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In a previous paper, denoted as I, the ground-state properties of crystalline helium were studied by a
variational method which used a cluster expansion evaluation of the energy, Eo. The basic approximation
of that work was the truncation of the cluster expansion after the one- and two-particle terms, Eo+ Eos.
We have tested this approximation by numerical computation of the three-body term, Eqs, of the expansion.
Using the analytic form of the trial wave function given in I, we find, for bee 3He, that Eos=~102Eq; at the
minimum in Eo -+ Eoe. Furthermore, when Eo; is included in the variations, Eo; remains small and the
minimum energy is essentially unchanged, but the values of the wave-function parameters are improved
somewhat. These results indicate that the cluster expansion is converging rapidly. The computations are
performed as a function of density, and improved results for the ground-state pressure, compressibility,
sound velocities, and exchange integral are also presented. Similar calculations at a single density in hcp
3He and ‘He show that the close packing causes Eg; to be larger; however, it is still only 1/20 the value of
Egs, and the truncation of the cluster expansion is probably valid here as well. It is shown that the rate of
convergence of the cluster expansion depends on the form of the trial function. A numerical example is given
of a form for which the approximation of I breaks down. A critique of the expansion of Brueckner and
Frohberg is given. On a basis of a numerical test, it is found that they have neglected an important term in
truncating their expansion, so that the validity of their variational procedure is uncertain. Some possible
improvements in the theory, such as solving a differential equation for the correlation function and in-
cluding the effects of the phonon spectrum, are discussed. Details of our method of evaluating the three-
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body terms are given in two Appendices.

I. INTRODUCTION

RYSTALS of the isotopes of helium and molecular
hydrogen, whose zero-point kinetic energies are
comparable to their potential energies, may be called
“quantum crystals.”* Because the root-mean-square
deviation of an atom from its lattice site in one of these
solids is not small compared to the lattice spacing, the
classical theory of lattice dynamics cannot be used to
treat them.? Further, a very large zero-point motion
also implies that correlation effects will be important;
hence, a Hartree treatment based on a wave function
which is a product of single-particle functions is also a
poor approximation.?

The problems of correlations and large zero-point
energy were studied in I by means of a variational
calculation of the ground-state energy of crystalline
helium. The trial wave function used in I is given by

t//(rl,"',fN)=f:Il¢(|ri—Ril)1<ka(rfk)- (L.1)

In (1.1) we have neglected wave-function symmetry
since the exchange energy contribution arising from
this property is quite small.!** The single-particle func-
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tion ¢(|r;—R;|) describes the localization of particle ¢
with coordinate r;, about the lattice site at R;. The
product of the ¢’s is used, as in a Hartree calculation,
to define the crystal structure. Short-range correlation
effects are treated by including the product of pair
functions, [T f(r;x), where ;= |r;—rx|. The ground-
state energy E, was expressed in I as a cluster expansion
Ey=Eu+Ewu+Eps+---, 1.2)
where E,, gives the contribution to the energy arising
specifically from the clustering of # particles; that is,
the term vanishes if one or more of the » particles is far
away from the rest of the particles in the cluster. To
give the precise form of the terms of (1.2) we define

T(r)=— (#*/2m)V* In¢(|r:—Rq), (1.3)
and an effective potential
V(r)=v(r)— (#@/2m)V* Inf(r), (1.4)
where v(7) is the Lennard-Jones potential
v(r)=4e (o/r)2— (o/7)°]. (1.5)

Each of the terms in (1.2) can be split into a part
depending on T'(r;) and a part depending on V(r)
[except for Ey which depends only on T'(ry)], so
that

Ey=Eu+ (Eoey+Eear)+ (Eosv+Eosr)+--- . (1.6)

We also define an average of any arbitrary function
175
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g(rs,- - -,xn) by
(g(rs,= - +,xn))

=w“"/dr1~--/drn

]¢<lrn—Rn|>

w= / ]¢(lri—Ri|>

The leading terms of the expansion are

2

¢(|ni—Ri])

g(n, °T '7rn) ) (17)

where

2
drz-. (18)

En=5 (T(x)),

=1

(1.9)

(T(x:) f2(rs3))
Epr=Y" {————— (T}, 1.10
an ‘Zi{ (F(ria)) ( (r))] (110
(V (ri) f2(ri5))
Eoy=32 — ——— (1.11)
i (fAra)
Euy=}b % {Uz(”")f ) POV i)
Lok (FP2ri) f2(ra) f2(rin))
ey
(f2(ri))

The form of each of these terms is just what one would
expect on physical grounds. This is clearly the case for
Ey and Epy, since they are, respectively, the single-
particle energy and the energy of the interactions of
the particles by pairs. Further, the first term of Eogy of
Eq. (1.12) is the “effective” potential energy of all
possible interactions of three particles including terms
involving interactions in pairs only. The latter terms
have already been accounted for in Eoy; hence the
second term subtracts them out of the three-body
interaction. A similar interpretation holds for Egr and
all other terms of the cluster expansion.
The basic approximation of I was

E=En+Eopy. (1.13)
The purpose of this paper is the investigation of this
approximation by the evaluation of the leading correc-
tion term as a function of density and as a function of
the variational parameters near the minimum of the
right side of (1.13).

In I, Eoi+ Egav was varied with respect to the single-
particle function ¢ to yield a differential equation
for ¢. It turned out that this solution was always well
approximated by a Gaussian so that we may take

o(r)=exp(—A4r¥/2). (1.14)
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When (1.14) is used
T(r)=34%/4m, (1.15)

and all terms of the cluster expansion of the form Eqnr,
except Eg;, vanish identically. Since we have already
pointed out that the symmetry effects are small, the
leading term to be evaluated, to test the validity of the
truncation of the cluster expansion, is the term Egy.
The use of the Gaussian for ¢ permits Eoey to be reduced
to a one-dimensional integral and, more importantly,
for our present purposes, it allows the rather compli-
cated Egy to be reduced to a numerically tractable
form. This reduction is not obvious, however, and is
discussed at length in Appendix A.

The analytic form chosen for the correlation function
f(7) has been discussed in I; it is

f)=exp{—K[(o/r)*—(o/r)*]},  (1.16)

where K is a variational parameter and ¢ is the “width”
of the repulsive core of the Lennard-Jones potential
[Eq. (1.5)]. The f(r) of (1.16) is a physically reasonable
ansatz since it goes to zero rapidly for r — 0 and it
also has a maximum at #m.x=2"% where the Lennard-
Jones potential has a minimum. This f(r) is a mathe-
matically convenient form as well; we will show in the
next section that it has properties which are necessary
if (1.13) is to be a good approximation.

In Sec. IT we discuss the validity of the truncation
of the cluster expansion and show that the procedure is
remarkably good for bee SHe and “He and is probably
also valid for the close-packed forms of *He and ‘He.
We also discuss at length the conditions which must be
imposed on f(r) to justify the neglect of Eey and
higher order terms. In Sec. IIT we show how certain
properties of bce He, such as pressure, compressibility,
exchange integral, and sound velocities, are affected by
including Eoy in the variational computation. A
critique of an alternative expansion proposed by
Brueckner and Frohberg?® is given in Sec. IV. In Sec. V
we present a summary of our results and a discussion
of possible improvements in the theory. The mathe-
matical details of the evaluation of Eoy are given in
Appendix A, and in Appendix B we discuss the lattice
sums involved in that evaluation.

II. CONVERGENCE OF THE CLUSTER
EXPANSION

A. General Considerations

In this section we test the convergence of the cluster
expansion by evaluating the three-body term Eogsy. In
this part of Sec. IT we discuss in a general way the
factors which affect the size of Eoy and higher order
terms in the expansion. These factors include the
localization of the particles, the short range of the

5K. A. Brueckner and J. Frohberg, Progr. Theoret. Phys.
(Kyoto), Suppl. (1965). We refer to this paper as BF.
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correlation function, the lattice type, and the internal
cancellation in the terms. We also present an argument
which indicates that the four-or-more-body terms are
negligible if the three-body term is small.

A priori, one might reasonably argue that the cluster
expansion converges rapidly for a crystal. The most
important many-body effect in a crystal, the long-range
order, which comes about because each particle is
localized about its lattice site by its interactions with
its immediate neighbors, is already included in the
simple Hartree approximation.? [ Note that one gets to
the Hartree theory by taking f()=1, in which case all
terms except Eo and Egy vanish; that is, (1.13)
becomes exact.] As in I, we say that the Hartree
approximation contains an adequate description of the
“structural correlations” between particles.

The role of the f(r)’s is to provide short-range “dy-
namic” correlations. For example, f(r) prevents two
particles from getting too close to one another since it
is very small for r<o. This greatly lowers the kinetic
energy of the system by allowing the single-particle
functions to spread out, whereas in the Hartree approxi-
mation they were overly localized because they could
not overlap. At the position of the potential minimum,
f(#) has a maximum and then approaches unity rapidly
as 7 increases.

Because the particles are localized about lattice sites
and because the f(r)’s are short-range functions, it is
improbable that three particles will get close enough
together to make the three-body terms important. If
we examine the form of Eoy in (1.12), we see that for
Eopy to be large, the product f2(ru)f*(rir), on the
average, must differ significantly from unity; however,
this is not the case since f(7) is near unity at =R, the
nearest-neighbor distance. Thus a necessary condition
on f(r) is that it rapidly approach unity beyond 7 =7max.
In a preliminary account® of this work the correlation
function used was

f)=exp{—K[(o/r)*—(s/r)]}.

The later version of f(r), given by (1.16) where the
second exponent is 6 instead of 4, was introduced!” to
make f(r) approach unity more rapidly as 7 increases.
[The switch of the first exponent from 10 to 12 has no
physical significance and was made to place the maxi-
mum of f(r) at the position of the potential minimum
in a particularly simple way. ]

It must be noted that the above argument concerning
the small Eo3y value is probably stronger for a non-close-
packed lattice than for a close-packed one for a given
correlation function. The body-centered cubic lattice
is an open structure in which three particles are unable
to approach one another as easily as in a close-packed
lattice. This lattice effect, by which one expects Eosv to

6 1L.. H. Nosanow, Phys. Rev. Letters 13, 270 (1964).
7 L. H. Nosanow, in Proceedings of the Ninth International Con-

ference on Low Temperature Physics (Plenum Press, Inc., New
York, 1965), p. 277.
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be larger for an hcp than for a bec lattice, is shown, in
Sec. II B, to occur for solid helium.

Although the condition that f(r) approach unity
rapidly is a necessary condition for Egy to be small,
it is not a sufficient condition. It turns out that the
internal cancellation within Egy due to the contribu-
tions of the various kinds of triangles is also crucial.
However, this cancellation is not accidental. In Appen-
dix B we indicate that certain kinds of triangles always
give negative contributions while others always give
positive contributions. Both kinds of triangles are
always present in any lattice, so that the cancellation
is an important physical feature of the cluster expansion.

In this paper we evaluate only Eopy to obtain an
indication of the rate of convergence of the cluster
expansion, so that even though Egy turns out to be
quite small compared to Egpey, we have not proved that
the expansion converges rapidly or even that it con-
verges at all. Indeed it would be useful to have an
estimate of Eoy. Unfortunately, the computation of
Eoy is well beyond our present capabilities. However,
we can argue that if it is difficult to get three atoms
together to make Egsy big, it is much more difficult to
get four or more together. For the sake of comparison,
we give the four-body term

Eoy=1 3 {l:<Viifijzfiszil2fjk2ffl2flcl2>
£ e (fi [l [ fiil fil fei®)
3 (Viifi fulf. aﬂ]
(fil ful fi®)
Viififalfie?)  (Visfi®
- .21
I: (fi fu far®) (fi® ]}

We have written it in this form to demonstrate the
kinds of cancellation taking place. There seems no
reason why the cancellation between the square
brackets, which is the new feature introduced by Eosv,
should not be as complete as the cancellation within a
square bracket which is analogous to that taking place
in Eosy. Such a result would imply Eoay<<Eosy. Similar
arguments hold for higher order terms in which further
cancellations take place.

There is one other indication that these higher order
terms are negligible. There have been two Monte Carlo
calculations®® of the energy of close-packed “He.
McMillan® uses f(r;;) with no single-particle functions;
whereas Levesque et al.® use a wave function of the
general form (1.1) with Gaussian single-particle func-
tions. Although in each case the analytic correlation
function used differs from ours and, indeed, is possibly
more flexible than ours, the numerical results of these
calculations are lower than ours by only about one

8 W. L. McMillan, Phys. Rev. 138, A442 (1965).
9 D.)Levesque, D. Schiff, T. Khiet, and L. Verlet (unpublished
report).



178

TaBLE I. Results of a typical calculation on bee 3He (R=3.75 &),
showing the size of the three-body term Eqsv in comparison with
the one- and two-body terms Eq; and Eg,y, and the effect of Eosy
on the wavefunction in the variational calculation. The energies
are in cal/mole and 4 is in A2,

At minimum in At minimum in

Eon+Eey Ep+Eowv+Eosy
A 1.30 1.42
log1eK —0.75 —0.76
Eo 313 34.2
By —21.6 —24.4
Egy 0.1 —-0.2
Eoa+Eey 9.7 9.8
Ep+Eopv+Eov 9.8 9.6

calorie per mole. At a nearest-neighbor distance of
R=3.60 A (molar volume=20 cm?®) we find Eo=Eq
+ Eosv+Eosv=—2.6 cal/mole; whereas they each find
E¢>=—4 cal/mole. We believe this is good evidence
that the higher order terms are small and that the
truncation of the cluster expansion is valid.

B. Numerical Results

We next present the results of our numerical evalua-
tion of Eosy. For bee *He and “He we find that Eosy is
very much smaller than Egyy. At the minimum in
En+Eoev, it varies from a value 100 times smaller at
lower densities to 20 times smaller at higher densities;
moreover, at the minimum in Eg~+Eov+ FEosy it is
100 times smaller than Egy at all densities studied.
Including Eosy in the variations improves the values of
the wave-function parameters, especially at high
densities. Calculations on hcp *He and “He show that
Egsy is larger than in the bec calculations; however, it
is still about 20 times smaller than Egy. Finally, to
illustrate the care one must take in truncating the
cluster expansion, we give a numerical example of a
parameter variation for which the approximation
E02E01+E02V is not valid, that iS, E03V does not
remain small during the variation.

It was indicated in Sec. IT A that the bec lattice should
be most favorable for small Egsy and this is the case.
At low densities, one would expect the cluster expansion
to be especially good. Indeed for R=3.75 A in bce $He,
at the values of 4 and K for which Eny+Eopy is a
minimum, we find Egy=0.1 cal/mole. (See the first
part of Table I.) This may be compared to the value
Epy=—21.6 cal/mole (note En+Epyr=31.3—21.6
=09.7 cal/mole). It is instructive to examine the size of
the contribution of some of the triangles to Eosyp.
Table VII in Appendix B lists the important triangles,
the number of them occurring in the bcc lattice, and
their total contribution to Egsy. It was found that the
inclusion of the first 12 types of triangles gave sufficient
accuracy. (Our accuracy is about 10%,.) In Appendix B
we give a complete discussion of the triangles needed
in the lattice sum. One point is clear from Table VII:
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Internal cancellation is an important effect in making
Eoy small, as we have anticipated above.

The small size of Egsy at the position of the minimum
in Eq+Eoy is not the only consideration necessary.
We must also require that Ey be slowly varying as a
function of the parameters 4 and K near the position
of the minimum in E¢+Eosy. If this is not the case,
then it might turn out that the minimum value of
Eo+Eoev+ Eosy is very different from that of Eo+ Eoey
and at very different values of the variational param-
eters, in which case our approximation procedure would
be invalid. When we include Egy In the variational
procedure, we find the minimum energy is now 9.6
cal/mole (lower than before by only 0.1 cal/mole)
with Eoy=—0.20 cal/mole. The parameter 4 at the
new minimum is greater by 0.12 A~2 than its previous
value of 1.30 A2, while logK is less by only 0.01 from
the value —0.75. (See the second part of Table I1.)

At high densities one expects the cluster expansion
to be poorer than at low densities; and in a certain
sense this is the case. The results for R=3.45 A are
given in Table II. The minimum in E¢-+ Egy is 18.6
cal/mole with 4=1.73 A-2, logK=—0.79. There,
Ey3y=1.3 cal/mole which, indeed, is much larger than
for R=3.75 A. However, if Eoy is included in the
variational procedure, the best parameters are changed
to A=2.08 and logK= —0.83 for which Eqsy=--0.20.
The minimum energy is changed from 18.6 cal/mole to
19.3 cal/mole. From the point of view of the variational
parameters the cluster expansion is not quite as good
at high densities, that is, E,p has more of an effect on
the position of the minimum. But given an accurate
wave function, the small size of Eo3y indicates that the
cluster expansion convergence is about the same at all
densities. The inclusion of Egsy in the calculations has
changed the energy by only a small amount (at most
by 0.7 cal/mole). Eoy is smaller, by two orders of
magnitude, than Egyp which is about —25 cal/mole for
all densities. In Fig. 1 we plot the minimum value of
Ey+Eey and that of Ey-+Eov+Eesy as a function of
the molar volume. We also plot the values of the varia-
tional parameters for the two minimizations in Fig. 2.

We have computed the ground-state energy for bcc
‘He at only one density since it exists over a small

TaBLE II. Results similar to those of Table I for bee *He at a
higher density (R=3.45 A). At higher densities Eg;y has a larger
effect on the wave function.

At minimum in At minimum in

En+Eov En+Eov+Losy
A 1.73 2.08
long —079 —0.83
Eo 41.5 48.8
By —229 —29.7
Egy 1.3 0.2
Eoi+Eoy 18.6 19.1
Ep+Eopy Loy 19.9 19.3
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TaBLE III. Results similar to those of Tables I and II for hep *He
(R=3.75 A, upper table) and *He (R=3.60 A, lower table).

At minimum in At minimum in

Eo+Eoev Eo+Eov+Eosv
A (A2 1.53 1.65
logieK —079 —0.78
En 36.7 39.6
Egy —24.4 —27.3
Egy —1.2 —14
Eo+Eoy 12.3 12.3
En+Ewv+Epy 11.1 10.9
A (&) 2.00 2.10
long —074 '—074:
Ey 34.8 36.5
Egy —35.8 —374
Egy —-1.5 —1.7
Eg-+Eey —1.0 —0.9
Eg+Epv+Eoy —2.5 —2.6

region of temperature and pressure. At a molar volume
of 21.01 cm?, the minimum values are Eop+ Eopy=—2.4
cal/mole and Eo1+Eozv+Eosv= —2.8 cal/mole.

The computation of Egy for the hep lattice consumes
far more computer time than for the bcc lattice since
there are many more triangles in this lattice. (See the
listing in Table VIIT in Appendix B.) One useful
simplification that can be made is to replace the hcp by
an fcc lattice, which has far fewer significant triangles
in its lattice sum. This is a reasonable approximation
because the three-body energies of the two lattices are
almost identical in static lattice calculations,® and
values of Egpyp for the two structures are very nearly
equal in our own calculations. We have checked this
approximation in one case and have found that, for
R=3.60 A in “He, the fcc Eosy=—1.8 cal/mole while
the hep Eosy=—1.7 cal/mole. The difference is negli-
gible for our purposes.

For hep helium (either isotope) use of the same trial
correlation function (1.16) gives an Egy which is
about 10 times larger than in bcc helium. The reason
for this seems to be the lattice effect mentioned above.
Table III illustrates hcp calculations for typical sets of

Fic. 1. Energy (in
cal/mole) versus molar
volume. Curve I, from
Ref. 1 is based on mini-
mizing E¢1+ Eoev ; curve
II is the calculation of
this paper based on mini-
mizing Eo1+Eoev+Eosy.

BCC HELIUM THREE

1 | | 1 |
19 20 21 22 23 24 25

VOLUME (CC/MOLE)

GROUND-STATE ENERGY (CAL/MOLE)
r
T

10 See, for example, B. M. Axilrod, J. Chem. Phys. 19, 724
(1951) or L. Jansen and R. T. Mchnles, Phys. Rev. 104 961
(1956).
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2.2
---I
2.0 —-.860
1.8 —-820
&
= S
1.6} —-780
1.41— —-740
BCC HELIUM THREE S~
1.2 | 1 | | 1 -.700
19 20 21 22 23 24 25

VOLUME (CC/MOLE)

F1G. 2. Variational parameters 4 (in A72) and logipK versus
molar volume. Curve I, from Ref. 1, gives the parameters that
minimize Eon+Eov; curve II gives those that minimize Eo
+Eov+Eqy. Larger A means greater localization of the particles
about their lattice sites.

parameters. (Compare with Table I.) Note in Table III
that although Eosy is larger than the bcc case, it is still
about 20 times smaller than Egy. The energy values
change only slightly in going from the minimum in
E01+E02V to the minimum in E01+Eozv+Eogv. The
wave function changes no more than in the bec SHe
case. It is interesting that the primary effect of the
three-body term on the wave function in these and in
our bec calculations is an increase in the localization of
a particle; the parameter 4 is always increased. (See
Tables I-111 or, Fig. 2.) This is not surprising since the
presence of surrounding third particles, with their
repulsive cores, further limits the motion of the first
particle while it is interacting with the second.

We have not performed calculations of Egy as a
function of density for the hexagonal phase of either
helium isotope, but only at a single density for each.

We have stressed above that it is necessary to limit
the variations in f(r) to those for which Eosy is small
so that the cluster expansion truncation after Egoyp is
meaningful. We can demonstrate a variation which
violates that rule. If we replace o in the f(r) of Eq.
(1.16) by a variational parameter 5, then

f@)=exp{—K[(n/r)*— (/r)*]}. (2.2)

For each value of 4 used, we find the 4 and K for which

TaBLE IV. Results of the variation of the correlation function
parameter 9 to illustrate how the approximation E¢=Eu+Eev
can break down if Eoy becomes large. The quantity Eoq+Eoev
has no minimum as a function of , but E01+E02V+E03V behaves
reasonably. The units of n, 4, and the energies are A, A2, and
cal/mole, respectively. The values of A4 and K are those which
minimize Eo+Epy for the 9 given.

) 2.50 2.556 2.60 2.65
A 1.55 1.44 1.37 1.22
log1K —0.66 —0.77 —0.84 —0.90
Eo+Eoy 12.7 7 11.1 10.3
Eosy —0.5 0.3 0.9 2.3
Ep+Eov+Eoy 12.2 12.0 12.0 12.6
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Ep+Eypy is a minimum. The value of Egy is then
computed. Table IV shows the results. As % increases,
Eon+Eoy decreases in the range shown; indeed, there
is no real minimum at all in this quantity as a function
of n. As  increases, the best value of 4 becomes so small
that the calculation is clearly meaningless. It is only
the inclusion of Egsy in the variation that makes good
sense out of the calculation; Egy increases until a
minimum appears in En+Epv+Eoy as a function
of n. This injunction against arbitrary variations in
f(7) was pointed out in I and has also been stressed by
Brueckner and Frohberg.’ However, despite statements
to the contrary in BF, this restriction does not rule out
the validity of truncating the cluster expansion after
Egy when the analytic form of f(r) is limited to one
for which Ey is always small, as for example, the f(r)
of (2.2) with n<g. It is true, of course, that including
Epyv as a correction (when g=¢) does improve the
calculation, especially in reference to the wave function.
If a differential equation is derived for f(r), as has been
done by Brueckner and Frohberg® and by us,! then
this amounts to an arbitrary variation so that Ey
must be included in the calculations.

We should point out that we have not studied the
effect of varying 9 in the calculations for the hcp lattice.
The fact that Eosy is 10 times larger there than in the
bce case may be due to a poorer choice of 7, i.e., n=g.
Indeed, we expect Eoy to increase from its negative
value, pass through zero, and then become positive as g
increases. (See Table IV.) It may be that the minimum
in Ey+Eosv+Eosv, as a function of 5, will occur when
Esy is nearer zero than it is presently. This possibility
will be studied in future work.

III. FURTHER RESULTS FOR bcc He

Since the inclusion of the three-body term in the
variational calculation has improved the wave function

120
100}
=
=
< 80|
w
@
pml
@ 60
w
o
o
40 5
BCC HELIUM THREE
20 l 1 | I !
9 20 al 22 23 24 25

VOLUME (CC/MOLE)

F16. 3. Pressure P versus molar volume, Curve I, is from Ref. 1;
curve II, from this work. The data are those of Sydoriak, Mills,
and Grilly (Ref. 12) and of Edwards, Baum, Brewer, Daunt, and
McWilliams (Ref. 13).

U'W. J. Mullin and L. H. Nosanow, Bull. Am. Phys. Soc. 11,
126 (1966).
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BCC HELIUM THREE

1 | 1 1
19 20 21 22 23 24 25

F16. 4. Compressibility  versus molar volume. Curve I, is from
Ref. 1; curve II, from this work. The data are those of Adams,
Straty, and Wall (Ref. 14).

for bee ®He, it is worth while computing the other zero-
temperature properties of bcc *He. We use the new
values of 4 and K to compute the pressure, compressi-
bility, sound velocities, Debye temperature, and ex-
change integral, as a function of density. We also
compute the sound velocities for bce “He.

We can obtain the pressure and compressibility by use
of the formulas P=—dE,/dV and k=—(dV/dP)/V.
We numerically differentiate Eg+Eosv+Eosy and
compare the results with those obtained in I where
Ey+Ewy was analyzed. Figures 3 and 4 show our
results. The dashed curves are the results of I for a
Gaussian ¢. The agreement with experiment?—* is not
changed much; the pressure is perhaps a bit too high
now and the compressibility a bit too low.
£ The pressure and compressibility results presented
here are in much better agreement with experiment
than are the ground-state energy calculations. We re-
peat an argument given in I to explain this effect. Our
values for Ey for beec 3He are about 10 cal/mole too
high. A typical value of E, is 10 cal/mole which is
composed of Eyp=34 cal/mole and Eoy+Eoy=—24
cal/mole. Improvements in the theory will probably
lower both Eo; and Eoev+Eosv; a 109, to 15%, lowering
in each would bring about agreement with the correct
energy. Hence, each of the quantities is probably
accurate to ~159%,. Since it turns out that Eoy+Eosy
is nearly constant over the whole density range with
E,, containing almost all of the density dependence, it
is reasonable that we can obtain the pressure and
compressibility to about 15%,.

It is useful to try to understand why including Eosy
in the variational procedure has had the effects illus-
trated in Figs. 3 and 4, and perhaps to try to explain
some of the discrepancies found. In I, the fact that the
calculated pressures were somewhat too low and the

28, G. Sydoriak, R. L. Mills, and E. R. Grilly, Phys. Rev.
Letters 4, 495 (1960).

3D. 0. Edwards, J. L. Baum, D. F. Brewer, J. G. Daunt, and
A. S. McWilliams, Helium Three (Ohio State University Press,
Columbus, Ohio, 1960).

“E. D. Adams, G. C. Straty, and E. L. Wall, Phys. Rev.
Letters 15, 549 (1965).
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compressibilities too high (when the numerical ¢ was
used) was blamed on deficiencies in f(r). (See Sec. VII
of I.) It was claimed that f(r) “softened” the hard core
of the effective potential too much by vanishing too
rapidly for small 7. [That is, the small » form of f(r)
should be exp(—constant/7%) rather than our exp
(—constant/7?) as discussed after Eq. (2.8) of 1.]
While this deficiency is really present in f(r), it is of
importance only for #»<o; the pressure and compressi-
bility depend on f(r) more strongly in the region r=g.
Thus, we now feel that explanation is insufficient and
that an important cause of the low pressures and high
compressibilities of I is the neglect of Egsy in that paper.
The effect that a third particle has on a pair of interact-
ing particles, especially at high densities, is to restrict
the motion of the particles. From a single-particle point
of view, one would expect that a particle would now
see an effective potential well which has a higher barrier.
For Gaussian single-particle functions this means the
parameter 4 will be increased, and by a greater amount
at larger densities. This effect is shown in Fig. 2 where
the old and new A values are plotted. Since the slope
of the new A vs molar volume curve is more nega-
tive than that of I, the pressures computed are some-
what larger and the compressibility lower. If now one
were able to make use of the more accurate numerical
¢, rather than the Gaussian, we know from I that the
pressures would be slightly lowered and the compressi-
bility slightly raised, bringing them into even better
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Fic. 5. Longitudinal sound velocities versus molar volume, in
several symmetry directions. Curves I, from Ref. 15, are based
on the parameters which minimize Eq-+Ey; curves II are
based ;)n the parameters calculated in this work. Data are from
Ref. 17.
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F1c. 6. Transverse sound velocities versus molar volume in
several symmetry directions. Curve I is from Ref. 15; curve II
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agreement with experiment. However, as stated above,
our inaccuracy in pressure and compressibility due to
the uncertainty in Ey is about 159, and the dis-
crepancies we are considering are not very much larger
than that. Hence a discussion of discrepancies in those
two quantities will be more meaningful when the
ground-state energy, and Eg, have been more accurately
computed.

We have also recomputed the sound velocities!s in
bee ®He and “He. The results are shown in Figs. 5 and 6
and in Table V. The experimental results!® are also
shown. The density dependence of the calculated
longitudinal sound velocities is improved over those

TaBLE V. The results of our calculation of the sound velocities
(in m/sec) for bce ‘He at a molar volume of 21.01 cm?®.

Symmetry

direction Longitudinal Transverse
100 449 igg )
110 555 360
111 586 242(2)
expt 540-555= 337-351b

a See Ref. 16.
b F, P, Lipschultz and D. M. Lee, Phys. Rev. Letters 14, 1017 (1965).

16 L, H. Nosanow and N. R. Werthamer, Phys. Rev. Letters
15, 618 (1965).

16 J, H. Vignos and H. A. Fairbank, in Proceedings of the Eighth
International Conference on Low Temperature Physics (Butterworth
Scientific Publications, Ltd., London, 1962); W. R. Abel, A. C.
Anderson, and J. C. Wheatley, Phys. Rev. Letters 7, 299 (1961).
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F1G. 7. Debye 6 versus molar volume. Curve I is from Ref. 15;
curve IT is from this work. Measurements are from Ref. 17.

calculated in Ref. 15 because of the better 4 values
used ; however, the sum rule [Eq. (5) of Ref. 15] which
was used as a test of the approximations of Ref. 15 is
now satisfied to within 109, (instead of the 39, found
with the previous wave function). The zero-temperature
limit of the Debye © is again computed by the method
of Ref. 15, and the curves are shown in Fig. 7. The
experimental points are those of Heltemes and
Swenson.!”

We use the new values of the wave-function param-
eters, 4 and K, gotten by minimizing Eo+Eoev+ Eosv,
and the cluster expansion methods described in a
previous paper? to calculate improved values of the
exchange integral J as a function of density for bcc
SHe. Figure 8 is a plot of the spin alignment tempera-
ture, given by

T.=%|7], (3.1)

where z is the number of nearest neighbors. The previous
calculation, with results denoted by I in the figure, gave
T, values of nearly the right magnitude but they have
the wrong density dependence when compared with the
experimental results.’® Use of the new parameters leads
to results, indicated by II, which still have the correct
order of magnitude and now have an improved density
dependence. In Ref. 4, we correctly attributed the
mistaken density dependence of our 7', to errors in
¢(r), although for the wrong reasons. At that time we
did not realize the large effect that Eo3y would have on
the single-particle function. Since the exchange integral
depends sensitively on the overlap of neighboring
single-particle functions, the increase in 4 values, from
the inclusion of Egsy in the variations, makes the com-
puted |J| values smaller than those of Ref. 4 at high
densities. The change in K (Fig. 2) at high densities
has negligible effect on J. Apparently the decrease of
the exchange integral with increasing density occurs
because the exchange of two particles is impeded by the
1“ E. C. Heltemes and C. A. Swenson, Phys. Rev. 128, 1512
( ?36%{) L. Garwin and A. Landesman, Phys. Rev. 133, A1503
(1964) ; M. G. Richards, J. Hatton, and R. P. Giffard, in Proceed-
ings of the Ninth Iniernational Conference on Low Temperature
Physics (Plenum Press, Inc., New York, 1965), p. 219; R. C.
Richardson, E. Hunt, and H. Meyer, Phys. Rev. 138, A1326

(1965); and R. C. Richardson, A. Landesman, E. Hunt, and
H. Meyer, ibid. 146, 244 (1966).
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presence of the hard cores of the surrounding particles,
and, of course, this effect is greater at larger densities.

Our new T, values are uniformly lower than experi-
ment because of the remaining inaccuracies of our
analytic wave function. The tail of the Gaussian single-
particle function ¢ cuts off somewhat faster than that
of the numerical ¢. (This is shown, for example, in
Figs. 1 and 2 of 1) The more accurate tail of the
numerical ¢ will increase the overlap and hence |J| as
well. Certainly the replacement of our analytic f(r) by
one which is more accurate at small » values will also
have an effect on the value of |J|, but at this time it
is not clear to us just what this effect will be.

IV. THE BRUECKNER-FROHBERG
EXPANSION

In a recent paper, Brueckner and Frohberg have
outlined a variational calculation in which the energy
upper-bound is evaluated by an expansion which
appears to be similar to ours. Here we wish to point out
the fundamental differences between their expansion
and ours. Further, we report a few calculations of the
leading correction term of their expansion. On a basis
of these results, it seems likely that their expansion
converges too slowly to be useful in calculating the
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F16. 8. Spin-alignment temperature 7', versus nearest-neighbor
distance R. Curve I is from Ref. 4; curve II is gotten using the
variational parameters computed in this paper by including Eosy
in the energy minimization. The density dependence of curve 11
is now in improved agreement with the experiments of Ref. 18.
Curve II is too low for reasons discussed in the text. The experi-
mental curve of Garwin and Landesman (Ref. 18) should be in
close agreement with the other data, but they failed to take the
““10/3 effect’” into account. [See the paper of Richardson, Landes-
man, Hunt, and Meyer (Ref. 18) for a discussion of this.]
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properties of crystalline helium by the method they
propose.

The BF expansion requires the wave function to be
factorable into a product of single-particle and pair
functions. Hence, it is not as general as the cluster
expansion used in I, which is valid for an arbitrary wave
function. The BF expansion is written in terms of pair
indices, a, 8, etc., which represent, for example, ¢4, ik,
etc. The energy is

Ey= é’o-i-Z él(a)+2ﬂ 82(015)
+ Z 83(‘167)"' Tty

a8,

(4.1)

where the sums are restricted so that each pair is
counted only once. Here 8,(a B - - -) is not an n-particle
term, but contains, as its leading elements, all possible
configurations which have #» factors of f? regardless of
how many single-particle coordinates appear in each of
these elements. Thus, &, is strictly a two-particle term;
but the &, terms describe only part of the three-particle
interaction, and the &8; terms describe the rest of the
three-particle interaction as well as part of the four-
particle interaction. These terms, which we also convert
to single-particle notation, are §,=3A4N#%2/4m,

(Vafd) (Viifii®)
Z ()= =32’ ,
« « {(fo?) wi (fi®)

Va_l_ V a2 2
2&@m=z{« GELELY 10— )|
B ] (fafs

. {(Vﬁ i fir®) <Vijf1?j2>}
il pfady (i ) (4.2)

Va+V +V7 a2 2 'y2

5 8a(af) =3 {(( s+ V) LIS
o8 o8 (flfE 1)

— 82(aB)— 8a(ay)— 82(BY)
+&@+&@+&m}

Note that the first two BF terms are the same as ours.
The three-body part of 3 &; is

(Viifi fis fur®)
83 =32 {\———
<aza:7 )3—body zzf:k{ (fi [ f®)
_2<Viifij2fik2>L<Vﬁfii2> @3)
( f ij2f ilc2> (f i1'2>

Two kinds of four-body terms containing factors like
(Vijfijzfjszk12> and (Vi;fi?falf?), respectively, also
appear in ) &, since they each have three f.?s. The
total three-body term (no other sums over just three
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TaBLE VI. Test of the Brueckner-Frohberg expansion. The
higher order term Y &, is retained in BF (Ref. 5) while another
three-body term (3 83)3 body is neglected; the sum of these two
is our three-body term Egsy. The neglect of (3 83)s body, Which is
larger than Y &; during the variation of the parameter », has a
substantial effect on the energy and wave function results since
the BF energy estimate, &+ &1+ &2, has no minimum for
71<2.65 A, while our estimate, Eo1+Eo2v+Eosv, has a minimum
near 7=2.556 A. Note &+2 &=En-+Epv. Energies are in
cal/mole. The values of 4, K, and Eq+Eepv-+Eesy are from
Table IV.

n=2556%  1=2.654
A=144 A2 A=122 A2
logioK =—0.77 logicK =—0.90
> 8 —0.1 1.0
(X 83)3 body 0.4 13
LEgy 0.3 2.3
o+ &1+ & 11.6 11.3
En+Epv+Eoy 12.0 12.6

indices appear anywhere else in the expansion) is

zet(ze)
S AR e D

The term (Vi;fi fu2)/{fs#fa?), which does not appear
at all in the usual cluster expansion for a liquid or a gas,
has cancelled out leaving just the complete three-body
term, Egv, which we have treated in this paper. Thus
it may be that the cluster expansion used in I is a
partial summation of the BF expansion.

The analysis described in BF involves truncating the
expansion after the ) 8, term. The terms retained are
varied to yield a differential equation for f;;, and it is
the contention of the authors that the inclusion of the
>~ &, term will allow such a variation to be made. We
have tested this truncation procedure by numerical
evaluation of Y &; and (X &3)3 poay using (2.2). As a
typical example, we take R=3.65 A in bcc *He with
n=2.556 A and 2.65 A; the appropriate values of 4
and logyK are taken from Table IV. For n=2.556 A
we see, in Table VI, that the higher order term
(X 83)3 voay, Which is dropped, is actually larger in
magnitude then the higher order term Y &, which is
kept. However, both terms are quite small compared
to X 81(=Ev)=—25 cal/mole. The calculation for
7n=2.65 A demonstrates how the neglect of part of the
total three-body term has a serious effect on the wave
function. Table VI shows that the neglected term,
(X 83)3boay, 1s sufficiently large that the quantity
&+ 81+ 82 has not yet reached a minimum at
n=2.65 A and that it can only reach a minimum when
> &, is so large that the convergence of the expansion
is doubtful. On the other hand, in our 5 variation
(Table IV and the last line of Table V) we found that
including the total three-body term Egy pushed the
minimum back to 5=2.56 A, where Eosy is very small.



184

Thus, not only are the wave functions given by the two
methods very different, but also the rate of convergence
of our expansion in the neighborhood of the minimum
seems to be faster than for the BF expansion.

It might be argued that our regrouping of the BF
terms, that is, the splitting of &3 into (O 83)3 boay
+ (O 83)aboay, is not a valid way of analyzing their
method, so that, although (¥ 835)3poay is not small
compared to Y &, the complete 3 &; is small because
of cancellation. Although we cannot prove that this
cancellation does not occur, we see no physical reason
why it should.

We must note that we have used our correlation
function in this analysis, although the BF function
should be quite different. In principle, the BF method
gives a separate correlation function for each pair of
particles and coupled differential equations are solved
for each function; also, the boundary condition to be
imposed on each function at large distances may differ
from ours. However, since the method involves arbitrary
variations with respect to each correlation function, it
seems quite possible that a situation analogous to the
one we have described will arise, that is, one for which
the minimum in the retained terms of the expansion
occurs when the neglected three-body terms are im-
portant, so that the calculated wave function is not a
good approximation to the actual one. In order to
avoid this undesirable situation we feel that further
constraints must be placed on the solutions of their
differential equations. Perhaps including all of Eosy is
sufficient to keep all higher order terms small ; however,
some recent work by us!! indicates that even further
constraints will be necessary to remove long-range
correlation effects which cannot be treated by cluster
expansion techniques. We will discuss the significance
of such long-range effects further in the next section.

V. SUMMARY AND DISCUSSION

The calculations reported in this paper indicate that
the physical properties of the state given by our trial
wave function are adequately described within the
approximation of I, in which the cluster expansion was
truncated at E¢=2En-+Eey. This fact was demon-
strated by showing that the inclusion of Egsy causes
only small changes in the energy. Furthermore, the
reasonable agreement of the calculated quantities with
the experimental properties of solid helium indicates
that our trial wave function is a fair approximation to
the true ground state. Of course, the approximation
of I limits the types of trial correlation functions that
we can use. The variation of 5 in Sec. II showed that,
if we do not keep f(r) short-ranged, the higher order
terms in the cluster expansion can become large.

Although the three-body term is small and Eo1+Eoav
is a good approximation to the upper bound on the
ground-state energy Eo, the inclusion of Egsy in the
calculation does give a noticeable improvement in the
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accuracy of the wave function. The values of the wave-
function parameters 4 and K are changed, especially at
high densities. When other ground-state properties of
bee *He are computed as a function of density using the
improved wave function, it is found that agreement
with experiment is either essentially unchanged or
improved.

Since the calculated energies are still about 10
cal/mole higher than the experimental ones, it is clear
that the trial wave function needs to be improved. We
have a ready shown in I that using a numerical single-
particle function will only lower the energy by about
one cal/mole, hence, this is not the answer. We have
made some efforts! to derive and solve a differential
equation for an f(r) which is constrained to be short-
ranged so that the cluster expansion will converge.
Although this work is not yet complete, it is likely that
the energy will be lowered by only a few cal/mole.
Since the remaining discrepancy is about 5 cal/mole,
we feel that it is probably a basic physical effect and
will not be remedied without a fundamental change in
the trial wave function. One major possibility is that
this energy might come from including a more realistic
phonon spectrum in the problem.!519:% In effect, this
means including long-range correlations, which cannot
be treated by cluster expansion methods. In his calcu-
lations on neon, Koehler?® has found that this effect
lowers the energy by 129, of the kinetic energy; if the
same lowering were to obtain in solid helium, it would
amount to approximately 4 cal/mole.
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APPENDIX A: REDUCTION OF THE
THREE-BODY INTEGRAL

Here we show how to reduce the integral
(Viifi#fif?) to a form suitable for numerical evalua-
tion so that the three-body term Eopy given by Eq.
(1.12) may be studied. Using normalized Gaussian
single-particle functions, we have

I=(Visf1fos’ foi)
= (4/m)" / dr, / drs / drsV () f2(u) f2(2) f*(w)

Xexp{—A[(r:1— R1)*+ (r=— Ro)*+ (,— Re)* ]}, (A1)
where #, v, and w are the magnitudes of the vectors
(A2)
and Ry, Ro, R; are the positions of the three lattice

U=r;—ry, V=Ireo—I3, W=I3—Ii,

(11996]5)). R. Fredkin and N. R. Werthamer, Phys. Rev. 138, A1527
2T, R. Kochler, Phys. Rev. 144, 789 (1966).
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sites. We want to reduce the ninefold integral of (A1)
to a three-dimensional integration over the variables
%, v, and w.

For convenience let

a= R1—'R2, b= Rz—-Ra, Cc= Rs—'Rl (A3)

and then take the origin of coordinates at R;. The
exponential factor in (A1) becomes

exp{ — A[ (r1)*+ (r2+a)>+ (13— c)*]} .

The three integrations over the center-of-mass coordi-
nates may be carried out immediately. After substi-
tuting uw and w for r; and r; and then integrating over 1y,
we find

I=3—3’2(A/7r)3'/oo du qu('I,t)fz(u)foo dw

X2 f2(w) / o, / % f2(2)

Xexp{— (4/3) [+ +w+a*+ b+

—2u-(b—a)—2w-(b—c)]}, (A4)
where dQ, and dQ, are the elements of solid angle of
vectors u and w, respectively, and where we have used
the equality v=— (u+}w).

It is possible to simplify considerably the dot products
in (A4) before doing the angular integrations. We
choose the z axis for u along b—c and the x axis in the
plane of the triangle of lattice vectors a, b, and ¢. We
mayv then write b—c and b—a in component form

b—c=oqi,, (AS5)
b—a=pi,+7i,, (A6)
where 1, and i, are unit vectors and
a= (202+2c2—a?)112,
B=06Aus./, (A7)

y= (52— a®—¢c?)/2a,

with the area of the triangle with sides ¢, b, and ¢ given
by
Aspo=1[2(a?0*+-0%c*+-c%a?) — (a*+-b*+-c) ]2, (A8)
The next step is to express w in a coordinate system
whose z axis is aligned along u. Then the simplest way
to compute the dot product w- (b—c¢) is to construct a
rotation matrix® to express w in this new coordinate
system. One finds

(A9)
(A10)

where 6, and ¢, are the angular coordinates of u in the
fixed coordinate system and 6,, and ¢, are the angular

w - (b—c¢)=wa(cosh, cosf,—sinb,, cose, sind,),

u- (b—a)=u(8 cos¢, sinf,+y cosb,),

2 See, for example, H. Goldstein, Classical Mechanics (Addison-
Wesley Publishing Company, Cambridge, Massachusetts, 1953),

p- 107
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coordinates of w in the coordinate system whose z axis
lies along u. Note that (A9) is independent of ¢, because
the fixed z axis has been chosen along b—c, and that v is
independent of ¢, because of our choice of coordinate
system for w.

Our integral (A4) now becomes

I=3“""2(A/7r)3/‘0o du qu(u)ﬁ(u)[w dw

Xw?f2(w) / ’ dB,,(sind,,) f2(v)

Xexp[— (4/3) @2+ v*+w*+ a2+ 52+ c2) ]

T 2T 2T
X / db,,(sinf,,) / doy, / dow
0 0 0

Xexp[[(24/3) (uf cospy sinb,+-uy cosby
+wa cosby, cosf,—wa sind,, cose,, sinfy,) ]. (All)

If we let
A=cosf,,

D= (24/3) (wy+wa)),
E=(24/3)(uB),
F=(24/3)wa(1—\)12,

then the last three angular integrations of (A1l) may
be written

27 27 27
L= / db / i / db, sinél
0 0 0

Xexp{D cost,+ (E cospy+F cosey) sind,} .

The ¢, and ¢, integrations now could be performed
immediately but that is not the best way to proceed.
Instead note that

E cospy~+F cosgy,

= (E+F) cos(qbu—;—d’w) cos(¢u;¢w)

S1n

(A12)

(A13)

—(E—F) sin( ) . (Al4)

so that the substitutions

q>=%(¢u+¢w) ) ¥=%(¢u—buw) (A]-S)
lead to
27 2T 2m
I1=/ d\I/f d@f df sinf
0 0 0
Xexp[ (E—F) cos¥ cos® sinf
+ (E+F) sin¥ sin® sinf+D cosf], (A16)



186

where we have made use of the symmetries of the
integrand to fix the ¥ and ® limits of integration at the
values shown. Equation (A16) has the form

Il=/:rd\1f/dﬂsexp{p-s/]sf}

27
=47r[ d¥ sinh|p|/|p|, (A17)
0
where the vector p has components
p=((E—F) cos¥, (E+F) sin¥,D), (Al18)
so that
| p| =(D+ (E+F)?—4EF cos>¥)'2.  (A19)
If we define
2 )2 2
P*=D*+(E+F)?, (A20)
Q=4EF/P?,
then @ iy
27 sinh(P(1—Q cos?¥)1/2
11=41rf ar g (A21)
0 P(1—Q cos?¥)1/2

Our integral (A11) has now been reduced to a four-
dimensional form with a rather simple integrand. It is
possible to evaluate it numerically in its present form;
however, we find that expressing I; in a power series
is more convenient. If we let

t=—PQ sin®¥/2
and if (A22)

in= (7/2P)?[ 4 1/5(P)

is the modified spherical Bessel function, then a series
for the integrand of (A21) may be derived by differ-
entiating the identity?

cosh((P2+-2P1)12)/P= 3" tri, 1(P)/n! (A23)
=0
with respect to £. We integrate the resulting series term
by term to give finally
L(P,Q)=8r*" 3 T'(n+3)
n=0

X (=PQ/2)in(P)/(T (n+1)).

This expression is useful for small PQ. For larger PQ,
say PQ>15, we have found a suitable asymptotic
series given by

(A24)

8

o SOy

2 n
XIn(P)(;é) JT(41). (A25)

II(P)Q) =
4

22 H. A. Antosiewicz, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 445.
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This series may be derived by expressing the series
(A24) as a Barnes’s contour integral?® and then de-
forming the infinite semicircle of the contour from the
right half-plane to the left half-plane.

We may now write down the final form for the
integral I. We replace the 6, integration of (A11) with

an integration over v by using
2 =u?+w?+2uw cosb,,, (A26)

which finally leads us to

0 0 utw
I=(4/mB) [ du [ dw f P
0 0 |lu—w|

XV (@) f*(u) f*(0) f* (w)urw

X {eXp[_ (A/3) (u2+v2+w2+ a?+ b2+62)]}I1(PaQ) )
(A27)

where the combination of (A7), (A12), (A20), and
(A26) yields

P=(24/3)[3(u2a>+ 2B+
— 1 (12212 (206D + 24A wowBare ]2,

and

(A28)

Q= (ZA/3)248Auvaabb‘/P2’

with Ay, and Agse given by (A8).

The study of Egsv is based on the numerical evalua-
tion of the power series for I;(P,Q) and then of the
triple integral indicated in (A27). Since internal cancel-
lation always causes the loss of at least one significant
digit, we always computed integrals like I to four
figures to insure two digits in Egsy.

APPENDIX B: TRIANGLES IN THE
LATTICE SUM

In this Appendix we list the important triangles of
the lattice sum of the calculation of Egv; we give
typical values for the contributions of these; and we
discuss some physical reasons why certain important
triangles should make the contributions indicated. We
will not go into the details of the triangle counting
method; such methods are not difficult to devise.

In the bec lattice, it was found that including 12 types
of triangles gave Eoy with an accuracy of better than
10%. In Table VII we list these important triangles,
the number of each occurring in the bec lattice, and
the total contribution of each type to Eo3y. The most
important triangles in the lattice sum are given in the
upper half of Table VII. The lower half shows the
contributions of the most important of the triangles
which were dropped from the lattice sum in all calcula-
tions of Eosy except for a few test cases. It turns out
that a triangle’s contribution is small if the side

2 E. T. Whittaker and G. N. Watson, A Course in Modern
Analysis (Cambridge University Press, Cambridge, England,
1952), 4th ed., p. 86.
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a(=|R;—R;|/R) is large [because the potential V (r;;)
becomes small] or if either & or ¢ (=|R;—Ry|/R and
| Rx—Rs|/R) is large (because correlation effects are
important at short range only). Note, however, that it
is again internal cancellation which makes the total
contribution of these “higher order” triangles small.
In Table VIII we give a simultaneous listing of the
primary triangles for the fcc and hep lattices. In the
one case tested, we found that the truncation of the
lattice sum at the 16 fcc triangles and 25 hcp triangles
listed in the table caused only a 29, error. We should
note that a crude estimate of the values of the param-
eters, 4 and K, that minimize Ey+Eopr+Eosy may
be obtained by approximating Eoy with the contribu-
tions from only the first four types of triangles in the
bec lattice or the first six in the fcc. This means that
the contributions from the remaining triangles in the
lattice sum are less sensitive to changes in 4 or K.

A quick examination of the individual triangle
contributions in the tables shows that internal cancel-
lation is an important factor in making Eo3y small. For
example, we have always found that triangle No. 1
yields a negative contribution and No. 2 a positive one
for all lattice types. It is useful to understand why some

TasirE VII. Listing of triangles in the bce lattice and their con-
tribution to Eev [Eq. (1.12)] in cal/mole for a set of typical
parameters. The triangle sides a, b, and ¢ are given in units of the
nearest-neighbor distance. Note that ¢ is the side connecting
particles interacting through the Lennard-Jones potential in Egsy.
The upper half of the table lists the triangles which were included
in every Egv calculation and the sum of their contributions. The
lower half lists the most important of the triangles which were
neglected in the Egy lattice sum to show the approximate error
in that sum. Results are for bce ®He with R=3.65 A (4=1.44 A2
and log;oK = —0.75).

Number of Contribution

a? b? ¢ triangles to Eosy
1 1 4/3 48 —0.60
1 1 8/3 48 1.69
1 1 4 16 —0.03
1 4/3 11/3 48 —0.49
4/3 1 1 24 —-0.27
4/3 1 11/3 48 —0.62
4/3 4/3 8/3 48 —0.004
4/3 4/3 16/3 12 —0.03
8/3 1 1 24 0.46
8/3 1 11/3 96 —0.10
11/3 1 4/3 48 0.16
11/3 1 8/3 96 0.11
total  0.28
1 8/3 11/3 96 0.04
4/3 8/3 4 48 —0.005
8/3 4/3 4/3 24 0.02
8/3 4/3 4 48 —0.06
8/3 8/3 8/3 48 —0.03
8/3 8/3 16/3 48 —0.01
11/3 1 4 48 0.002
11/3 1 16/3 48 —0.03
11/3 4/3 11/3 96 —0.01
11/3 8/3 11/3 144 —0.01
4 1 1 8 0.05
4 1 11/3 48 0.02
4 4/3 8/3 48 —0.01
total —0.04
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TasLE VIII. Listing similar to Table VI of important triangles
in the fcc and hep lattice sums of Eov. We have used the fcc
lattice sum, which has many fewer triangles, in place of the hcp
sum, in the calculation of Sec. II, because of the approximate
equality of the two sums. Results are for close-packed “He,
R=3.50 & (4=2.15 A2 and log1cK = —0.75).

(fcc lattice) (hep lattice)

Number Contri- Number Contri-

of bution of bution

@ b c? triangles to Egsy triangles to Egsv
1 1 1 48 —1.68 48 —1.68
1 1 2 48 —0.70 48 0.70
1 1 8/3 0 0 12 0.05
1 1 3 96 —0.30 72 —0.22
1 1 11/3 0 0 24 —0.44
1 1 4 24 —0.60 12 —0.30

1 2 3 48 0.003 36 0.002
1 2 11/3 0 0 24 —0.04
1 2 5 48 —0.14 24 —0.07
1 2 17/3 0 0 12 —0.04
2 1 1 24 0.39 24 0.39
2 1 3 48 —0.08 36 0.01
2 1 11/3 0 0 24 —0.06
2 1 5 48 —0.15 24 —0.08
2 1 17/3 0 0 12 —0.04
3 1 1 48 0.28 36 0.21
3 1 2 48 0.04 36 0.03
3 1 3 96 0.02 72 0.02

3 1 0 0 24 —0.004
3 1 4 96 —0.03 48 —0.01
3 1 5 96 —0.06 48 —0.03
3 1 17/3 0 0 24 —0.02
3 1 6 48 —0.04 36 —0.03
3 1 20/3 0 0 24 —0.02
3 1 7 96 —0.07 48 —0.04
Total —1.71 —-1.72

triangles give a positive or negative contribution so
that cancellation may take place. In the bcc lattice,
triangle No. 1 is almost equilateral with sides in the
ratio 1:1:1.15 (it is equilateral in the close-packed case).
Because the hard core of the third particle can come in
between them, this means that two interacting nearest
neighbors are held farther apart on the average than if
the third particle were not present. [See Fig. 9(a).]
Because the two particles are held farther apart, they
see less of each other’s repulsive potential and more of
the attractive part. Hence the first term of Egy,
Eq. (1.12), is more negative than the second and their

(b)

F16. 9. Two types of triangles in the lattice sum. (a) Particles
4 and j interact via the Lennard-Jones potential (double line);
particle & can interpose its hard core in between ¢ and j in an
equilateral triangle and force them farther apart on the average
than if 2 were absent. This makes triangle (a)’s contribution to
Egy negative if 2 and j are nearest neighbors. (b) In an obtuse
triangle, particle % tends to push j toward ¢ which makes (b)’s
contribution to Egsy positive if 7 and j are nearest neighbors.,
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difference is negative. Triangle No. 2, on the other hand,
is obtuse, with the two particles, 7 and 7, which interact
via the Lennard-Jones potential on one leg of the
obtuse angle. Thus the hard core of the third particle,
k, tends to push j toward ¢ [Fig. 9(b)], so that if 7 and
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7 are nearest neighbors, they see more of each other’s
repulsive potential. The first term of Egsy is larger than
the second, so the difference is positive. Since obtuse
and acute triangles occur in every lattice, there will
always be cancellation in the sum.
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Power Series of Kinetic Theory. I. Perturbation Expansion*
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In recent years intensive efforts have been made to develop, from first principles, systematic corrections
to the established kinetic equations, and thereby obtain an understanding of the approach to thermal
equilibrium for arbitrary macroscopic systems. These efforts, dominated by Bogoliubov’s synchronization
technique and “functional assumption,” have met with only partial success. In fact, the method of syn-
chronization has been shown to lead to serious difficulties when carried beyond the lowest order results,
so that an H theorem is lacking for the higher order terms. To discuss the problem in full generality, we con-
struct in this paper the direct perturbation series. (and in the follow paper, Bogoliubov’s synchronized
series) to all orders in a parameter e that can be identified with the potential strength. An explicit expression
is obtained for the »th-order term of the s-body distribution function and a simple, systematic graphical
representation of all the termsis derived. The result is obtained by the use of a matrix formalism that allows
an effective decoupling of the Bogoliubov-Born-Green- Kirkwood- Yvon equations, and thereby, for a de-
tailed analysis of the perturbation series. Bogoliubov’s basic result concerning the secular behavior of per-
turbation theory (F2~+t) is deduced here as a special case of a general theorem: The yth-order term for the
s-body distribution grows for large times as a polynomial in time whose leading power is [»/2] independ-

ent of s.

I. INTRODUCTION

HE aim of nonequilibrium statistical mechanics is

to determine the evolution in time of systems con-

taining a large number of interacting particles, and

thereby describe the irreversible”approach to thermal

equilibrium. From the basic dynamical equations one
seeks an equation of the form

af/ot=A[f], 1.1)

called the kinetic equation, where 4 is a functional of
the one particle distribution function f(x,p,f), and has
no explicit time dependence. Outstanding examples of
such Markovian! equations which correspond to dif-
ferent gaseous regimes, are the Boltzmann equation
for neutral, dilute gases, the Landau? equation for
weakly interacting, high-temperature systems, and the
kinetic equation with Debye shielding originally dis-
covered by Bogoliubov,? and referred to as the Balescu-
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search of the Office of Aerospace Research under Contract No.
AF49(638)1461.
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Guernsey-Lenard equation. These equations constitute
the lowest order term in expansions of Liouville’s
equation appropriate for the regime considered.* In
this work we will be concerned with an expansion of
the Louville equation which we shall analyze to all
orders.’

(i) The outstanding open problem in nonequilibrium
theory is that of determining systematically the higher
order corrections to these kinetic equations, if they
exist. For example, the Boltzmann equationis a valid
description of dilute, short-range gases, so that only
binary collisions are taken into account. This restric-
tion has the consequence that the transport coefficients
are independent of the density. Furthermore, the bulk
viscosity coefficient is not given by the Boltzmann
equation (it vanishes identically). However, for dense
gases, (p>5 atm, T'~300°K), the transport coefficients
of monatomic gases are known to be density-dependent
and the bulk viscosity is nonzero. Therefore, a more
general theory is required which should yield the well-
established kinetic equations in lowest approximation.
If such general kinetic equations could be derived from

Physics (Moscow, 1946) [English transl.: E. Gora, in Studies in
Statistical Mechanics, edited by J. de Boer and G. Uhlenbeck
(North-Holland Publishing Company, Amsterdam, 1962), Vol. I.]
4 G. Sandri, Ann. Phys. (N. Y.) 24, 332 (1963); 24, 380 (1963).
5P. Goldberg and G. Sandri, Bull. Am. Phys. Soc. 11, 555
(1966).



