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grate out to r„.In general this will not give s(r„)
=g(r„)=0 as required by the boundary conditions, and
from the mismatch at r„we are able to determine an
improved e and p for the next trial. We repeat the
procedure until our iterations for e and p "settle down. "

Experiment has shown" that the above method does
not produce good eigenfunctions throughout the whole
range of r. The eigenfunctions are important in our
case since they are used to get the Hartree potential
for the subsequent major iteration. Hence, we use the
above method to get a rough idea of the correct eigen-
values and, using these as starting values, we use the
following method (also suggested by Fox) to obtain the
final results. We integrate both forwards and backwards
and our aim is to have the forward and backward solu-
tions meet at some central point r, with the same height
and slope. We keep the same forward boundary condi-
tions as before and, in addition, we take as the starting

conditions for our backward solution

s(r„)=0,

s(r„,)=0.001, g(r„ t) = q.

(831a)

(831b)

The backward solution must be associated with a factor
k to be determined so that the normalization of the
backward solution is the same as that of the forward
solution. After an initial guess, the new e, p, g, and h
for the next trial are determined from the conditions
required in order that the forward and backward solu-
tions meet at r, with no discontinuity. This procedure
is repeated until the iterations "settle down" for e in
particular, and this, then, is the solution for the eigen-
function $s(r),g(r)$ and the single-particle energy eo.

By "settle down" we mean typically in our calculations
that we continue iterating until the change is less than
0.5%%uo of the last-obtained e.
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1t is shown that if the direct correlation function c(r) in classical statistical mechanics vanishes beyond
a range E, then the equation relating it to the radial distribution function may be used to derive a further
equation which involves both functions only over the range (O,R). The analytic solution of the Percus-
Yevick (PY) equation for hard spheres follows as an immediate consequence, and since c (r) normally tends
rapidly to zero with increasing r, it is expected that the result should be of use in numerical solutions of
PY, convolution-hypernetted-chain, or similar approximations.

I. INTRODUCTION
' 'N the classical statistical mechanics of homogeneous
- ~ Quids various approximations have been proposed
which involve the direct correlation function c(x),
defined by

the approximate relation

e P«*&c(x)= ie—»&*&—1)g(x), (3a)

while the convolution-hypernetted-chain (CHNC)
approximation' 4 supplements them with

c(x)=h(x) —logg(x) —Pg(x). (3b)
h(x) =c(x)+p dy c(y)h(x —y)

where p is the particle density and h(x), the indirect
correlation function, is defined in terms of the radial
distribution function g(x) by

h(x) =g(x) —1.

In particular, if g(x) is the interaction potential and

P is the 8oltzmann factor (hT) ', the Percus-Yevick
(PY) approximation" supplements (1) and (2) with

' J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1950).
s J. K. Percus, Phys. Rev. Letters 8, 462 (1962).

In solving any such approxiInation it is found that the
direct correlation function tends to zero with increasing
~x~ much more rapidly than the indirect correlation
function'; for instance, the PY relation (3a) shows that
c(x) vanishes exactly outside the range of p(x), while
the CHNC relation (3b) predicts that it behaves as
—',h'(x) when h(x) is small. It is therefore unfortunate
that in considering the solutions of the equations the

' J. M. J. Van Leeuwen, J. Groeneveld, and J. de Boer, Physica
25, 792 (1959).

e T. Morita and K. Hiroike, Progr. Theoret. Phys. (Kyoto) 25,
1003 (1960).

e L. Goldstein, Phys. Rev. 100, 981 (1955).
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form of (1) demands a knowledge of both functions for
all values of x for which h(x) is significant, even though
c(x) may be negligible for the majority of these values.

In this paper it will be shown for three-dimensional
systems with central forces that by assuming that c(x)
vanishes exactly for

~
x~ greater than some range R and

imposing the condition that the integral

n i+i
H, =C;+p Q CJ Q ep'Hp (9)

for i&~1, where

In order to study the properties of this equation, it is
convenient to replace it by the discrete approximation

dx h(x)

be absolutely convergent (a condition which is satisfied
by any disordered fluid), a further equation can be
deduced. This new equation has the property that it
relates the direct and indirect correlation functions only
over the range (O,R), which greatly reduces the range
over which it is necessary to consider h(x) and may be
expected to facilitate numerical calculations.

In many ways the present work is an extension of
that of Wertheim, ' who focussed attention on the case
of the PY equation applied to a potential of 6nite
range (this is the case where the results should be of
greatest uitility). However, in addition to being of
more general form, it is believed that the results
represent a simplification of those of Wertheim,
whose equations were complicated by the explicit
consideration of a central hard core and use of g(x)
rather than h(x).

Finally, Wertheim~ and Thiele's' analytic solution of
the PY equation for hard spheres is rederived by the
present methods and it is shown that it is the only
solution corresponding to a disordered state. As
Temperley' has pointed out, other solutions do exist,
but these must correspond to ordered states.

p =2~p5',

H, =H(oi),
C,=C(5i),
es'=-', if 0= ~i —j ~

otherwise.

or i+j

C;=0 when i&m. (10)

Just as Wertheim and Thiele found it convenient to
introduce the Laplace transforms of the continuous
functions, so it is desirable to adopt an analogous
procedure with the discrete quantities and define

)Use has been made of the fact that II(0) and C(0),
and hence Hsand Cs', must vanish. $

If the integer e is allowed to tend to inanity, then
the solutions of (9) should tend to those of (8), provided
only tha, t H(r) and C(r) satisfy the physically reason-
able condition of piecewise continuity. In fact (9) is
simply the result a numerical analyst would obtain by
applying the trapezoidal integration rule to (8). In the
discrete approximation, Eq. (7) becomes

II. EQUATIONS FOR DISORDERED STATE

For central forces, the functions g(x), h(x), and c(x)
depend only on the radial distance

r=fx/,
so that they may alternatively be written as g(r), h(r)
and c(r). Setting

V(z)= Q C;z'.

Introducing the function

(12)

(13)

H(r) = rh(r),

C(r) = rc(r), (6)

and supposing that c(r) vanishes when r is greater than
some range 8, so that

C(r) =0 when r)R, (7)

Eq. (1) relating h(r) and c(r) may, in three dimensions,
be written as

r+s

H(r) =C(r)+2mp ds C(s) d1 H(t). (8)

where, if

the T; are given by

when
otherwise,

T;= P e;pCs,
I=j

tr—s)

6 M. S. Wertheirn, J. Math. Phys. 5, 643 (1964).
r M. S. Wertheim, Phys. Rev. Letters 10, 321 (1963).
8 E. Thiele, J. Chem. Phys. 39, 474 (1963).
s H. N. V. Temperley, Proc. Phys. Soc. (London) 84, 399 (1964).

and dehning the function
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where

QJ= Z &~;T~, (17)

exists such that the function

I'(s) =A (s)A (s-') —B(s)S(s) (26)

it is found that on multiplying (9) by z' and summing
over i a relation is obtained between U(s), V(s), T(s),
and Q(s), namely

vanishes identically.
Inspection of (25) and (26) shows that S(s) and

I'(s) are both polynomials in s+s ', of degree e 1—and
2e—1, respectively, so that they may be written as

U( ) = V( )+a{U(z)T( )—Q( )). (18)

This relation may be written in the form of an equation
for U(s):

74—1

S(s)=So+ P S;(z&+z—&')

j=l
(27)

where

U(z) =A (s)/B(s)
mn —1

r(.)=&.+ g &,(.+.-').
j=l

(28)

A (s) = V(s)-pQ(s),

B(s)=1—pT(z).

(2o)

(21)

At this stage it should be noted that V(s), T (s) and Q(s)
are determined solely by Cl, , C„and H&, ~ ~ ~, H„.
Thus expanding both sides of (19) as a power series in s
and equating coefficients in principle enables H +&,

H~2, etc. to be determined in terms of Cl, , C
and H1, , H„.It will now be shown that the condition
that the integral (4) be absolutely convergent, which in
the present context implies that the sum

PiB; (22)

should be absolutely convergent, leads to a set of m

equations relating Cz, , C„and H&, , H„(with otu

reference to the higher B; coeKcients).
The requirement that (22) be absolutely convergent

implies that U(s), which from (19) is a rational function,
should have no poles inside or on the unit circle. How-
ever, B(s) is a polynomial of degree n in the expression
s+s ', so that its zeros occur in pairs of type o, o '
and at least m of these must be inside or on the unit
circle. It follows that these zeros must also be zeros of
A (s), and hence if B(s) is written as

III. DERIVATION OF FINAL RELATION

Substitution of the explicit forms (20) and (21) of
A (z) and B(s) into (26) leads to the result that

I'(s)= V( )V( ') —S( ) —p{Q( )F( )—T( )S( )), (29)

where

F(s) = V(s)+ V(s—') —p,Q(s). (30)

As I'(s) is identically zero, each of the y; must vanish
and it is apparent that this gives 2e equations relating
Cl, . ~, C, Hl, , H„and So, , S 1. In the
following section it will be shown that the S; can be
eliminated from the equations, leaving e relations
between Cl, , C„and Hl, , H„.

The reason for using the discrete approximation (9)
rather than the continuous equation (8) should now

be apparent, for the "Laplace transforms" become
explicit polynomials, so that it is possible to count the
number of poles of the transform of the indirect correla-
tion function and hence the number of equations
imposed by the condition that (4) and (22) be absolutely
convergent. This avoids the analyticity problems that
are encountered in working directly with (8), while it
will be seen later that when the discrete equations are
simplified and written explicitly the continuum limit
may be regained immediately.

B(s)=bg (z o~)(s o—; '), —

where ~o;~ &~1, then as A (s) is of the form

s &" ")&polynomial of degree 2e —1,

it must be possible to write A (s) as

A(z)=s '" "F(z) II (z-o*),

(23)

(24)

So, , S„&may now be determined by equating the
coefFicients y, ~ ~ ., y2 1 of 2'", ~ ~ ~, s2" ' to zero, and
inspection of (29) shows that the first two terms on the
right-hand side are of degree e—1, so that only the
bracketed term contributes to this procedure. Despite
this simplification the evaluation of the Si still appears
to involve a co~plicated matrix inversion, but if the
calculation is carried out in terms of the coefficients

Fo, , F of F(s), i.e.,

(31)F(z) =Fo+ P F;(z&+s &),
—

j=1where F(s) is a polynomial of degree e—1. It follows
from (23) and (24) that a function

S(z) =b
—'F (s)F(s-')

and the coefficients Q; of the Q(s) which occurs explicitly
(25) in (29) are replaced by their values as given by (17),
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j-lk—nl

W;i= Q H~ Q e,'H„
s-1 a=Ij—k—nl

(32)S;= P Hi, ;Fi, .
when j&k, e~' being de6ned byk=i+1

then it is found on equating ym„ i, yg~a, ~ ~, y~ together with
successively to zero that the S;are given quite simply by

(37b)

As this appears to be a quite fortuitous chance, it is
worthwhile pointing out that (32) could have been
derived more directly by noting from (19) and the
vanishing of I'(s) that

5(s) = U(s)A(s '). (33)

7;= Q {Ci, ,Ci, Hi;Fi—
k=j+1

Hna(2 kFli —t—ml Fk2 lk—i—mI)

n+j—k

+u Z H (TP'~ i+ Fi,T'i, ;p )—} (34)

for j=0 ~ ~ e—1.
Fortunately one further simpli6cation occurs in the

working, for substituting the expression for F; obtained
from (30) and (31) and using the definitions (15) and
(17) of the T; and Q;, it is found that yo, , y„ i can
all be written in the form

vj= Z D.-i&'
k j+1

The calculation of Dl, ~, D is tedious but quite
straightforward, so that in the interests of brevity the
details will not be included here. It is found that the
D; may be written as

Bi=Ci Hi+I E &ij 2 HiHj i—
j=2 k=1

n .1 I s-P I

+2u 2 CA 2 ~i7Hi Zci i—i,rH~}.-
+ti Q C; Q e; {,'H~H~+W; }, (36)-

j=l k=1

Since A (s—') is the same as F(s) to order s ', the result
(32) follows immediately by equating the coefficients
of s' ", ~ ~ ~, s—', 1 in an expansion of both sides of (33).

As all the functions occurring in the definition of I'(s)
can now be specified explicitly in terms of Cl, , C
and IIl, . , H„, it is possible to write y0,
solely in terms of these quantities. Firstly, using the
forms (17) and (32) of the Q; and 5;, equating coe%-
cients of both sides of (29) yields

+4m-p ds C(s) dt H(t) dt H(t)

8 r

+4ir'p' ds C(s) dt W(s, t), (38)
0 0

for 0(r(R, where W(s, t) is defined by

W (s,t)+W(t, s) =0 (39a)

W(s, t) = dN H(N)
0

s—/t —u/

Is—t—ei

dn H (v), (39b)

when s& t.
Equation (38) is the desired relation, involving C(r)

and H(r) only over the range (O,R) for which C(r) is
nonzero. In the following section it will be shown that
the use of this equation in the PY approximation for
hard spheres leads immediately to the solution of
Kertheim and Thiele.

IV. PERCUS- YEVICK APPROXIMATION
FOR HARD SPHERES

The PY approximation for hard spheres of diameter
R states that

if V= IJ—&—Pl or J—I&—Pl
= 1 otherwise.

The form (35) of the y; is particularly interesting;
for, equating p„&, y 2, ~, po successively to zero, it
becomes apparent that they all vanish if and only if
Dl, , D and C +1, ., C„are zero, where m can be
any integer from 0 to e. However, such a solution is
precisely equivalent to redefining R as (m+ ,')ti an-d

replacing the number e of nonzero C; in the previous
working by m, i.e. to shrinking the range E beyond
which C(r) vanishes. If it is supposed for definiteness
that R is the minimum such range, then C cannot be
zero and Dl, , D„must all vanish. Equating the
right-hand side of (36) to zero thus gives m explicit
relations between Cl, , C and Bl, ~ ., H„.

It is now possible to return to the continuum limit.
Allowing e to tend to infinity (keeping R constant) and
equating the right-hand side of (36) to zero gives the
equation

s

H(r) =C(r)+2s p ds dt H(t)H(s —t)
0 0

(r—sf

where the quantities 8'jk are de6ned by an antisym-
metry relation,

W,y+ Wi,i=0,
c(r) =0, r)R,
g(r) =0, r(R,

(40)

(41)
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so that
C(r) =0, r&R,

H(~)= —~, r&R.
(42)

(43)

approach has been employed successfully by Jancovici'o
for the three-dimensional lattice gas of hard cubes.

V. CGNCLUSIGNS

Kg=1—4~p sd sC(s), (46)

X,=2m-~ ds {1+-',a.ps') C(s) . (47)

Substituting the form (44) of C(r) into (41) and (42)
leads to two linear equations for X& and X2, which may
be solved to give

)„=(1+2')'/(1 —g)4, (48)

l =-(1+!~)'/(1-~)'. (49)

This is precisely the solution of Wertheim and Thiele.
In principle the present method also admits solutions
corresponding to replacing R in (44)-(49) by any value
R' which is less than the hard-sphere diameter R, but
this can be shown to violate the conditions (41) and
(43). The above solution is therefore the only one that
can correspond to a disordered state, where the integral
(4) is absolutely convergent, and the other solutions
proposed by Temperley must correspond to ordered
states, where g(r) need only satisfy the weaker condition
that it be bounded (and of course non-negative). In
this case the function U(s) defined by (11) may have
poles on the unit circle and it is no longer possible to
obtain equations relating C&, , C„and H&, ~ ., H„,
so that there are infinitely many solutions for C&,

C„, and hence for C(r) in the range (O,R).
It seems likely that the study of ordered states should

not be based on Eqs. (1)—(3), but that the assumption of
homogeneity should be abandoned and the one-particle
distribution function allowed to be some periodic func-
tion corresponding to an ordered structure. Such an

It is apparent that the above working may be applied
immediately to this system, and that H(r) is now a
known function over the range of interest, namely
(O,R), so that (38) becomes a linear equation for C(r)
Substituting —r for H(r) leads to the result

C(r) = —Xir —6i17 gr'/R ——,'y. ir'/R',

where, following Wertheim's notation,

~= 6&pR ~

Although (38) has a more complicated form than the
original equation (8), the elimination of the need to
consider H(r) beyond the range of C(r) can be extremely
useful, as is particularly evident in the case of the PV
approximation for hard spheres. Further, it seems likely
that this property could be of value in numerical
computations, for in these it is always necessary to
truncate the range of the functions (and possibly to use
an asymptotic form beyond the truncated range) but
normally the truncated range R has to be great enough
for h(r) to be very small compared with unity, while if
(38) is used it is sufficient for R to be large enough for
c(r) to be very small. For effectively short-range
potentials the consequent reduction in R may well more
than compensate for the greater complication of the
equation. In such calculations it is probably preferable
to use (38) in its derivative form, i.e.

H'(r) = C'(r)+2' p d1 H (1)H (r—1)
0

ds C(s)H(r s) ds—C(s)—H(s r)—
+47r'p' ds C(s)W(s, r) (50)

for 0(r(R.
It should be stated that while (38) is a necessary

consequence of the absolute convergence of the integral
(4), it has not been proved that it is a suKcient condi-
tion. However, the virial expansions obtained from (8)
and (38) are identical, so that this situation is no
worse than that which existed with the original
equation.

It is interesting to note that a one-dimensional Quid
can also be treated by the present methods, whereas in
two dimensions geometrical factors occur in Eq. (1)
which seem to make the problem intractable. Although
emphasis has been laid on applications to statistical
mechanics, (1) is of a suKciently general form to
suggest that the technique may be of use in other
mathematical fields.

"B.Jaiicovici, Physica 31, 1017 (1965).


