the three-body term, E03, of the expansion.
Using the analytic form of the trial wave function given in I, we 6nd, for bcc 'He, that E03=10 'E02 at the
minimum in E01+E02. Furthermore, when E03 is included in the variations, E03 remains small and the
minimum energy is essentially unchanged, but the values of the wave-function parameters are improved
somewhat. These results indicate that the cluster expansion is converging rapidly. The computations are
performed as a function of density, and improved results for the ground-state pressure, compressibility,
sound velocities, and exchange integral are also presented. Similar calculations at a single density in hcp
sHe and 'He show that the close packing causes Ees to be larger; however, it is still on]y 1/20 the value of
E02, and the truncation of the cluster expansion is probably valid here as well. It is shown that the rate of
convergence of the cluster expansion depends on the form of the trial function. A numerical example is given
of a form for which the approximation of I breaks down. A critique of the expansion of Brueckner and
Frohberg is given. On a basis of a numerical test, it is found that they have neglected an important term in
truncating their expansion, so that the validity of their variational procedure is uncertain. Some possible
improvements in the theory, such as solving a differential equation for the correlation function and in-
cluding the eBects of the phonon spectrum, are discussed. Details of our method of evaluating the three-
body terms are given in two Appendices.

I. INTRODUCTION

i~RYSTALS of the isotopes of helium and molecular~ hydrogen, whose zero-point kinetic energies are
comparable to their potential energies, may be called
"quantum crystals. '" Because the root-mean-square
deviation of an atom from its lattice site in one of these
solids is not small compared to the lattice spacing, the
classical theory of lattice dynamics cannot be used to
treat them. ' Further, a very large zero-point motion
also implies that correlation effects will be important;
hence, a Hartree treatment based on a wave function
which is a product of single-particle functions is also a
poor approximation. '

The problems of correlations and large zero-point
energy were studied in I by means of a variational
calculation of the ground-state energy of crystalline
helium. The trial wave function used in I is given by

ll(rI, ~ ~ ~,rN)=gp(ir; —R, i) g f(r s). (1.1)

In (1.1) we have neglected wave-function symmetry
since the exchange energy contribution arising from
this property is quite small. ' The single-particle func-

*Work supported in part by the U. S.Air Force Once of Scien-
tihc Research Contract No. 840-65 and the Atomic Energy
Commission Contract No. AT(11-1)1569.

)Present address: Department of Physics, Michigan State
University, East Lansing, Michigan.

' L. H. Nosanow, Phys. Rev. 146, 120 (1966). We refer to this
paper as I.

2 F. W. de Wette and B. R. A. Nijboer, Phys. Letters 18, 19
(1965).

s L. H. Nosanow and G. L. Shaw, Phys. Rev. 119, 968 (1962).
L. H. Nosanow and W. J. Mullin, Phys. Rev. Letters 14, 133

(1965).

&o=&oI+&os+&es+ (1.2)

where Eo gives the contribution to the energy arising
sPecijcally from the clustering of I particles; that is,
the term vanishes if one or more of the m particles is far
away from the rest of the particles in the cluster. To
give the precise form of the terms of (1.2) we define

T(r;)—= —(1't'/2rrt) V' in'(i r;—R;i),

and an effective potential

V(r) =—v (r) —(t'ts/2rtt) V'
ln f(r),

where v(r) is the Lennard-Jones potential

v(r) =4eL(o/r)rs —(o/r)s]

(1.3)

(1.4)

(1.5)

Each of the terms in (1.2) can be split into a part
depending on T(r~) and a part depending on V(r)
/except for Est which depends only on T(r;)g, so
that

&o=&or+ (&osv+&osr)+ (&osv+&osr)+ ' ' '
~ (1 6)

%e also define an average of any arbitrary function
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tion P(i r;—R;i) describes the localization of particle i
with coordinate r;, about the lattice site at R;. The
product of the g's is used, as in a Hartree calculation,
to deine the crystal structure. Short-range correlation
sects are treated by including the product of pair
functions, g f(r, s), where rte ——ir, —rsvp. The ground-
state energy Eo was expressed in I as a cluster expansion
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g(r&, ",r„) by

(f(r '''r ))

When (1.14) is used

T (r;)=3A52/4m, (1.15)

where

00= y(i r,—R;() dr, .

The leading terms of the expansion are

and all terms of the cluster expansion of the form Ep
except Ep&, vanish identically. Since we have already
pointed out that the symmetry effects are small, the
leading term to be evaluated, to test the validity of the
truncation of the cluster expansion, is the term Epsy.
The use of the Gaussian for p permits E02v to be reduced
to a one-dimensional integral and, more importantly,
for our present purposes, it allows the rather compli-
cated Ep3+ to be reduced to a numerically tractable
form. This reduction is not obvious, however, and is
discussed at length in Appendix A.

The analytic form chosen for the correlation function
f(r) has been discussed in I; it is

The form of each of these terms is just what one would
expect on physical grounds. This is clearly the case for
Ep& and Ep2&, since they are, respectively, the single-
particle energy and the energy of the interactions of
the particles by pairs. Further, the first term of Ep3& of
Eq. (1.12) is the "effective" potential energy of all
possible interactions of three particles including terms
involving interactions in pairs only. The latter terms
have already been accounted for in Ep2y,' hence the
second term subtracts them out of the three-body
interaction. A similar interpretation holds for Ep2~ and
all other terms of the cluster expansion.

The basic approximation of I was

where E is a variational parameter and o is the "width"
of the repulsive core of the Lennard-Jones potential
LEq. (1.5)j.The f(r) of (1.16) is a physically reasonable
ansatz since it goes to zero rapidly for r —&0 and it
also has a maximum at r, = 2'~'o- where the I.ennard-
Jones potential has a minimum. This f(r) is a mathe-
matically convenient form as well; we will show in the
next section that it has properties which are necessary
if (1.13) is to be a good approximation.

In Sec. II we discuss the validity of the truncation
of the cluster expansion and show that the procedure is
remarkably good for bcc 'He and 4He and is probably
also valid for the close-packed forms of 'He and 'He.
We also discuss at length the conditions which must be
imposed on f(r) to justify the neglect of EQQv and
higher order terms. In Sec. III we show how certain
properties of bcc He, such as pressure, compressibility,
exchange integral, and sound velocities, are affected by
including Epay in the variational computation. A
critique of an alternative expansion proposed by
Brueckner and Frohberg' is given in Sec. IV. In Sec. V
we present a summary of our results and a discussion
of possible improvements in the theory. The mathe-
matical details of the evaluation of Eps~ are given in
Appendix A, and in Appendix 8 we discuss the lattice
sums involved in that evaluation.

+0=+Ql+ +02V ~ (1.13)

The purpose of this paper is the investigation of this
approximation by the evaluation of the leading correc-
tion term as a function of density and as a function of
the variational parameters near the minimum of the
right side of (1.13).

In I E01+E02v was varied with respect to the single-
particle function P to yield a diGerential equation
for P. It turned out that this solution was always well

approximated by a Gaussian so that we may take

(1.14)

II. CONVERGENCE OF THE CLUSTER
EXPANSION

A. General Considerations

In this section we test the convergence of the cluster
expansion by evaluating the three-body term Epact. In
this part of Sec. II we discuss in a general way the
factors which affect the size of Ep3y and higher order
terms in the expansion. These factors include the
localization of the particles, the short range of the

~K. A. Brueckner and J. Frohberg, Progr. Theoret. Phys.
(Kyoto), Suppl. (1965).We refer to this paper as BI'.
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correlation function, the lattice type, and the internal
cancellation in the terms. %e also present an argument
which indicates that the four-or-more-body terms are
negligible if the three-body term is small.

A Priori, one might reasonably argue that the cluster
expansion converges rapidly for a crystal. The most
important many-body effect in a crystal, the long-range
order, which comes about because each particle is
localized about its lattice site by its interactions with
its immediate neighbors, is already included in the
simple Hartree approximation. ' LNote that one gets to
the Hartree theory by taking f(r) = 1, in which case all
terms except Epr and Epsv vanish; that is, (1.13)
becomes exact.$ As in I, we say that the Hartree
approximation contains an adequate description of the
"structural correlations" between particles.

The role of the f(r)'s is to provide short rursge "d-y-
namic" correlations. For example, f(r) prevents two
particles from getting too close to one another since it
is very small for r(a. This greatly lowers the kinetic
energy of the system by allowing the single-particle
functions to spread out, whereas in the Hartree approxi-
mation they were overly localized because they could
not overlap. At the position of the potential minimum,

f(r) has a maximum and then approaches unity rapidly
as r increases.

Because the particles are localized about lattice sites
and because the f(r)'s are short-range functions, it is
improbable that three particles will get close enough
together to make the three-body terms important. If
we examine the form of Epsy' in (1.12), we see that for
Epsv to be large, the product f'(r;s)f'(r;q), on the
average, must di6er signihcantly from unity; however,
this is not the case since f(r) is near unity at r =R, the
nearest-neighbor distance. Thus a necessary condition
on f(r) is that it rapidly approach unity beyond r =r, .
In a preliminary account6 of this work the correlation
function used was

The later version of f(r), given by (1.16) where the
second exponent is 6 instead of 4, was introduced' to
make f(r) approach unity more rapidly as r increases.
LThe switch of the first exponent from 10 to 12 has no
physical significance and was made to place the maxi-
mum of f(r) at the position of the potential minimum
in a particularly simple way. ]

It must be noted that the above argument concerning
the small Ep3& value is probably stronger for a non-close-
packed lattice than for a close-packed one for a given
correlation function. The body-centered. cubic lattice
is an open structure in which three particles are unable
to approach one another as easily as in a close-packed
lattice. This lattice effect, by which one expects Ep3'p t'0

' L. H. Nosanow, Phys. Rev. Letters 13, 270 (1964).
7 L. H. Nosanow, in Proceedings of the /anth InterntJtiongl Con-

fereace oN Low TemPerotere Physics (Plenum Press, Inc. , New
York, 1965), p. 277.

be larger for an hcp than for a bcc lattice, is shown, in
Sec. II B, to occur for solid helium.

Although the condition that f(r) approach unity
rapidly is a necessary condition for Ep3& to be small,
it is not a sufhcient condition. It turns out that the
internal cancellation within Ep3y due to the contribu-
tions of the various kinds of triangles is also crucial.
However, this cancellation is not accidental. In Appen-
dix 8 we indicate that certain kinds of triangles always
give negative contributions while others always give
positive contributions. Both kinds of triangles are
always present in any lattice, so that the cancellation
is an important physical feature of the cluster expansion.

In this paper we evaluate only Ep3& to obtain an
indication of the rate of convergence of the cluster
expansion, so that even though Ep3y turns out to be
quite small compared to Epsv, we have not prosed that
the expansion converges rapidly or even that it con-
verges at all. Indeed it would be useful to have an
estimate of Ep4&. Unfortunately, the computation of
Ep4& is well beyond our present capabilities. However,
we can argue that if it is difIj.cult to get three atoms
together to make Ep3y big, it is much more dificult to
get four or more together. For the sake of comparison,
we give the four-body term

Ep4v= e
i~J~k, l ij ik il jk j l kl

(2 1)

Ke have written it in this form to demonstrate the
kinds of cancellation taking place. There seems no
reason why the cancellation between the square
brackets, which is the new feature introduced by Ep4&,
should not be as complete as the cancellation within a
square bracket which is analogous to that taking place
in Ep3y. Such a result would imply Ep4yp(Epsom. Similar
arguments hold for higher order terms in which further
cancellations take place.

There is one other indication that these higher order
terms are negligible. There have been two Monte Carlo
calculations" of the energy of close-packed 4He.
McMillan uses f(r;;) with no single-particle functions;
whereas Levesque et ul. ' use a wave function of the
general form (1.1) with Gaussian single-particle func-
tions. Although in each case the analytic correlation
function used differs from ours and, indeed, is possibly
more Qexible than ours, the numerical results of these
calculations are lower than ours by only about one

' W. L. McMillan, Phys. Rev. 138, A442 (1965).
P D. Levesque, D. Schi8, T. Khiet, and L. Yerlet (unpublished

report).
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TAsr.E 1.Results of a typical calculation on bcc 'He (R =3.75 X),
showing the size of the three-body term Epact/ in comparison with
the one- and two-body terms E01 and 802', and the eRect of E03/
on the wavefunction in the variational calculation. The energies
are in cal/mole and A is in A '.

At minimum in At minimum in
&o1+~02m ~01+&02m+&03m

A
log10E

E01
+02'
E03V

E01+~02v
Epl+@02V+E03V

1.30
—0.75

31.3
—21.6

0.1

9.7
9.8

1.42
—0.76

34.2
—24.4
—0.2

9.8
9.6

calorie per mole. At a nearest-neighbor distance of
R=3.60 A (molar volume=20 cm') we 6nd Ep=Epi
+Epsy+Eppz= —2.6 cal/mole; whereas they each find
Ep= 4 cal/mole. We believe this is good evidence
that the higher order terms are small and that the
truncation of the cluster expansion is valid.

B. Numerica. l Results

We next present the results of our numerical evalua-
tion of Eps~. For bcc 'He and 'He we find that Epact is
very much smaller than Ep~y. At the minimum in
Epi+Epsr it varies f'rom a value 100 times smaller at
lower densities to 20 times smaller at higher densities;
inoreover, at the minimum in Ep&+Epsv+Epsv it is
100 times smaller than Ep~y at all densities studied.
Including Ep3y in the variations improves the values of
the wave-function parameters, especially at high
densities. Calculations on hcp 'He and 4He show that
Epay is larger than in the bcc calculations; however, it
is still about 20 times smaller than Ep&z. Finally, to
illustrate the care one must take in truncating the
cluster expansion, we give a numerical example of a
parameter variation for which the approximation
Ep=Epi+Epsv is not valid, that is, Epsy does not
remain small during the variation.

It was indicated in Sec.IIA that the bcc lattice should
be most favorable for small Ep3y and this is the case.
At low densities, one would expect the cluster expansion
to be especially good. Indeed for R=3.75 A in bcc 'He,
at the values of A and E for which Epi jEpsy' is a
minimum, we 6nd Epsi =0.1 cal/mole. (See the first
part of Table I.) This may be compared to the value
Epsv = —21.6 cal/mole (note Epi+Epsv 31.3—21.6——
=9.7 cal/mole). It is instructive to examine the size of
the contribution of some of the triangles to Epsy.
Table VII in Appendix 8 lists the important triangles,
the number of them occurring in the bcc lattice, and
their total contribution to Epee. It was found that the
inclusion of the first 12 types of triangles gave sufhcient
accuracy. (Our accuracy is about 10%.) In Appendix 3
we give a complete discussion of the triangles needed
in the lattice sum. One point is clear from Table VII:

Tsmx II. Results similar to those of Table I for bcc 'He at a
higher density (8=3.45 A.). At higher densities L&"03I/ has a larger
eRect on the wave function.

A
log 10K

E01
E02v
E03v

Epl+E02W
E01+E02V+LOSV

At minimum in
Epl+E02V

1.73
—0.79

41.5
—22.9

1.3

18.6
19.9

At minimum in
+01+E02V+E03V

2.08
—0.83

48.8
—29.7

0.2

19.1
19.3

Internal cancellation is an important e6ect in making
Epee small, as we have anticipated above.

The small size of Epact at the position of the minimum
in Epr+Eppv is not the only consideration necessary.
We must also require that Ep3y be slowly varying as a
function of the parameters A and E near the position
of the minimum in Ept+Epsy. If this is not the case,
then it might turn out that the minimum value of
Epr+Epsv+Eps v is very different from that of Ep&+ Esse
and at very diferent values of the variational param-
eters, in which case our approximation procedure would
be invalid. When we include Ep3y in the variational
procedure, we find the minimum energy is now 9.6
cal/mole (lower than before by only 0.1 cal/mole)
with Epsy= —0.20 cal/mole. The parameter A at the
new minimum is greater by 0.12 A ' than its previous
value of 1.30 A ', while logE is less by only 0.01 from
the value —0.75. (See the second part of Table I.)

At high densities one expects the cluster expansion
to be poorer than at low densities; and in a certain
sense this is the case. The results for 8=3.45 A are
given in Table II. The minimum in Epi+Epsi is 18.6
cal/mole with A = 1.73 A ', logE= —0.79. There,
Epsr ——1.3 cal/mole which, indeed, is much larger than
for 8=3.75 A. However, if Epact is included in the
variational procedure, the best parameters are changed
to A = 2.08 and logE= —0.83 for which Epsy=+0. 20.
The minimum energy is changed from 18.6 cal/mole to
19.3 cal/mole. From the point of view of the variational
parameters the cluster expansion is not quite as good
at high densities, that is Epee has more of an eBect on
the position of the minimum. But given an accurate
wave function, the small size of Ep3~ indicates that the
cluster expansion convergence is about the same at all
densities. The inclusion of Epa~ in the calculations has
changed the energy by only a small amount (at most
by 0.7 cal/mole). Epsv is smaller, by two orders of
magnitude, than Epsr which is about —25 cal/mole for
all densities. In Fig. 1 we plot the minimum value of
Epr+Epsv and that of Epi+Epsy+Epsy as a function of
the molar volume. We also plot the values of the varia-
tional parameters for the two rninimizations in Fig. 2.

We have computed the ground-state energy for bcc
4He at only one density since it exists over a small
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TABLE III. Results similar to those of Tables I and II for hcp 'He
(R=3.75 A, upper table) and 4He (R=3.60 L, lower table).

2.2

A (L~)
log10E

Eol
E02V
Eo3v

At minimum in
E01+E02v

1.53—0.79

36.7—24.4—1.2

At minimum in
Eol+Eo2v+E03v

1.65—0.78

39.6—27.3—1.4

2.0 —
A

I.8—

l.6—

——.860

——.820
V
C9
O

——.780

Eol+E02V
E01+EOQV+E03V

A (x-')
log1PE

12.3
11.1

2.00—0.74

12.3
10.9

2.10—0.74

I4—

l.2
l9

BCC HELIUM THREE

I I I

20 21 22 23
VOLUME (CC/MOLE)

I

24

——.740

—.700
25

E01
E02V
E03V

Eol+Eo2v
E01+Eosv+E03v

34.8—35.8—1.5
—1.0—2.5

36.5—37.4—1.7
—0.9—2.6

FIG. 2. Variationai parameters A (in A ') and log&pR versus
molar volume. Curve I, from Ref. 1, gives the parameters that
minimize E01+Eo~v,' curve II gives those that minimize Ep1
+E02v+E03v. Larger A means greater localization of the particles
about their lattice sites.

region of temperature and pressure. At a molar volume
of 21.01 cm', the minimum values are Epr+Epsv = —2.4
cal/mole and Est+Epee jEpsy= —2.8 cal/mole.

The computation of Ep3y for the hcp lattice consumes
far more computer time than for the bcc lattice since
there are many more triangles in this lattice. (See the
listing in Table VIII in Appendix B.) One useful
simplification that can be made is to replace the hcp by
an fcc lattice, which has far fewer significant triangles
in its lattice sum. This is a reasonable approximation
because the three-body energies of the two lattices are
almost identical in static lattice calculations, ' and
values of Ep2& for the two structures are very nearly
equal in our own calculations. We have checked this
approximation in one case and have found that, for
R=3.60 A in 4He, the fcc Epsv —1.8 cal/mole while
the hcp Epsr —1.7 cal/mole. T——he difference is negli-
gible for our purposes.

For hcp helium (either isotope) use of the same trial
correlation function (1.16) gives an Esse which is
about j.0 times larger than in bcc helium. The reason
for this seems to be the lattice eRect mentioned above.
Table III illustrates hcp calculations for typical sets of

parameters. (Compare with Table I.) Note in Table III
that although Epa~ is larger than the bcc case, it is still
about 20 times smaller than Ep2v. The energy values
change only slightly in going from the minimum in
Ept+Epsv to the minimum in Epr+Epsr+Epsp'. The
wave function changes no more than in the bcc 'He
case. It is interesting that the primary effect of the
three-body term on the wave function in these and in
our bcc calculations is an increase in the localization of
a particle; the parameter A is always increased. (See
Tables I—III or, Fig. 2.) This is not surprising since the
presence of surrounding third particles, with their
repulsive cores, further limits the motion of the first
particle while it is interacting with the second.

We have not performed calculations of Ep3y' as a
function of density for the hexagonal phase of either
helium isotope, but only at a single density for each.

We have stressed above that it is necessary to limit
the variations in f(r) to those for which Esse is small
so that the cluster expansion truncation after Ep2y is
meaningful. We can demonstrate a variation which
violates that rule. If we replace o in the f(r) of Eq.
(1.16) by a variational parameter rl, then

f(r) =exp{—&L(sir)"—(sir)'j) (2 2)

For each value of g used, we Gnd the A and E for which

Fro. 1. Energy (in
cal/mole) versus molar
volume. Curve I, from
Ref. 1 is based on mini-
mizing Ep1+Eomy, ' curve
II is the calculation of
this paper based on mini-
mlzlng Ep1+Ep2y+Ep3y.

l7—
16—

15—
w l4-
w
w l3I-

I

II—
D 10—
C9

l9
I I I I

20 2I 22 23 24 25
VOLUME (CC/MOLE)

' See, for example, B. M. Axilrod, J. Chem. Phys. 19, 724
(1951) or L. Jansen and R. T. McGinnies, Phys. Rev. 104, 961
(1956).

A
log10E

E01+E02V
E03V
Eol+E02V+E03 V

2.50
1.55—0.66

12.7—0.5
12.2

2.556
1.44—0.77

11.7
0.3

12.0

2.60
1.37—0.84

11.1
0.9

12.0

2.65
1.22—0.90

10.3
2.3

12.6

TABLE IV. Results of the variation of the correlation function
parameter q to illustrate how the approximation Ep ——Epl+Ep2V
can break down if Ep3V becomes large. The quantity Epl+Ep2v
has no minimum as a function of 7/I, but Epl+Ep2y+Ep3y behaves
reasonably. The units of g, A, and the energies are A, A, ', and
cal/mole, respectively. The values of A and J are those which
minimize Ep1+Epmy for the p given.
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Eo~+Eosv is a minimum. The value of Eosv is then
computed. Table IV shows the results. As g increases,
Eot+Eosv decreases in the range shown; indeed, there
is no real minimum at all in this quantity as a function
of g. As q increases, the best value of A becomes so small
that the calculation is clearly meaningless. It is only
the inclusion of EDGED in the variation that makes good
sense out of the calculation; E03y increases until a
minimum appears in Eot+Eosv+Eosv as a function
of p. This injunction against arbitrary variations in

f(r) was pointed out in I and has also been stressed by
Brueckner and Frohberg. ' However, despite statements
to the contrary in BF, this restriction does not rule out
the validity of truncating the cluster expansion after
Eosv when the analytic form of f(r) is limited to one
for which Eosv is always small, as for example, the f(r)
of (2.2) with r) &~o. It is true, of course, that including
Eosv as a correction (when t)=o.) does improve the
calculation, especia11y in reference to the wave function.
If a differential equation is derived for f(r), as has been
done by Brueckner and Frohberg' and by us," then
this amounts to an arbitrary variation so that Rosy
must be included in the calculations.

We should point out that we have not studied the
eBect of varying p in the calculations for the hcp lattice.
The fact that E~ay is iD times larger there than in the
bcc case may be due to a poorer choice of p, i.e., p=0..
Indeed, we expect Ease to increase from its negative
value, pass through zero, and then become positive as g
increases. (See Table IU.) It may be that the minimum
in Eot+Eosv+Eosv, as a function of g, will occur when

E03& is nearer zero than it is presently. This possibility
wi11 be studied in future work.

I20

too—

tan

60—
Lsl

CL

BCC HELlUM THREE

20
l9

I

20
I l I

2I 22 23
VOLUME (CC/MOLE)

I

24 25

FIG. 3. Pressure E versus molar volume, Curve I, is from Ref. 1;
curve II, from this work. The data are those of Sydoriak, Mills,
and Grilly (Ref. 12) and of Edwards, Baum, Brewer, Daunt, and
McWilliams (Ref. 13).

"W. J. Mullin and L. H. Nosanow, Bull. Arp. Phys. Soc. 11,
126 (1966).

III. FURY'HER RESULTS FOR bcc He

Since the inclusion of the three-body term in the
variational calculation has improved the wave function

s

50—
cf.

~o

&- 40—I-

CQ

MM30-
LQ
IX
0xo 20—

—IZ
g A, SelW

BCC HELlUM THREE

IO I I I l

l9 20 2I 22 25 24 25

Fn. 4. Compressibility a versus molar volume. Curve l, is from
Ref. 1; curve II, from this work. The data are those of Adams,
Straty, and Wall (Ref. 14).

for bcc 'He, it is worth while computing the other zero-
temperature properties of bcc 'He. We use the new
values of A and E to compute the pressure, compressi-
bility, sound velocities, Debye temperature, and ex-
change integral, as a function of density. We also
compute the sound velocities for bcc 4He.

We can obtain the pressure and compressibility by use
of the formulas P= dEo/dV an—d K= (gV/dI')/V.
~e numerically differentiate Eot+Eosv+Eosv and
compare the results with those obtained in I where
Eo&+Eosv was analyzed. Figures 3 and 4 show our
results. The dashed curves are the results of I for a
Gaussian p. The agreement with experiment" "is not
changed much; the pressure is perhaps a bit too high
now and the compressibility a bit too low.
P,. The pressure and compressibility results presented
here are in much better agreement with experiment
than are the ground-state energy calculations. Ke re-
peat an argument given in I to explain this effect. Our
values for Eo for bcc 'He are about 10 cal/mole too
high. A typical value of Eo is 10 cal/mole which is
composed of Eot=34 cal/mole and Eosv+Eosv= —24
cal/mole Improver. nents in the theory will probably
lower both Eot and Eosv+Eosv; a 10% to 15% lowering
in each would bring about agreement with the correct
energy. Hence, each of the quantities is probably
accurate to ~15%. Since it turns out that Eosv+Eosv
is nearly constant over the whole density range with
Eo& containing almost all of the density dependence, it
is reasonable that we can obtain the pressure and
compressibility to about 15%.

It is useful to try to understand why including E03~
in the variational procedure has had the sects illus-
trated in Figs. 3 and 4, and perhaps to try to explain
some of the discrepancies found. In I, the fact that the
calculated pressures were somewhat too low and the

'2 S. G. Sydoriak, , R. L. Mills, and E. R. Grilly, Phys. Rev.
Letters 4, 495 (1960)."D.O. Edwards, J. L. Baum, D. F. Brewer, J. G. Daunt, and
A. S. McWilliams, Hefeem Three (Ohio State University Press,
Columbus, Ohio, 1960).

'4E. D. Adams, G. C. Straty, and E. L. Wall, Phys. Rev.
Let ters 15, 549 (1965).
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compressibilities too high (when the numerical g was
used) was blamed on deficiencies in f(r). (See Sec. VII
of I.) It was claimed that f(r) "softened" the hard core
of the effective potential too much by vanishing too
rapidly for small r. )That is, the small r form of f(r)
should be exp( —constant/r') rather than our exp
(—constant/r") as discussed after Eq. (2.8) of I.$
While this deficiency is really present in f(r), it is of
importance only for r«0,' the pressure and compressi-
bility depend on f(r) more strongly in the region r=a.
Thus, we now feel that explanation is insuQicient and
that an important cause of the low pressures and high
compressibilities of I is the neglect of E03~ in that paper.
The eBect that a third particle has on a pair of interact-
ing particles, especially at high densities, is to restrict
the motion of the particles. From a single-particle point
of view, one would expect that a particle would now
see an eGective potential well which has a higher barrier.
For Gaussian single-particle functions this means the
parameter A will be increased, and by a greater amount
at larger densities. This effect is shown in Fig. 2 where
the old and new A values are plotted. Since the slope
of the new A vs molar volume curve is more nega-
tive than that of I, the pressures computed are some-
what larger and the compressibility lower. If now one
were able to make use of the more accurate numerical

P, rather than the Gaussian, we know from I that the
pressures would be slightly lowered and the compressi-
bility slightly raised, bringing them into even better
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FIG. 6. Transverse sound velocities versus molar volume in
several symmetry directions. Curve I is from Ref. 15; curve II
from this work.

TABLE V. The results of our calculation of the sound velocities
(in m/sec) for bcc 4He at a molar volume of 21.01 cm'.

Symmetry
direction

100

iio
iii
expt

Longitudinal

449

555

586
540-555~

Transverse

360(2)
152
360
242 (2)
337-351b

agreement with experiment. However, as stated above,
our inaccuracy in pressure and compressibility due to
the uncertainty in Eo& is about 15%, and the dis-
crepancies we are considering are not very much larger
than that. Hence a discussion of discrepancies in those
two quantities will be more meaningful when the
ground-state energy, and Eo&, have been more accurately
computed.

We have also recomputed the sound velocities" in
bcc 'He and'He. The results are shown in Figs. 5 and 6
and in Table V. The experimental results'~ are also
shown. The density dependence of the calculated
longitudinal sound velocities is improved over those

I

20
I

22
I

26
a See Ref. 16.
& F. P. LipschIIltz and D. M. Lee, Phys. Rev. Letters 14, 1017 (1965).

V (CC/MOLE)

FIG. 5. Longitudinal sound velocities versus molar volume, in
several symmetry directions. Curves I, from Ref. 15, are based
on the parameters which minimize EOI+Eo2y, curves II are
based on the parameters calculated in this work. Data are from
Ref. 17.

"L.H. Nosanow and N. R. %'erthamer, Phys. Rev. Letters
15, 618 (1965)."J.H. Vignos and H. A. Fairbank, in Proceedzngs of the Ezghth
Internatzonat Conference on Lozo Tenzperatzzre PIzyszcs (Butterworth
Scienti6c Publications, Ltd. , London, 1962); %. R. Abel, A. C.
Anderson, and J. C. Wheatley, Phys. Rev. Letters 7, 299 (1961).
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FIG. 7. Debye 8 versus molar volume. Curve I is from Ref. 15;
curve II is from this work. Measurements are from Ref. 17.

calculated in Ref. 15 because of the better A values
used; however, the sum rule $Eq. (5) of Ref. 15j which
was used as a test of the approximations of Ref. 15 is
now satisied to within 10%%u~ (instead of the 3% found
with the previous wave function). The zero-temperature
limit of the Debye 0' is again computed by the method
of Ref. 15, and the curves are shown in Fig. 7. The
experimental points are those of Heltemes and
Swenson. '~

We use the new values of the wave-function param-
eters, A and E, gotten by minimizing Epr+Epsv+Epsv,
and the cluster expansion methods described in a
previous paper' to calculate improved values of the
exchange integral J as a function of density for bcc
'He. Figure 8 is a plot of the spin alignment tempera-
ture, given by

(3.1)

where s is the number of nearest neighbors. The previous
calculation, with results denoted by I in the figure, gave
T, values of nearly the right magnitude but they have
the wrong density dependence when compared with the
experimental results. "Use of the new parameters leads
to results, indicated by II, which still have the correct
order of magnitude and now have an improved density
dependence. In Ref. 4, we correctly attributed the
mistaken density dependence of our T, to errors in
g(r), although for the wrong reasons. At that time we
did not realize the large effect that Epact would have on
the single-particle function. Since the exchange integral
depends sensitively on the overlap of neighboring
single-particle functions, the increase in A values, from
the inclusion of Epsom in the variations, makes the com-
puted

~
JI values smaller than those of Ref. 4 at high

densities. The change in E (Fig. 2) at high densities
has negligible effect on J. Apparently the decrease of
the exchange integral with increasing density occurs
because the exchange of two particles is impeded by the

'~ E. C. Heltemes and C. A. Swenson, Phys. Rev. 128, 1512
(1962).

SR. L. Garwin and A. Landesman, Phys. Rev. 133, A1503
(1964);M. G. Richards, J. Hatton, and R. P. Giffard, in Proceed

ings of the ¹inth International Conference on Low Temperature
Physics (Plenum Press, Inc. , New York, 1965), p. 219; R. C.
Richardson, E. Hunt, and H. Meyer, Phys. Rev. 138, A1326
(1965); and R. C. Richardson, A. Landesman, E. Hunt, and
H. Meyer, sNd 146, 244 (1966)..

presence of the hard cores of the surrounding particles,
and, of course, this effect is greater at larger densities.

Our new T, values are uniformly lower than experi-
ment because of the remaining inaccuracies of our
analytic wave function. The tail of the Gaussian single-
particle function It cuts off somewhat faster than that
of the numerical P. (This is shown, for example, in
Figs. 1 and 2 of I.) The more accurate tail of the
numerical IfI will increase the overlap and hence

~
JI as

well. Certainly the replacement of our analytic f(r) by
one which is more accurate at small r values will also
have an effect on the value of

~

JT ~, but at this time it
is not clear to us just what this effect will be.
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FIG. 8. Spin-alignment temperature T, versus nearest-neighbor
distance E. Curve I is from Ref. 4; curve II is gotten using the
variational parameters computed in this paper by including E03y'
in the energy minimization. The density dependence of curve II
is now in improved agreement with the experiments of Ref. 18.
Curve II is too low for reasons discussed in the text. The experi-
mental curve of Garwin and Landesman (Ref. 18) should be in
close agreement with the other data, but they failed to take the
"10/3 eGect" into account. /See the paper of Richardson, Landes-
man, Hunt, and Meyer (Ref. 18) for a discussion of this. j

IV. THE BRUECKNER-FROHBERG
EXPANSION

In a recent paper, ' Brueckner and Frohberg have
outlined a variational calculation in which the energy
upper-bound is evaluated by an expansion which
appears to be similar to ours. Here we wish to point out
the fundamental differences between their expansion
and ours. Further, we report a few calculations of the
leading correction term of their expansion. On a basis
of these results, it seems likely that their expansion
converges too slowly to be useful in calculating the
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where the sums are restricted so that each pair is
counted only once. Here B„(uP . . ) is jsot an I-particle
term, but contains, as its leading elements, all possible
configurations which have js factors of f' regardless of
how many single-particle coordinates appear in each of
these elements. Thus, 8& is strictly a two-particle term;
but the h2 terms describe only part of the three-particle
interaction, and the 83 terms describe the rest of the
three-particle interaction as well as part of the four-
particle interaction. These terms, which we also convert
to single-particle notation, are Bp=3ASA'/4jjs,

, (Vvf")

&(V.+Vs)j:js )
Z B.(-@=a -B (-)-B.(W

&f-'f~')

(Vjjf j'f jj') (V.jf j')

ij il ij (4.2)

((V-+V+ V,u. Z'Z, ')
ZB (~v)=Z
ep np (f-'fs'f')

—Bs(~P)—Bs(~v) —Bs(Pv)

+B ( )+B (e)+B (v) .

Note that the first two BF terms are the same as ours.
The three-body part of P Bs is

j s-bpdy j j (fij'f'jjj fijj )

(Vif"j' ') (Vif")—2 + . (4.3)
ij iI .j

Two kinds of four-body terms containing factors like

(V;;f jsf;z'f&p) and (V;;f jsf;&'f;p), respectively, also
appear in g Bs, since they each have three f "s. The
total three-body term (no other sums over just three

properties of crystalline helium by the method they
propose.

The BF expansion requires the wave function to be
factorable into a product of single-particle and pair
functions. Hence, it is not as general as the cluster
expansion used in I, which is valid for an arbitrary wave
function. The BF expansion is written in terms of pair
indices, n, P, etc., which represent, for example, ij, ik,
etc. The energy is

~p= Bp+Z Bi( )+Z Bs(~~)
a a, P

+Z B(~ev)+ ", (4.I)

TABLE VI. Test of the Srueckner-Frohberg expansion. The
higher order term p sp is retained in BF (Ref. 5) while another
three-body term (p Gp)3 bpdy is neglected; the sum of these two
is our three-body term Eppy The neglect of (g sp)3 b dy& which is
larger than g sp during the variation of the parameter rj, has a
substantial eGect on the energy and wave function results since
the BF energy estimate, 8p+p 8I+p 8&, has no minimum for
g(2.65 A, while our estimate, EpI+Ep2y+Epay has a minimum
near jj=2.556'. Note Sp+QS&~Epj+Eppy Energies are in
cal/mole T.he values of A, E, and Epi+Eppy+Eppy are from
Table IV.

peg
(2 sp)p b.dy

Epay
sp+2 si+Z sp
Epz+E p2y+E psy

q =2.556'.
A=1.44~ '
logIpE. = —0.77

—0.1
0.4
0.3

11.6
12.0

q=2.65 i.
A =1.22 x-2
logI pK =—0.90

1.0
1.3
2.3

11.3
12.6

indices appear anywhere else in the expansion) is

gB+~ gB,
~

S body

i,j,k i' jk2 ik2 ij2

The term (V;;f;Pf;s')/(f;js f;ss)j which does not appear
at all in the usual cluster expansion for a liquid or a gas,
has cancelled olt leaving just the complete three-body
term, Epee' which we have treated in this paper. Thus
it may be that the cluster expansion used in I is a
partial summation of the BF expansion.

The analysis described in BF involves truncating the
expansion after the g Bs term. The terms retained are
varied to yield a differential equation for fij, and it is
the contention of the authors that the inclusion of the
g Bs term will allow such a variation to be made. We
have tested this truncation procedure by numerical
evaluation of g Bs and (g Bs)s bpdy using (2.2). As a
typical example, we take X=3.65 A in bcc sHe with
p)=2.556 A and 2.65 A; the appropriate values of jf
and logies are taken from Table IV. For if=2.556 A

we see, in Table VI, that the higher order term
(g Bs)sbpd» which is droPPed, is actually larger in
magnitude then the higher order term g Bs, which is
kept. However, both terms are quite small compared
to g Bi(—=Epsy) ——25 cal/mole. The calculation for
j)=2.65 A demonstrates how the neglect of part of the
total three-body term has a serious effect on the wave
function. Table VI shows that the neglected term,
(g Bs)sb.dy, is suKciently large that the quantity
Bp+Q Bz+g Bs has not yet reached a minimum at
pi= 2.65 A and that it can only reach a minimum when

P Bs is so large that the convergence of the expansion
is doubtful. On the other hand, in our q variation
(Table IV and the last line of Table V) we found that
including the total three-body term Epay pushed the
minimum back to pi=2.56 A, where Zssv is very small.
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Thus, not only are the wave functions given'by the two
methods very different, but also the rate of convergence
of our expansion in the neighborhood of the minimum
seems to be faster than for the BF expansion.

It might be argued that our regrouping of the BF
terms, that is, the splitting of bp into (g bs)3bodv+~ 83)& b,p~, is not a valid way of analyzing their
method, so that, although (p 83)3bogy is not small
compared to g 83, the complete p 83 is small because
of cancellation. Although we cannot prove that this
cancellation does not occur, we see no physical reason
why it should.

We must note that we have used olr correlation
function in this analysis, although the BF function
should be quite different. In principle, the BF method
gives a separate correlation function for each pair of
particles and coupled differential equations are solved
for each function; also, the boundary condition to be
imposed on each function at large distances may diBer
from ours. However, since the method involves arbitrary
variations with respect to each correla, tion function, it
seems quite possible that a situation analogous to the
one we have described will arise, that is, one for which
the minimum in the retained terms of the expansion
occurs when the neglected three-body terms are im-

portant, so that the calculated wave function is not a
good approximation to the actual one. In order to
avoid this undesirable situation we feel that further
constraints must be placed on the solutions of their
differential equations. Perhaps including all of E03& is
suflicient to keep all higher order terms small; however,
some recent work by us" indicates that even further
constraints will be necessary to remove long-range
correlation eft'ects which cannot be treated by cluster
expansion techniques. We will discuss the significance
of such long-range eGects further in the next section.

V. SUMMARY AND DISCUSSION

The calculations reported in this paper indicate that
the physical properties of the state given by our trial
wave function are adequately described within the
approximation of I, in which the cluster expansion was

truncated at Ep=Epy+Epsv. This fact was demon-

strated by showing that the inclusion of E03~ causes
only small changes in the energy. Furthermore, the
reasonable agreement of the calculated quantities with
the experimental properties of solid helium indicates
that our trial wave function is a fair approximation to
the true ground state. Of course, the approximation
of I limits the types of trial correlation functions that
we can use. The variation of q in Sec. II showed that,
if we do not keep f(r) short-ranged, the higher order
terms in the cluster expansion can become large.

Although the three-body term is small and Epg+Epsv
is a good approximation to the upper bound on the
ground-state energy Eo, the inclusion of E03y in the
calculation does give a noticeable improvement in the

accuracy of the wave function. The values of the wave-
function parameters 2 and E are changed, especially at
high densities. %hen other ground. -state properties of
bcc 'He are computed as a function of density using the
improved wave function, it is found that agreement
with experiment is either essentially unchanged or
improved.

Since the calculated energies are still about 10
cal/mole higher than the experimental ones, it is clear
that the trial wave function needs to be improved. We
have a ready shown in I that using a numerical single-

particle function will only lower the energy by about
one cal/mole, hence, this is not the answer. We have
made some e8orts" to derive and solve a differential
equation for an f(r) which is constrained to be short-

ranged so that the cluster expansion will converge.
Although this work is not yet complete, it is likely that
the energy will be lowered by only a few cal/mole.
Since the remaining discrepancy is about 5 cal/mole,
we feel that it is probably a basic physical effect and
will not be remedied without a fundamental change in
the trial wave function. One major possibility is that
this energy might come from including a more realistic
phonon spectrum in the problem. """In effect, this
means including long-range correlations, which cannot
be treated by cluster expansion methods. In his calcu-
lations on neon, Koehler" has found that this effect
lowers the energy by 12% of the kinetic energy; if the
same lowering were to obtain in solid helium, it would
amount to approximately 4 cal/mole.
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APPENDIX A: REDUCTION OF THE
THREE-BODY INTEGRAL

Here we show how to reduce the integral

(V;,f Pf;p' f3;3) to a form suitable for numerical evalua-
tion so that the three-body term Epay given by Eq.
(1.12) may be studied. Vsing normalized Gaussian
single-particle functions, we have

= (A/3. ) ~ dry drs drsV(u) f'(u) f (p)f'(w)

+exp{ ~L(r& R&) + (rs Rs) + (rs Rs) 1} (Al)

where I, v, and m are the magnitudes of the vectors

u= r~ —rs, v = rs —rs, w= rs —r~, (A2)

and R~, R2, R3 are the positions of the three lattice

' D. R. Fredkin and N. R. Werthamer, Phys. Rev. 138, A1527
(1965).

~P T. R. Koehler, Phys. Rev. 144, 789 (1966).
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where we have made use of the symmetries of the
integrand to 6x the 4 and 4 limits of integration at the
values shown. Equation (A16) has the form

d+ dQ, exp(y s/(s()

This series may be derived by expressing the series
(A24) as a Barnes's contour integraP' and then de-
forming the infinite semicirde of the contour from the
right half-plane to the left half-plane.

Ke may now write down the anal form for the
integral I. We replace the 8 integration of (A11) with
an integration over e by using

de sinh
f yf/ f y[,

where the vector y has components

y=((E—F) cos4, (F+F) sin%', D),
so that

(A17)

(A18)

e'= u'+w'+2uw cos8,

which finally leads us to

I= (3/sr')s

(A26)

sinh(P(1 —
Q cos'+)'t')

d+
P(1—Q cos'+)'"

(A21)

Our integral (A11) has now been reduced to a four-
dimensional form with a rather simple integrand. It is
possible to evaluate it numerically in its present form;
however, we find that expressing Ij in a power series
is more convenient. If vre let

and lf
t =—PQ sin'4/2

.=( /2P)'"I-+ t (P)
(A22)

is the modified spherical Bessel function, then a series
for the integrand of (A21) may be derived by differ-
entiating the identity"

cosh{(Ps+2Pt)'t')/P= g t"i„r(P)/tt! (A23)

with respect to t. Ke integrate the resulting series term
by term to give 6nally

Ir(P,Q) = 87rst' Q I'(tt+-,')

X (—PQ/2) "i.(P)/(I'(I+1))'. (A24)

This expression is useful for small PQ. For larger PQ,
say PQ)15, we have found a suitable asymptotic
series given by

I (P,Q)= Z(1(+l))'
(P2Q)1/2 ~ D

XI„(P) ~
/r(u+1). (A25)

PQ
ss H. A. Antosiewicz, in Igamdbook of Matttemattcat Fttttcteotts,

edited by M. AbraInowitz and I. A. Stegun I'U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. $5, p. 445,

( y (
=(D'+ (F+F)'—4FF cos'e)'t'. (A19)

If we define
P'=D'+ (E+F)'
Q=4EF/P',

then

X V(u) f'(u) f'(s) f'(w)usw

X (expL —(2/3) (u'+ s'+w'+a'+ b'+ c')]}Ir(P,Q),
(A27)

where the combination of (A7), (A12), (A20), and
(A26) yields

P= (2g/3)$3(u tt +$&P+wsc )
—r (us+w'+w') (a'+b'+c')+246„„„h,s,j't' (A28)

Q = (2A/3)'486„„8, t„/P',

with 6 „„and h„s, given by (AS).
The study of Epee is based on the numerical evalua-

tion of the power series for Ir(P,Q) and then of the
triple integral indicated in (A27). Since internal cancel-
lation always causes the loss of at least one significant
digit, we always computed integrals like I to four
figures to insure two digits in Epact.

APPENDIX 8: TRIANGLES IN THE
LATTICE SUM

In this Appendix we list the important triangles of
the lattice sum of the calculation of Epact', we give
typical values for the contributions of these; and we
discuss some physical reasons why certain important
triangles should make the contributions indicated. Ke
will not go into the details of the triangle counting
method; such methods are not diS.cult to devise.

In the bcc lattice, it was found that including 12 types
of triangles gave Epsom with an accuracy of better than
10%. In Table VII we list these important triangles,
the number of each occurring in the bcc lattice, and
the total contribution of each type to Spay. The most
important triangles in the lattice sum are given in the
upper half of Table VII. The lower half shows the
contributions of the most important of the triangles
which were dropped from the lattice sum in all calcula-
tions of Epact except for a few test cases. It turns out
that a triangle's contribution is small if the side

~'K. T. Whittaker and G. N. Watson, A Course ig Moderrl
Awatysis (Cambridge University Press, Cambridge, England,
1952), 4th ed., p. 86,
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TABLE ~I.Listing of triangles in the bcc lattice and their con-
tribution to Roar )Eq. (1.12)g in cal/mole for a set of typical
parameters. The triangle sides u, b, and G are given in units of the
nearest-neighbor distance. Note that a is the side connecting
particles interacting through the Lennard-jones potential in E03y.
The upper half of the table lists the triangles which were included
in every E03& calculation and the sum of their contributions. The
lower half lists the most important of the triangles which were
neglected in the E03y lattice sum to show the approximate error
in that sum. Results are for bcc 'He with R =3.65 L (A = 1.44 L '
and log10E =—0.75).

G2

Number of Contribution
triangles to 803'/

1
1
1

4/3
4/3
4/3
4/3
8/3
8/3

11/3
11/3

1
1
1
4/3

1
4/3
4/3

1
1

4/3
8/3

11/3
1

11/3
8/3

16/3
1

11/3
4/3
8/3

48
48
16
48
24
48
48
12
24
96
48
96

total

—0.60
1.69—0.03—0.49—0.27—0.62—0.004—0.03
0.46—0.10
0.16
0.11
0.28

a(=
~
R;—R;)/R) is large Lbecause the potential V(rg)

becomes small) or if either b or c (=
~
R,—Rs ~/R and.

~
Rs—R;~/E) is large (because correlation effects are

important at short range only). Note, however, that it
is again internal cancellation which makes the total
contribution of these "higher order" triangles small.
In Table VIII we give a simultaneous listing of the
primary triangles for the fcc and hcp lattices. In the
one case tested, we found that the truncation of the
lattice sum at the 16 fcc triangles and 25 hcp triangles
listed in the table caused only a 2% error. We should
note that a crude estimate of the values of the param-
eters, A and E, that minimize &or+&osv+~osv may
be obtained by approximating E03& with the contribu-
tions from only the erst four types of triangles in the
bcc lattice or the first six in the fcc. This means that
the contributions from the remaining triangles in the
lattice sum are less sensitive to changes in A or E.

A quick examination of the individual triangle
contributions in the tables shows that internal cancel-
lation is an important factor in making Epact small. For
example, we have always found that triangle No. 1
yields a negative contribution and No. 2 a positive one
for all lattice types. It is useful to understand why some

g2 $2 G2

(fcc lattice)
Number Contri-

of bution
triangles to 803'/

(hcp lattice)
Number Contri-

of bution
triangles to 803'

1 1
1 1
1 1

1
1 1
1 1
1 2
1 2
1 2
1 2
2 1
2 1
2 1
2 1
2 1
3 1
3
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1

1
2
8/3
3

11/3

3
11/3
5

17/3

3
11/3

17/3
1
2
3

1"//3
6

20/3
7

Total

48
48
0

96
0

24
48
0

48
0

24
48
0

48
0

48
48
96
0

96
96

0
48

0
96

—1.68—0.70
0—0.30
0—0.60
0.003
0—0.14
0
0.39—0.08
0—0.15
0
0.28
0.04
0.02
0—0.03—0.06
0—0.04
0—0.07

—1.71

48
48
12
72
24
12
36
24
24
12
24
36
24
24
12
36
36
72
24
48
48
24
36
24
48

—1.68
0.70
0.05—0.22—0.44—0.30
0.002—0.04—0.07—0.04
0.39
0.01—0.06—0.08—0.04
0.21
0.03
0,02—0.004—0.01—0.03—0.02—0.03—0.02—0,04

—1,.72

triangles give a positive or negative contribution so
that cancellation may take place. In the bcc lattice,
triangle No. 1 is almost equilateral with sides in the
ratio 1:1:1.15 (it is equilateral in the close-packed case).
Because the hard core of the third particle can come in
between them, this means that two interacting nearest
neighbors are held farther apart on the average than if
the third particle were not present. )See Fig. 9(a).j
Because the two particles are held farther apart, they
see less of each other's repulsive potential and more of
the attractive part. Hence the first term of E03~,
Eq. (1.12), is more negative than the second and their

TABLE VIII. Listing similar to Table Vl of important triangles
in the fcc and hcp lattice sums of 803'. We have used the fcc
lattice sum, which has many fewer triangles, in place of the hcp
sum, in the calculation of Sec. II, because of the approximate
equality of the two sums. Results are for close-packed 4He,
R=3.50 Jt (A =2.15 Jt~ and log~sK'= —0.75).

1
4/3
8/3
8/3
8/3
8/3

11/3
11/3
11/3
11/3

8/3
8/3
4/3
4/3
8/3
8/3
1

4/3
8/3
1
1
4/3

11/3

4/3

8/3
16/3

16/3
11/3
11/3

1
11/3
8/3

96
48
24
48
48
48
48
48
96

144
8

48
48

0.04—0.005
0.02—0.06—0.03—0.01
0.002—0.03—0.01—0.01
0.05
0.02—0.01

total —0.04

'(a) (b)

FIG. 9. Two types of triangles in the lattice sum. (a) Particles
s and j interact via the Lennard-Jones potential (double line);
particle k can interpose its hard core in between i and j in an
equilateral triangle and force them farther apart on the average
than if k were absent. This makes triangle (a)'s contribution to
Zs~v negative if s and j are nearest neighbors. (b) In an obtuse
triangle, particle k tends to push j toward i which makes (b)'s
contribution to 803.y positive if i and j are nearest neighbors. ,
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diBerence is negative. Triangle Xo. 2, on the other hand,
is obtuse, with the two particles, i and j, which interact
via the Lennard-Jones potential on one leg of the
obtuse angle. Thus the hard core of the third particle,
k, tends to push j toward z LFig. 9(b)$, so that if i and

j are nearest neighbors, they see more of each other' s
repulsive potential. The first term of EO3~ is larger than
the second, so the diBerence is positive. Since obtuse
and acute triangles occur in every lattice, there will

always be cancellation in the sum.
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Power Series of Kinetic Theory. I. Perturbation Expansion*

P. GOLDBERG''f AND G. SANDRI
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In recent years intensive efforts have been made to develop, from erst principles, systematic corrections
to the established kinetic equations, and thereby obtain an understanding of the approach to thermal
equilibrium for arbitrary macroscopic systems. These efforts, dominated by Bogoliubov s synchronization
technique and "functional assumption, " have met with only partial success. In fact, the method of syn-
chronization has been shown to lead to serious difhculties when carried beyond the lowest order results,
so that an H theorem is lacking for the higher order terms. To discuss the problem in full generality, we con-
struct in this paper the direct perturbation .series. (and in the follow paper, Bogoliubov's synchronized
series) to alt orders in a parameter e that can be identi6ed with the potential strength. An explicit expression
is obtained for the ~th-order term of the s-body distribution function and a simple, systematic graphical
representation of all the terms is derived. The result is obtained by the use of a matrix formalism that allows
an effective decoupling of the Bogoliubov-Born-Green- Kirkwood- Yvon equations, and thereby, for a de-
tailed analysis of the perturbation series. Bogoliubov s basic result concerning the secular behavior of per-
turbation theory (P" t) is deduced here as a special case of a general theorem: The vth-order term for the
s-body distribution grows for large times as a polynomial in time whose leading power is fv/2g independ-
ent of s.

r. rmRODUCxrom

'HE aim of nonequilibrium statistical mechanics is
to determine the evolution in time of systems con-

taining a large number of interacting particles, and
thereby describe the irreversible"approach to thermal
equilibrium. From the basic dynamical equations one
seeks an equation of the form

ctf/ctt= Agfj, (1.1)

called the kinetic equation, where A is a functional of
the one particle distribution function f(x,p, t), and has
no explicit time dependence. Outstanding examples of
such Markovian' equations which correspond to dif-
ferent gaseous regimes, are the Boltzmann equation
for neutral, dilute gases, the Landau' equation for
weakly interacting, high-temperature systems, and the
kinetic equation with Debye shielding originally dis-
covered by Bogoliubov, ' and referred to as the Balescu-

*Sponsored by the U. S. Air Force OfBce of Scientific Re-
search of the OKce of Aerospace Research under Contract No.
AF49(638) 1461.

$ This work is based in part on a Ph.D. thesis submitted to the
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with support of the National Science Foundation (NSFGP-3619).

)Present address: Plasma Research Laboratory, Columbia
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' I. Oppenheim and K. Shuler, Phys. Rev. 138, B1007 (1965).' L. Landau, J. Phys. (USSR) 10, 23 (1946). See also J. Enoch,
Phys. Fluids 3, 353 (1960).
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Guernsey-Lenard equation. These equations constitute
the lowest order term in expansions of Liouville's
equation appropriate for the regime considered. 4 In
this work we will be concerned with an expansion of
the Louville equation which we shall analyze to all
orders. '

(i) The outstanding opert problem in nonequilibrium
theory is that of determining systematically the higher
order corrections to these kinetic equations, if they
exist. For example, the Boltzmann equation is a valid
description of dilute, short-range gases, so that only
binary collisions are taken into account. This restric-
tion has the consequence that the transport coefEcients
are independent of the density. Furthermore, the bulk
viscosity coefficient is not given by the Boltzmann
equation (it vanishes identically). However, for dense
gases, (p) 5 atm, T 300'K), the transport coefficients
of monatomic gases are known to be density-dependent
and the bulk viscosity is nonzero. Therefore, a more
general theory is required which should yield the well-
established kinetic equations in lowest approximation.
If such general kinetic equations could be derived from

Physics (Moscow, 1946) LEnglish transl. :E. Gora, in StNCies in
Statistica/ Mechanics, edited by J. de Boer and G. Uhlenbeck
(North-Holland Publishing Company, Amsterdam, 1962), VDL I.g' G. Sandri, Ann. Phys. (N. Y.) 24, 332 (1963);24, 380 (1963).
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