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Relativistic Self-Consistent-Field Theory for Closed-Shell Atoms t'
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The relativistic Hartree-Fock-Roothaan equation for closed-shell configurations of atoms is derived.
The relativistic Hamiltonian consists of the sum of the Dirac Hamiltonians and the interelectronic Coulomb
repulsion terms. The atomic wave function is assumed to be an antisymmetrized product of 4-component
orbitals whose radial functions are expanded in terms of the Slater-type basis functions. The Breit inter-
action operator is used as the relativistic interelectronic interaction term, and is treated as the first-order
perturbation. Expressions for the matrix elements of the Breit interaction operator are given for the closed-
shell configurations. Numerical results for the ground states of He, Be, and Ne atoms computed according
to this formalism are also presented.

IÃTRODUCTIOH

'HE Dirac theory of the electron, combined with
quantum electrodynamics, has been very suc-

cessful for the relativistic treatment of the hydrogen
atom, but it is diKcult to extend such a theory to
many-electron atoms and develop a practical relativistic
theory of complex atoms. The 6rst obstacle to such an
extension is the diKculty of finding a Lorentz-invariant
Hamiltonian operator to describe all relativistic inter-
actions of atomic electrons among themselves and with
the nucleus. Since the Hartree-Fock. self-consistent-
field (SCF) theory' starts from a Hamiltonian operator
(or the corresponding Schrodinger equation), the ex-
tension of the SCF theory to the relativistic case starts
with an approximation to the relativistic Hamiltonian
operator to be used, in addition to other approximations
on which the nonrelativistic SCF theory is based.

The erst-order relativistic eBects, however, such as
the spin-orbit coupling, magnetic interaction, and the
retardation of the Coulomb repulsion between elec-
trons, may be approximated by the sum of the Dirac
Hamiltonians' and the Breit interaction operators'
(referred to as the Breit operator hereafter). In the
nonrelativistic limit, these operators are reduced to
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t Present address: Argonne National Laboratory, Argonne,
Illinois 60439.' For the nonrelativistic SCF theory of atoms, see, for instance,
D. R. Hartree, The Calculation of Atomic Structures Qohn Wiley
8r Sons, Inc. , New York, 195'I). It is customary to reserve the
term "Hartree-Fock wave function" for the exact solution of the
Hartree-Fock integro-differential equation. We shall use the terms
SCF and Hartree-Pock interchangeably.

2 We follow the conventions of M. E. Rose, Relativistic Electron
Theory Qohn Wiley tk Sons, Inc. , New York, 1961) except for the
units. We use atomic units.' G. Breit, Phys. Rev. 34, 553 (1929). The derivation and dis-
cussion of the Breit operator, from the veiwpoint of the S-matrix
theory, can be found in A. I. Akhiezer and V. B. Berestetsky,
Quantum Electrodynamics (Interscience Publishers, Inc. , New
York, 1965). See also H. A. Bethe and E. Fermi, Z. Physik 77,
296 (1932).

the terms denoted by Bethe and Salpeter' as H& through
H6, which include, among others, spin-orbit, spin-spin,
and spin-other-orbit couplings. The hyperine structure
and the nuclear Inotion are not included in these
operators. At present, however, it is impossible to ex-
press the higher order relativistic sects, which con-
tribute to the Lamb shift, in terms of some operators
suitable for the extension of the SCF formalism. '

There is a theoretical difhculty associated even with
the use of the Breit operator in the relativistic Hartree-
Fock scheme. As was pointed out by Breit, ' and later
by Bethe and Salpeter, ' the Breit operator should be
treated as the 6rst-order perturbation to the relativistic
Hamiltonian which is the sum of the Dirac Hamil-
tonians for the one-electron part and the nonrelativistic
Coulomb repulsion terms for the electron-electron
interaction. Inclusion of the Breit operator in the un-
perturbed Hamiltonian would lead to a result incon-
sistent with quantum electrodynamics.

The Breit operator accounts for the magnetic inter-
action and the retardation of the Coulomb repulsion;
both these terms are of the order (ejc)' compared to the
nonrelativistic two-electron interaction term, where v

is some average speed of the electrons and c is the speed
of light. In the hydrogenic case, the ratio e/c is of the
order of Zo., where Z and n are the nuclear charge and
the Gne-structure cormtant, respectively. The nonrela-
tivistic expectation value of the nuclear potential is of
the order of Z'0, 'moc', where mo is the rest mass of the
electron, and the nonrelativistic expectation value of the
interelectronic repulsion term should be of the order of
Zo.'moc2. Therefore, the change in the one-electron
energy due to the Dirac Hamiltonian is expected to be of

4 H. A. Bethe and E. F,. Salpeter, Quantum Mechanics of One
and Tsoo Electron Atoms Quliu-s Springer-verlag, Berlin, 1957), p.
181.' For the computation of the Lamb shift correction, it is neces-
sary to include contributions from the unperturbed wave func-
tions of all the excited states, which is impractical for complex
atoms. See, for instance, K. Y. Kim /Phys. Rev. 140, A1498
(1965)g for calculations of higher order relativistic corrections for
the helium atom; also G. E.Brown et al. LProc. Roy. Soc. (London)
A251, 92 (1959);A251 105 (1959)j, and D. F. Mayers ee at. /Phys.
Rev. Letters, 3, 90 1959)g for the Lamb shift corrections for
heavy atoms.' Reference 4, p. 170.
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the order Z4a4moc', whereas the change in the inter-
electronic interaction terms (including those from the
Breit operator) would be of the order of Z'n4msc'.

The first attempt to formulate a relativistic SCF
theory was made tiy Swirles. ~ She tabulated the rela-
tivistic equivalent of the Slater coeScients arising from
the Coulomb repulsion term, but no serious application of
this scheme was made at the time. Later, some relativis-
tic SCF calculations were made by various authors, but
most of these calculations either omitted the exchange
term or xnade some approximations to avoid the numer-
ical difhculties. For instance, Schonfelder computed for
various atoms numerical wave functions without the ex-
change terms, ' and Liberxnan and his coworkers cal-
culated numerical wave functions for the closed-shell
configurations of some atoms by approximating the ex-
change term by Slater's method. ' A significant theoreti-
cal advance was made a few years ago by Grant, '
who derived more general expressions for the relativistic
Slater coeKcients computed by Swirles as well as for
those arising from the magnetic interaction. In addi-
tion, Grant presented the relativistic Hartree-Fock
equations for closed-shell atoms including the magnetic
interaction term in the unperturbed Hamiltonian. More
recently, Synek" proposed a relativistic SCF scheme in
which the orbitals are expanded in terms of 4-component
basis spinors, but he did not make use of Grant's re-
sults for the relativistic Slater coeKcients.

In this paper, we present a relativistic SCF theory for
closed-shell atoms based on an uperturbed Hamiltonian
which is the sum of the Dirac Hamiltonians and the
Coulomb repulsion terms. The complete Breit operator,
which contains both the magnetic interaction and the
retardation terms, is treated as the Grst-order perturba-
tion. The total wave function is a Slater determinant of
four-coxnponent, one-electron orbitals. The radial func-
tions of the orbitals are expanded in terms of Slater-
type functions with eoe&stegral principal quantum
nuxnbers. The expansion coeKcients for the large and
small components are determined by solving the varia-
tional problem as a pseudo-eigenvalue problem in a
method similar to that developed by Roothaan, "but no
a priori relationships between the large and small com-
ponent radial functions are assumed. A nonintegral
principal quantum number occurs in the relativistic
wave function of the hydrogenic atom. Similarly, for
many-electron atoms, it is necessary to introduce non-
integral principal quantum numbers to satisfy the
relativistic Hartree-Fock equations near the origin

r ]3. Swirles, Proc Roy. Soc. (London) A152, 625 (1935).
s J. L. Schonfelder, proc. Phys. Soc. (London) S7, 163 (1966).' D. Liberman, J.T. Waber, and D. T. Cromer, Phys. Rev. 137'

A27 (1965).
ro L P. Grant, Proc. Roy. Soc. (London) A262, 555 (1961).We

get the relativistic Hartree-Pock integro-differential equation for
our formalism by neglecting the magnetic interaction term in the
equation given in this reference.

"M. Synek, Phys. Rev. 136, A1552 (1964)."C.C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

tcf. Appendix III and Eq. (129)j.Such principal quan-
tuxn numbers also, as a bonus, provide additional
variational paraxneters for the orbitals. "

The applicability of the formulas presented in this
paper is limited to closed-shell configurations of neutral
atoms and atomic ions. A relativistic shell is specified by
the total angular momentum and the space-inversion
parity of the electrons in the shell. For instance,
(pries)' and (ps~s)' in conventional spectroscopic notation
are relativistically closed shells, although their non-
relativistic counterparts, (p)' and (p)', are not. A rela-
tivistically closed shell forms a J=O state, where J is
the total angular momentum, but not all J=0 states are
relativistically closed shells.

The numerical results for the ground states of He, Be,
and Ne atoms, computed froxn the formalism presented
here, are given at the end of this paper.

HAMILTONIAN AND WAVE FUNCTION

The unperturbed Hamiltonian H for an E-electron
atom of nuclear charge Z is, in atomic units,

where the suxrunations are from 1 to E, r„„is the dis-
tance between the pth and vth electrons, and Hn(p)
is the Dirac Hamiltonian of the pth electron, namely,

(2)

In Eq. (2), p is the momentum operator, and r„ the dis-
tance from the nucleus to the pth electron, and 0.
and P are the Dirac matrices in conventional representa-
tion, i.e.,

where the e are 2&(2 Pauli matrices and I is a 2&(2 unit
matrix.

The Breit operator B& is given by

where the gradient operators V„and V„operate on r„,
only, and not on the wave function when the expecta-
tion value of H~ is taken. The erst terxn on the right-
hand side of Eq. (3) is the magnetic interaction term,
and the second is the retardation term. The matrices
e„operate only on the spinor containing the coordinates
of the p,th electron. '4

"R. G. Parr and H. W. Joy, J. Chem. Phys. 26, 424 (1957).
'4The last term of Eq. (3) reduces to the more conventional

form —(n& n2)/(2ris) —(ur ru)(es r&s)/(2r&s') when the differen-
tiation is carried out. In our form, however each term has a clear
physical meaning, and it is easier to apply the Racah algebra to
the retardation term.
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The Dirac Hamiltonian contains the rest-mass energy
c2 of the electron. To get the binding energy, we sub-
tract this energy from the Dirac Hamiltonian and
obtain

where
0 0

I
~

0 2I)—

Therefore, the unperturbed binding energy is given by

where

H'=P Hg)'(tt)+ ,'Q Q -(1/r„.), (6)

and + is the normalized total wave function.
The relativistic correction to the binding energy due

to the Breit operator is given by

&it= a' g Q(+IHii(tt~o) I +)

The quantum number ~ classifies the orbitals accord-
ing to their symmetry species analogous to the orbital
angular momentum in the nonrelativistic case. This is a
consequence of the fact that the Hamiltonian H'

l
cf.

Eq. (6)j is invariant under the spatial rotation, and an
irreducible representation of the rotation operator
with half-integer angular momentum j can be uniquely
determined only if the space-inversion parity along with

j is specified. " In Eq. (8), the orbitals are chosen in
such a way that the orbitals of same ~ form the basis
vectors for the (2j+1)-dimensional irreducible repre-
sentation of the unitary, unimodular group SU(2j+1).
With this choice, the magnetic quantum number m
labels the subspecies, namely, the component of j along
one of the coordinate axes. The index n labels orbitals
which cannot be distinguished by ~ and ns. Although we
are free to choose an arbitrary labeling system for e
(e.g., the system used in the nuclear shell model), we
adopted the convention used by Swirles' (cf. Table I),

TmLE I. Relativistic shells and their parameters.

The total wave function 0 is determined by applying
the variational principle to the binding energy K
The wave function is an antisymmetrized combination
of one-electron orbitals de6ned as

Shell

t
$8

Shellb

$1/2

—1
1

0

+
S

Pl /2 P3/2

—2
3

1
2

d 3/2

2
3

2

+
d

d 6/2

—3

2
3
+

a The space-inversion parity g =(—) &.

b B. Swirles's notation for the relativistic shells. (Reference V.)

where P„„(r)/r and Q„„(r)/r are the large and small
radial wave functions, respectively, and satisfy the
orthonormality condition

i.e., is, 2s, , 2p, 3P, , 2p, 3p, , 3d, 4d, etc.
The total angular momentum j and the orbital angular
momenta l and l of the large and small components, re-
spectively, are related to ~ by

where 8„„ is the Kronecker delta. The choice of the
phase in Eq. (8) enables us to take real radial functions
both for the large and small components.

The angular functions X„(8,+) are given by

o=+1/2

where the C(t-', j; rtt —o, o) are Clebsch-Gordan coeK-
cients, the Yt, ,(e, y) are normalized spherical har-
monics, both in Rose's notation, " and the P, are the
two-component spinors

~0
butts= ~ 4 its=I-

0 Eij

In principle, we could have chosen radial functions
depending on e, ~, and m; that is, different radial func-
tions for different angular-momentum orientations, but
in order to keep the computational complexity within
reason, we have foregone the use of such functions.

The symmetry species ~ is the eigenvalue of the
operator

where
(e 0)

Eo e/

+O'N, am = &pnsm ~

and 1 is the angular momentum operator; that is,
The orbitals given by Eq. 8 are orthonormal to each
other.

"See Ref. 2, and, also M. E. Rose, Elementary Theory o/ "M. Hamermesh, GronP Theory (Addison-Wesley Publishing
Angrdar Momentnm (John Wiley tk Sons, Inc. , New York, 1957). Company, Inc. , Reading, Massachusetts, 1962), p. 348.
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The operator E commutes with the Dirac Hamiltonian
and j. The values of various parameters for some rela-
tivistic shells are given in Table I.

If we apply the variation principle to Eq. (5), we find
that the radial functions P„„(«)and Q„„(«)must satisfy
coupled Hartree-Fock equations. If we want numerical
wave functions, we must solve these coupled integro-
differential equations (cf. Appendix III). If we want to
6nd analytic expansion-type wave functions, the applica-
tion of the variation principle to the expansion coef5-
cients leads to a pseudo-eigenvalue equation, referred to
as the Hartree-Fock-Roothaan equation in literature,
to be satis6ed by these coeKcients.

Experience with nonrelativistic calculations shows
that the numerical wave functions have more accurate
asyxnptotic behavior than the analytic ones, though
both give total energies of comparable accuracy. The
analytic wave functions, however, are much easier to
handle, for instance, in the calculations of various ex-
pectation values other than the total energy. The solu-
tions of the Hartree-Fock integro-differential equations
can be approximated by Roothaan's method to any
degree of accuracy by increasing the number of basis
functions to expand the radial functions, but the amount
of numerical work increases very rapidly as the number
of basis functions is increased. Actually, Roothaan's
method enables us to 6nd analytic wave functions of
high accuracy with a relatively small number of basis
functions provided the basis functions are chosen
carefully.

The radial functions may be expanded in terms of any
basis functions, i.e.,

(12a)

(13). Since we chose the radial functions to be real, we
may choose the expansion coefficients to be real also.

MATRIX ELEMENTS OF THE UNPERTURBED
HAMILTONIAN IN TERMS OF THE

RADIAL FUNCTIONS

As in the nonrelativistic case, the total energy E is
reduced to the sum of one-electron integrals IA, and
two types of two-electron integrals, the direct integral"
JAB and the exchange integral LAB, where the subscripts
A and 8 denote the set of orbital labels (n, ~,«N),

&=2 1~+2 2 (I~a I ~a). —
A A,B

(14)

Integrals IA, JAB, and LAB are de6ned as

1~=Q~—I&n Ig~), (15)

and

Egg —= (Pg(1)fg(2) I «» 'I 4~(1)P&(2)), (16)

1~&&=8'&(1)4'&(2) I «» 'I A(1)4~(2)) (17)

One-Electron Integral

The angular part of the one-electron integral IA can
easily be integrated out, ' and we have

A straightforward derivation of Eq. (14) leads to a re-
striction 8&A on the summation over 8, but such a
restriction can be eliminated and the summation over 8
may be carried out to all orbitals including 8=A be-
cause J»——EAA by definition. The summation over all
A and 8 simplifies the expressions for the Slater coeK-
cients greatly.

d«(-2c2LQ. («)$2

or in vector notation, —(~/ )(LP ()3'+LQ ()j')
+cQz(r)I Pa'(«)+(e~/«)P~(r) j

where f„ is a row vector of the basis functions f„;, and

F.„„and g„„are column vectors of the expansion coefFi-

cients $„„~and p„„„respectively.
Although we may choose any functions as basis

functions, the Slater-type functions are the best ones
for atomic calculations in the sense that a small number
of these functions are sufhcient to describe the radial
functions to high accuracy. %e use, therefore, the
Slater-type functions

f„;(«)= (2f'„)& ' "'
XI I'(2y„,+1)$ '~'«&"' exp( —f„«), (13)

where the exponents y and f are nonlinear variation
parameters and y need not be an integer. The standard
notation for the gamma function I'(x) is used in Eq.

—cP~(«)LQ~'(«) —(~~/«)Q~(«) j), (18)

where the prime indicates the differentiation with re-
spcet to « With ou.r choice of radial functions, P~(«) and

Qz(«) are specified by (nz, az) rather than (ez,~z,mz).
For brevity, we shall not introduce new symbols for the
labels of radial functions, and it should be understood
that in what follows all radial integrals depend only on
(N, a). Inasmuch as Eq. (18) does not contain «N~, the
sum of IA over a closed shell can be obtained by
multiplying IA by the electron occupation number of the
shell, namely, 2J~+1.

'7 We call Jgg "the direct integral of the Coulomb repulsion
term" to distinguish it from the direct integrals of the magnetic
interaction and the retardation terms in the Breit operator.
Obviously, Jgg is the relativistic counterpart of the nonrelativistic
Coulomb integral.
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lA+lB+v = even,

(19) and

Two-Electron Integrals The range of v for the exchange integral is limited, by the
following conditions:

A general expression for the two-electron integrals of
the Coulomb repulsion term

CABCD= (QA(1)QB(2) ~
r12

~
O'C(1)4'D( )) (31)

is, as was shown by Grant, "
CABCD p C.(j Cmc jAmA)C (j BmB jDmD)

where

XF,(AC) BD)5 A+, , o+~D, (20)

C.(jm; j'm') = (—)'" "'L(2j+1)(2j'+1)]"'/(»+ 1)

XC(j'j 'v; —',, ,')C(jj 'v—; m—, m'),—(21)

U„(1,2) = r&"/r&"+', (23)

where r&—=min(rt, rs), and r&=—max(rt, rs). The sum-
mation over v in Eq. (20) is carried out in steps of 2.
The range of v is limited by the relations

F„(AC; BD)= drtdr2 U„(1,2)
0 0

XP' (1)P (1)+Q (1)Q (1)]

X t PB(2)PD(2)+QB(2)QD(2)), (22)
and

ljA iBi—~&v~&jA+jB

The coefficients C„(jm; j'm'), a„(jm; j'm'), and
b„(jm; j'm') are the relativistic counterparts of the
nonrelativistic coeKcients cs(lm; Vm'), as(lm; l'm'), and
bs(tm; l'm'), respectively, of Condon and Shortley. "

The fact that the m dependence of a„(jm; j'm') and
b„(jm; j'm') can be factored out as the product of two
Clebsch-Gordan coeKcients makes it very simple to
sum them over a closed shell using sum rules of the
Clebsch-Gordan coefBcients. This feature is common to
all the relativistic Slater coeScients discussed in this
paper; the Racah algebra is to be thanked for the
manifestation of such a simple result.

Before we proceed to write the radial integrals
F„(AA;BB) and F„(AB;AB) in terms of the basis
functions, it is convenient to carry out the summation of
a.(jm; j'm') and b.(jm; j'm') over the magnetic quan-
tum numbers m and m', taking both j and j' to be
angular momenta of closed shells. Then we have"

Z a.(jm; j'm') —= (2j+1)(2j'+1)a.(jj')
m, m'

tA+ la+ v= even,

lB+lD+v=even,

max([j A+j&I„[jB jDI)—
&v& min(jA+ ja, jB+jD).

(24)
and

= (2j+1)(2j'+1)8„o,

2 b.(jm; j'm')=—(2j+1)(2j'+1)5.(jj')
m, mt

(32)

From Eqs. (16), (20), (21), (22), and (24), we get

JAB CABAB p a,(jAmA j BmB)F (AA BB) (25)

= L(2j+1)(2j'+1)/(2v+1)]

where

a„(jm; j'm')=( —)' "'C(jjv;m, —m)

XC(j'j'v; m', —m')a, (jj'), (26)

The symmetry relations and numerical tables of various
Slater coe%cients are given in Appendix II.

Now the sum over B in Eq. (14) becomes

and
g JAB= Q (2jB+1)ao(jAjB) «tdrs r& '
B 71+KQ 0 0a„(jj')= (2j+1)(2j'+1)(2v+1) 2

XC(jjv; -'„,')C(j'j'v; -'„——',—) .—(27)
X(LP (1))'+LQ (1))')(P' (2)]'+LQ (2))') (34)

The summation in Eq. (25) runs from v =0 to
min(2 jA,2jB). and similarly,

Similarly, for the exchange integral, we get

LAB——CABBA=Q b„(jAmA j BmB)F,(AB; AB), (2g) 2 I~AB=Z 2 (2iB+1)b (i AiB)
V B V 0 0

where

b„(jm;j 'm') = ttC(jj 'v', tl, —m'))sb, (jj'), (29)
X U, (1,2) [PA(1)PB(1)+QA(1)QB(1)]

XLP (2)P (2)+Q (2)Q (2)). (35)

b ( &) (2 '+1)(2 'r+. 1)
'2 E. U. Condon and G. H. Shortley, The Theory of Atomic

SPectrs (Cambridge University Press, London, 1935), pp. 175,
X(2v+1) 2Ã(jj'v' s~

—
2

' 3o 17&.
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MATRIX ELEMENTS OF THE UNPERTURBED
HAMILTONIAN IN TERMS OF THE

BASIS FUNCTIONS

One-Electron Integrals

If we substitute the expansion form of the radial
functions t cf. Eqs. (12)) into Eq. (18), we get

Ins= P $ 2c gnspSsqypfngq
n q

&Ustyq(knstyknsq+ gnsty'gnsq)

+cpnsm styq$'nsq cknstyT gtyq gnsq) 'y (36)

where S„is the overlap integral matrix whose elements
are denned by

« f.~(r)f"(r)

=LV(27. ,t. )V(2v.~,f")) "'
X V(Vstygqy qf, gty, sq) y (37)

U„ is the nuclear potential matrix defined as

dr f„~(r)r 'f«(r) =Ss„q(t sn sq/ps' «), (38)

and the parameters y„„,„q and f'„„,„q are dered as

Vsty sq Vsty+Vsq y

Kp, gq Kp Kq p

(41)

(T+„)'=—T „ (42')

and the sums over p and q of the last two terms in Eq.
(36) are identical. The dagger in Eq. (42') stands for the
Hermitian conjugate.

Equation (36) may be written, using the usual con-
vention for matrix multiplication, as

cT-„
1..=-«..'~..')I

I ~. (43)
i—cT+„2c'S,+ZU„I g„„f

The 2X2 superrnatrix in Eq. (43) is symmetric because
S„and U„are symmetric by definition and Eq. (42')
holds. Note that the kinetic-energy matrices T+„and
T—„are not symmetric by themselves.

The orthonormality constraint, Eq. (9), may be
rewritten in 2&(2 supermatrix form as

respectively.
The elements of T+„and T „satisfy the following

relation:
Kqgl ~jrpq ~

Equation (42) is equivalent to

T+„and T „are the kinetic-energy matrices

~S„O(4.'n ')IIo S„
(44)

and

d. f.,(.)Lf., ()+(/) f.,())
0

= U„,t;(f,v., f-.,v,.)lf,-,„+),

Two-Electron Integrals

The sum of the direct integrals Jztt Lcf. Eq. (34))
now becomes, in terms of the basis functions,

(39)
2 ~Att= E(sty~ ztyqbq+'9&n~ xtyq'Q&q) y (43)
B ptq

d f. ()I:f.'()-(/)f"())
0

= U„q((f's„ysq f'st„)/fs—,„q tt)—
The function V(rt, x) is defined as

V(~,~)= r(~y 1—)/x-+'

(40)

where the eleinents of the Coulomb matrix J„are
given by

Jsyq= Q (2J' +1)P nisnq, g~st, y

X (5n's's$n's't+ rin's'sgn's't) y (46)

and the basic Coulomb supermatrix element gi.~q...t,,
is de6ned as

dridrq U„(1,2)f„„(1)f„q(1)f„,(2)f„ t(2)
Q 0

d~ (~"/~"")Lf"(~)f"(N)f" (~)f"t(~)+f"(~)f"(~)f".(I)f"t(~)).
0 u

(47)

Equation (47) can be expressed in terms of the unnormalized incomplete beta function B(n,P; x) as

g„,,„„,y=2/V(27s~i. ~)V(2y.„f„q)V(2p„„i„,)V(2y„ t f„ t)) {Pqfst, , sq) 'P2f","t)
X1'(~+b)&5~,b; */(1+~))+L2f.n..q) "I3f'".."t) '1'(~'+b')&D', ~'; *'/(1+~'))}, (48)
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where

Yey yKq+v+ 1 p

VK'a, a't V q

8 PKy, aq V
&

ft ='Ye'q, a't+v+1 y

integrals of the Coulomb repulsion term may be
written as

2 KAB= P ()AgEff, ~AyqkAq+$Ayhfq, &AyqrtAq
49

t ay, aq/f ds, a't 1 & = 1/& B pqq

+)Awqf ~Ayq4q+ tAy+qq ~Ayq IAq) 1 (52)The unnormalized incomplete beta function' is de-
Qned as where the elements of the exchange matrices K are

(50) given byt
—'(1—t)s-'dt,B(ot,P; x) —=

EH &yq Z E(2J +1)4'e'eX xyq, q'st$n'e't y (53)
n'K' e, twhere 0~& @(1,cr)0, and p may be an arbitrary real

number. It is important that the integral (50) exists for
negative values of p, because otherwise some of the
matrix elements of the Breit operator can not be cal-
culated with orbitals which satisfy the relativistic
Hartree-Pock equations exactly near the origin. The
matrix elements of the Breit operator are discussed
later. Equation (45) may be written, in matrix nota-
tion, as

Ef,,„,= P P(2g'+1)t„.„.,xs„,,„.,trt„.„.t, (54)
n'a' s, t

+q5 Kyq Z Z'(2J +1))n e SX Ilyq, K 4tjn K t y (55)
n'K' e, t

&.,,",= Z Z(2j'+1). .X'..., . „(56)
n'K' e, t

X eyq, e'st=2 bv(jj ')XKyq lj et II (57)(J.A 0 (4)2 ~Aa = (4'q7At)
I ] I

. (51)
k 0 J„, kqfA)

and the basic exchange supermatrix element X„~q,„.t,,
Similarly, from Eq. (35), the sum over the exchange is defined as

X„y,,„,t,.=dr—tdrq U„(1,2)f„y(1)f„,(2)f„.,(1)f„.t(2)
0 0

dy (I"/y"+')Lf.y(N)f'. (~)f.q(y)f. t(y)+f"(y)f".(y)f..(~)f"t(N)3. (58)

In terms of the incomplete beta function, Eq. (58) .becomes

X...,.",.= 2[I'(2V..Z..) it'(27..8':)I'(27". f ..)I'(»" f" )j "'([ll'"...r'[ll'"
&(I (c+d)B[cd y/(1+y) j+[,1„„,„,,]-"[rsvp „, „]—a'I (c+d')B[d' c' y'/(1+y')]), (59)

where

C='Y„y+ve+,1,
d= yKq, K't

f Ky K 8/f Rq, K

PKPqK S

d =7aq. a't+v+1 y

y'= 1/y.

(60)

We note that the Coulomb supermatrix element is
symmetric under the exchange of indices (p ~ q) and/or
(s ~ t), but the exchange supermatrix element is sym-
metric only under the simlkmeols exchange of indices
(p+-+ q) and (s ~ t) With this prope. rty of the exchange

"For details, see Handbook of fvlatkengticat Functions, edited by
M. Abramovritz and I.A. Stegun {U.S. Department of Commerce,
National Bureau of Standards, Washington, D. C., 1964), Appl.
Math. Ser. 55. For the derivation of Eq. (48) from Eq. (47), see
H. W. Joy and R. G. Parr, J. Chem. Phys. 28, 448 (1958).

In matrix notation, Eq. (52) can be written as

/KH, ~A Kfq, eA'l 4'i2 &»=(4tnAt)
I

'

I I
(61)

lK„,„, K„„„)&.)

+)Yf,aqua= E-77$,Kyq ~ (62)

Other matrices J, Kf~, and K» are symmetric by defini-

tion and the 2)&2 supermatrix in Eq. (61) is also sym-
metric because Eq. (62) holds.

RELATIVISTIC HARTREE-FOCK-
ROOTHAAN EQUATION

Now we proceed to derive the pseudo-eigenvalue
equation (the Hartree-Fock-Roothaan equation) for
the expansion coefficients ( and qf, in the same manner
as that of Roothaan. "

From Eqs. (14), (43), (51), and (61) the unperturbed
energy is given by

&=K(2j+1)((-.tn-t)I
' '

II I, (63)
nK &E„,„E,„„ik,„„i

'

supermatrix element and from Eqs. (54) and (55) we get
the relation
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where

and

Ett,= —ZU+s(J. —Kt& ).

Et„,„=—cT—„——,'Kt„,„,
E,~,„=cT+„——,'K„t,„,

E«,„———(ZU„+2c'S„)+-',(J„—K„,,„).

(64)

(65)

(66)

(67)

To get the relativistic Hartree-Pock-Roothaan equa-
tion, we vary („„and g„„ in Eq. (63) and the ortho-
normality constraint (44) and combine them with
Lagrange multipliers. All the argument used by
Roothaan' in his nonrelativistic theory can be applied
here also, and we get a pseudo-eigenvalue equation in
2&(2 superxnatrix form in exactly the same manner. For
instance, the Lagrange multiplier matrix is Hermitian,
and for closed-shell con6gurations, can be diagonalized
by a unitary transformation that, at the same time,
keeps the matrices J and K invariant, so that the
Hartree-Fock operator remains the same. The variation

(68)
t 4@i (Sg 0 f4na

&F„t,„F„„,„ I q„„) k 0 S„kg„.
where e„„is the orbital energy of (I«) shell, and

and

Fit,„=—ZU„+J„—Kst, „,
F)„,„=—cT—„—Kt„,„,
F„),„=cT+„—K„t,„,

F,„,,= —(ZU„+2c'S„)+J„—K„,,„.

(69)

(70)

(71)

(72)

In view of Eqs. (63) and (68), we have

of g„„.and q„.„ in the J and K matrices leads again to
the same expression as the one obtained by varying
g„„and q„„, and doubles the contribution from the
two-electron integrals.

Thus, the relativistic Hartree-Fock-Roothaan equa-
tion becomes

(J,—Kit, , —Kt:, . t'( „E=P (2j+1) e„.——',((„„tg„„t)
~

AIC k —K„t,„J„—K„,,„kq„„
(73)

We note that both 2&&2 supermatrices in Eq. (68) are
symmetric and real. If we consider the expansion
coeKcients („„andg„„to form a column, vector, Eq. (68)
becomes the same type of pseudo-eigenvalue equation as
the nonrelativistic one derived by Roothaan.

The relative simplicity of our pseudo-eigenvalue
equation and of the total energy expression was achieved
by using the same set of basis functions for the large
and small radial functions, a procedure which is con-
sistent with the exact solutions of the Dirac equation
for the hydrogenic atoms. In principle, we could modify
our forma/ism so that the small radial function uses a
different set of basis functions from that of the large
radial function; this would require a modification of all
matrices related to the small component. For instance,
all off-diagonal elements of the 2)&2 supermatrices be-
come rectangular matrices if the numbers of basis func-
tions for the large and small components diGer, and the
overlap matrices in the upper diagonal and lower
diagonal position of the supermatrices must accordingly
be dered. The practical value, however, of such a
scheme is very doubtful.

An important difference between the relativistic
Hartree-Pock scheme and the nonrelativistic one is that
the negative energy states exist in the former. For nega-
tive energy solutions, the role of the large and small
components is reversed. Since we have biased the one-
electron energies in our calculation by —moc2, the orbital
energies of the negative energy states would be of the
order of —2moc'. Also, the variational principle will
lead to a stationary value, but not necessarily to a
minimum. The lowest minimum energy in the relativis-

tic formalism is —~, in the continuum range of the
negative energy states. The negative energy states are,
however, of no physical interest, and in numerical
application we use only trial functions corresponding to
the positive energy states.

MATRIX ELEMENTS OF THE
BREIT OPERATOR

Similarly to the electrostatic terms, the matrix ele-
ments of the Breit operator become the sum of direct
and exchange matrix elements of the magnetic inter-
action and the retardation terms. As will be shown later,
the sum of the direct matrix elements of the magnetic
interaction term over a closed shell vanishes, and the
direct matrix elements of the retardation term vanish
identically for all configurations. The first result is
readily understandable because a closed shell has no
net angular momentum and, therefore, cannot have net
magnetic moment to cause any mganetic interaction.
The second result is a consequence of the fact that there
is no time dependence in the charge distributions
P~t(1/g(1) and f~t(2)f~(2) and, therefore, no retarda-
tion for the Coulomb repulsion between static charge
distributions. For the exchange matrix element of the
retardation term, however, the charge distributions
f~t(1)its(1) and P~t(2)g~(2), when A&B, do have a
sinusoidal time dependence and the Coulomb repulsion
is retarded accordingly. "

"This interpretation was suggested by G. Wentzel (private
communication).
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C1 C2
M&&=(ll'~(1)ti'~(2) I ill'~(1)il's(2)) Q Mph=0,(74)

A,B
and

The direct and exchange matrix elements of the term. However, no justification has been given for such
magnetic interaction term are de6ned, respectively, as a simplihcation, and in the case of the closed-shell con-

6gurations, when

C1 G2
&~ =Q (1)0 (2)l Ill~(1)4 (2)) (75)

The exchange matrix element of the retardation term is
dered as

=lQ (1)4 (2)l
XL(o.r &r)(trs &s)ruf I&a(1)4~(2)). (76)

Then, the relativistic correction EB, due to the Breit
operator, is given by

~B s Q (MAB +AB +AB) ~ (77)
A,B

it is inconsistent to tak.e only the second term and not
the third term in Eq. P7). As can be seen from the
numerical example of the Ne atom, the retardation
term is not always negligible compared to the magnetic
interaction term.

As was done for the matrix elements of the Coulomb
repulsion term, the restriction 8&A was removed in
Eq. P7) because M» ——X», and 24&=0 for the same
reason which made all direct matrix elements of the re-
tardation term vanish.

Two-Electron Integrals of the Magnetic
Interaction Term

All relativistic SCF calculations carried out so far According to Grant, ' the general expression for the
have neglected the contribution from the retardation two-electronintegralof themagneticinteraction termis

C1' 0!2
M&&c&=Q'~(1)4~(2) I I4c(1)4~(2))

r12

=—2 2 2 8m~+~a. ~c+mz&(Mz, (jclcmc', 64m~)M, ~,(J~l~m~, jnlDmn)G. (AC; BD)
t'

—Mg, (j clem c,j~4m~)Mz, (ja4ma' ,jair mz)G. (AC; DB)

Mz.(jclem—c,jA~AmA)M J (j alBmB jdnmr )G,(CA; BD)

+Mj (jclcmc, j~lAmA)M J (jdBmB j DlDmD)G (CA DB)j (78)
where

M&,(jim; j'l'm) = (—)'—' "'I 3(2l+1)(2l'+1)(2j+1)(2j'+1)/(2 +1)3' '
'l -', j

&&» l' —,
' j' ~C(ll'v; 00)C(jj 'J; m, —m'), (79)

v 1 J.

G„(AB;CD) = drtdrs U„(1,2)&x(1)Qa(1)Pc(2)Qn(2),
0 0

(80)

and
r

v 1 J
is the 9-j symbol. "The integer J in Eqs. (78) and (79)
takes only the values v—1, v, v+1 to satisfy the tri-
angular conditions of the 9-j symbols. The allowed
values of v are determined from those of the Clebsch-

'~ For the de6nition and properties of the 9-j symbol, see A.
de-Shalit and I. Talmi, Pacleor Shell Theory (Academic Press
Inc., New York, 1963). The numerical tables prepared by H.
Matsunobu and H. Takebe LProgr. Theoret. Phys. (Kyoto)
14, 589 (1955)g are very useful for our calculation.

Gordan coeKcient C(ll'v; 00) in Eq. (79):
l+l'+v= even integer, (81)

ll—l I
&v&l+l

For the direct integral of the magnetic interaction
term, we put A =C, B=D in Eq. (78). Then, we note
that Eq. P8) does not vanish only if Mz, (jim; jim)
=—Mz, (jim; jim). From Eq. (79), it is found that this
is the case if J is an odd. integer. Since l+l is odd and
l+l+v must be even, v must be odd. Hence J=v is the
only allowed value for the direct integral, and @re have

M/s= —8 Q d, (~~m~, ~~my)G„(AA; BB), (82)
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T-
l — j

XC(llv; QQ) C(l'l'; 00) ~ l -', j « i'
1 v Iv 1

From Eq. (84) we note that

d, (~m; ~', —m') = —d„(xm; z'm'),

(85)

where

d„(am; a'm') =M„„(jim;j lm)M, „(jVm'; j'l'm). (83)

If we substitute Eq. (79) into (83), then we get

d„(am; x'm') =d„(m')C(jv j;m0)C(j'v j'; m'Q), (84)

where

d ( )=(—)'+'12I ( +1) ( +1)j"'(2 +1)(2 +1)

shell vanishes; that is,

Q d, (~m; ~'m') =Q d„(am; ~'m') =0. (86)

For the exchange integral of the magnetic interaction
term, we put A =D and B=C in Eq. (78) and get

&~a=2 2 P,(j ~4m~; je4mr)G. (AB; AB)

where

+e„j(gl~m~;j Blam+)G„(BA; BA)

+2f.(~~my, a~my)G„(AB; BA)j, (87)

e,(jim; jVm')=Q $3Eq, (j'l'm'; jim)g',
J

f,(~m; a'm')= —Q Mg.(j'l'm'; jim)
J

X3fz.(j 'l'm'; jim) . (89)
because C(jvj;m0)= (—)"C(jvj; —m0) and v is an odd The m dependence of Eqs. (88) and (89) may be sepa-
integer. Hence the sum of d, (~m; xm') over a closed rated out by substituting Eq. (79) into them. Then,

where

where

e.(jim; jVm')=p ep, (jl;j'l')LC(jj'J; m, —m')$',

1 ji 2

3(2l+1)(2l'+1)(2j+1)(2j'+1)
e~.(jl;j'l') = C(ll'v; 00)~ l' -', j' ~

2v+ 1 .v 1 J.
f,(zm; z'm') =Q fz„(m')/C(jj 'J; m, —m') j',

1'~1~1
»(2j+1)(2j'+1)Lj(j+1)j'(j'+1))'i'

g„(~~')=- C(ll'v; 00)C(ll'v; 00) ~ i'
2v+ 1

v 1 J I v 1 J

(90)

(91)

(92)

(93)

The allowed values of J and v for the exchange integral E~~ are

1=v—1, v, v+1(v)0)
(v —o) ', la~ —eel &~~&~S~+Z~

= v L(e~Kg) = (m~zs)]J

ill ~&v~&l~+i~ ««(j~l~m~ jei~m~)

IiA lBI &v&4+i. for e,(j~4m. , je4ms),
~»(ll~ —l, I, I4—i~I) ~& vs&min(i~+is, i,+i~) for f„(K~m~, .em, ),

(94)

v+j &+j & even, if ~&rc»0, ——
=odd, if I~.gK~ g 0,

for all coefficients in Eq. (8/).
The summation of e,(jim; jVm') and f„(am; ~'m') over m and m' is readily carried out with the use of the sum rule

P t.c(qqV; m, —m')$'=m+1.

Hence,
P e„(jlm; j 'l'm') =e,(j l; j'l') (2j+1)(2j'+1)

m, m'

=2(»+1)".(jl; j'l'), (96)
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and
f„(Km '

K m )=f (KK )(2j+1)(2j'+ 1)
m, ,na'

=Q(27+1)fg,(«').

Uery recently, Grant has shown that the sum over J in Eqs. (96) and (9/) may further be carried out in closed
form by expanding the 9-j symbols in terms of the Racah coekcients and using sum rules of the Racah coefE-
cients. "In this way, we get

e„(jl;j'l') =[2(j'+1)(2v+1)] '( j'[C(jj'v, —',, —-', )]'+(2j'+3)[C(j,j'+1, v;-'„—-',)]'), if j'=P—-', ,

e(jl; j'l') = [2j'(2v+1)] '{(2j'—1)[C(j,j'—1, v,' rs, ——',)7'+(j'+1)[C(jj'v; -'„——,')]'), if j'=P+-,',
and

2f.(KK') =5.(jj').

(98)

(99)

(100)

The symmetry relations of these coeKcients and their numerical values for some symmetry species are given in
Appendix II.

Exchange Matrix Element of the Retardation Term

As is shown in Appendix I, the general expression for the matrix element of the retardation term is

Raacn=kg' (1)0 (2)I[( V')( '& ) ]lk (1)4' (2))

= —p g b,+,, ~ &(R~.(j coma, j~4m~)R„, (i slnmn, jnlDm&)G&„, (AC; BD)
V Xr/l

R~,(j clCmC'j—AlAmA)R„, (j B~BmBj'DlDmD)Gg „(AC DB )
—R~,(j claim&, j~l&m&)R„.(j rrlnm&, jg)lDmgj)Gy„, (CA; BD)

+R&,(j 8~a,j~4m~)R„, (j a4m&, j&lcm~)Gy„, (CA; DB)), (101)
where

R„„(elm; j'l'm')=( )' &'—~'[3(2 +11)(21'+1)(2j+1)(j2'+ )1/( 2+v)17» s

X~ l' s j' «C(ll'to; 00)C(v1to; 00)C(jj'v; m, —m'), (102)

P

G),„,(AB; CD) =

with

0 0

drrdrs Pg(1)Qn(1)Ec(2)Qn(2) Bg(1)cj„(2)]F„(1,2), (103)

8 p
cj (s)=

BFg Fj

8 v+1-+
Bt'~

if to=v+1,

lf N= p —j. ,

=0 otherwise,

W„(1,2)= U, (1,2)[r&s/(2v+3) —r&s/(2v —1)]. (105)

Obviously, from Eq. (104) the allowed values «)«and p in Eq. (101) are limited. to v+1. Equation (105) gives the

radial part of the expansion of r» in terms of rj. and &2."The values of ~ are restricted by the triangular condition of
the 9-j symbol in Eq. (102), namely,

Ij j'I «j+j'-
ss L p. Grant, proc. phys. Soc. (London) 86, 523 (&963).
» 8,—S. Hnang«Astrophys. J. 108, 354 (1948)
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Furthermore, the conditions once in C(ll'co , 00') and the fact that&v=v+1 require v to change in steps of 2 as does ~,
which also satis6es the triangular condition

~
l—l'( &~ ~ &~l+l'.

When we carry out the differentiation of W„(1,2) for the four possible combinations of 'A and p, they all reduce to
combinations of U„+&(1,2) and U„&(1,2) [cf.Eq. (23)]with different multiplicative constants. We can carry out the
summation over X and p by substituting v+1 for X and p in Eq. (101).Then each radial integral Gz„„ in Eq. (101)
will be split into two parts, G„+& and G„z [cf. Eq. (80)) with their own coeKcients. The derivation of the general
formulas for such coeflicients is tedious and the expressions are very cumbersome. We shaH, instead, give the ex-
pression for the exchange integral.

The direct integral of the retardation term vanishes identically because of the triangular conditions of the
Clebsch-Gordan coeflicients and the 9-j symbols of Eq. (102). For instance, Rz.(j&lcmz, j&l&mz), in the case of
the direct integral, is

Rz„(jzlzmzj jzlzmz) = (—)'" '" "[12jz(jr+1)/(2v+1)]'I'(2 jr+1)

j~
jz ' C Zgl~); 00 C v1); 00 C j&j&v, m&, —m& .

1

The triangular conditions for C(l~l~X; 00) and C(v1X; 00) require that l~+ l~+X= even as well as v+1+X=even.
Since l~+l~ is odd, and 2j~ is also odd,

jA ~A 2

jg &= —+ Zg

v. t ) 1

jA
j~~
P

Therefore, Rz„(j&l&mzj jzlzm&) =Rz, (j &lzmz', j&l&m&) and the right-hand side of Eq. (101) vanishes identically
when A=C, and B=D.

For the exchange integral, we put A =D and B=C in Eq. (101), carry out the differentiation of W„(1,2), sum
over the allowed values of ) and p, and get

RAB p(g, (j AlAmAjB~BmB)G+1(AB AB)+g (jAlAmA js4ms)G, 1(AB AB)

where

+g.(j~l~ m~, jBEBmB)G+1(BA;BA)+g,'(j &tom/ jslsms)G, y(BA; BA)

+2[hz(&AmAj &BmB)Gg+1(AB j BA)+hy (&AmA j &BmB)R 1(ABj BA)]

+2k„(~~mAj KsmB)[H„g(ABj BA) Hy+1(ABj BA—)]), (106)

with

g,(j lm; j'l'm') =g, (jl; j'l') [C(jj'v; m, —m') )',
g.'(jim; jVm') =g, '(j l;jV) [C(jj 'v; m, —m'))',

h (&m; & m )=h, (KK )[C(jj 'v; m, —m') )',
h, '(am; ~'m') =h„'(~a') [C(jj 'v, m, —m') )',
&.(zm; a'm') =k, (~&')[C(j j'v; m, —m')]2,

r2"
H, (AB; BA)= dr2 dry Pz(1)Q&(1)P&(2)Q&(2),

r ~+I.

(107a)

(107b)

(108a)

(108b)

(109)

(110)

2(v+1)
g.(jl; j'l') =3(2j+1)(2j'+1)(2l+1)(2l'+1)(2v+1) '—

2v+3

1 j& r

l' -', j' C(ll'v+1; 00)

.v+1 1 v J

+[v(v+1))"' l' —', j' ~« l'
2 j' «C(l/'v —1;00)C(ll'v+1; 00) ', (111a)

ek
iv —1 1 v. .v+1 1 v.



CLOSED-SHELL ATOMS

g'(jl; j'l') =—3(2j+1)(2j'+1)(2l+1)(2l'+1)(2v+1) ' l. —,
' j' C(ll'v —1;00)

2p
p 1 1 p»

j 'l -' j
+[v(v+1)g"'« l' —', j' «« l' —', j' «C(ll'v —1;00)C(ll'v+1; 00) ~, (111b)

.v—1 1 v. .v+1 1 v.

h, (a~') = —3(2j+1)(2j'+1)L(2l+1)(2l+1)(2l'+1)(2l'+1)j'I'
1 jw «- t 1

2(v+1)
X « l' —,

' j' &,
l' s j' C(«ll'v+1; 00)C(ll'v+1; 00), (112a)

(2v+1)(2v+3) .v+1 1 vJ .v+1 1 vs

k„'(m') =—3(2j+1)(2j'+1)L(2l+ 1)(2l+ 1)(2l'+ 1)(2l'+ 1))'~~

1 ji r
Z

1

j' «« l' ~~ j' «C(ll'v —1;00)C(ll'v-1; 00), (112b)X )/

(2v+1)(2v —1)
,p 1 1 p v 1 1 p

k„(m') =—3(2j+1)(2j'+1)$(2l+1)(2l+1)(2K+1)(2l'+1)]'I'

l —,
' j~' l

X (2v+1) '(v(v+1))"' « t' -', j' " l' —', j' C(ll'v+1; 00)C(lPv —1;00)

v+1«1 v««v 1 1 v«

2 j l 2 j
j' «« t' ~~ j' «C(ll'v+1; 00)C(ll'v —1

&
00) . (113)

v+1 1 v«v 1 1 v«

The particular form of k, (m') was chosen such that

k.(~~') = k, (~'~) .
The sums over the magnetic quantum numbers m and m' of g's, h's, and k's can be obtained simply by multi-

plying Eqs. (111) through (113) by 2v+1. Hence, if we define

p g„(j lm; j'l'm')—= (2j+1)(2j'+1)g„(jl;j'l'), (114a)

etc., then @re have, for instance,

2(v+1)
g„(jl;j 'l') =3(2l+1)(2l'+1)«—

2v+3
~ l' —', j' C(ll'v+1& 00)

v+1 1 v

+Ev(v+1)j'I' l ~ j «« l ~s j 'C(ll v 1i 00)C(ll v+1' 00) ' ~ (114b)

v 1 1 v v+1 1 v«

The values of v are limited by the conditions

Ij—i '1 ~&v~&i+i ' (115a)
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v+j+j'=odd, if KK') 0,
=even, if m'&0. (115b)

We note that the conditions (115) are exactly the opposite of the conditions on t for the exchange integrai of the
magnetic interaction term LCf Eqs. (95).]Hence the allowed values of t ~1 for RAB wiii coincide with the aiiowed
va&«s of t' f» NAB. We may, therefore, combine the two exchange integrals, Eqs. (87) and (106), by absorbing
g's and &'»n«B, 's and f,'s, respectively. Thus, the combined exchange matrix element of the &reit operator is given
by

+AB Q (EAB+RAB)
mA st

= (2jA+1)(2jB+1)Q Pe„'(j AlA, jBlB)G„(AB;BA)

vrhere
+e,'(j AlA,

' Z'BlB)G„(BA; BA)+2f„'(KAKB)G„(AB;BA)+2k„'(KAKB)H„(AB; BA)] (116)

and

Then,

e„'(j l;j 'l')=2e„(j l; j'1')+g v&(jl;j'l')+g„+,'(j l;j'l'),
fv'(KK )= 2fv(KK )+kv y(KK )+Itv+t (KK ) v

k, '(KK') =k.+g(KK') —k„r(KK') .

(117)

(118)

(119)

P 1VA
' ——P P (2j +1) e„'(j l;j l )

B 8 v 0 0

dr&dt q U„(1,2)PA(1)QB(1)PA(2)QB(2)

+8 (jAlA j BlB) «td~q U, (1,2)&B(1)QA(1p'B(2)QA(2)

00 & 00

+2f„'(KAKB) dr~drq U„(1,2)EA(1)QB(1)PB(2)QA(2)
0 0

+2k„'(KAKB) dr drq Uv(1, 2)PA(1)QB(1)PB(2)QA(2). . (120)
0 ~1

In terms of the basis functions, this equation becomes

Q NAB P ($AqvBH, sAqvq(Aq+kAyBrq, sAqvq gAq+ gAqvBqg', sAyq4q+ VAqvBqq, sAtv'qgAq) v

B
vr here

tvq= P (2j +1)g g 'vv' ssqj' vsst gC& (j l' j l )X yq,

(121)

(122)
n'a' s, t

B~„,„q= P (2g'+1)g gn's'sf''s'tP I fv (KK')Xsyq, s'st, v+kv (KK')+sglq, svst v]s (123)
n'a' s, t

Bq(,stvq= 2 (2g +1)Z tvs's'sQvv's'tP ffv (KK )Xsyq, s'st, v+kv (KK )~stvq, s'st, v] v (124)

and
n'Ir, ' s, t

Bqq Ktlq Q (2y'+ 1)P qvv s skvs s the Bv (pl vj l )3CKglq, stv, sv] .
n'a' s, t

The partial exchange supermatrix elements Z„pq...t,„and 5K„pq,„,t,, are de6ned as

and

trpq, x'st, v= du ds f„„(u)f;,(u) f„(8)f„ t($),
pv+1

(126a)

~xpq, a'st tv= du th f„„(u)f;,(u)f„,(v)f„(tt),
0 0

I'+' (126b)
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respectively. Equations (126) become, in terms of the unnormalized, incomplete beta functions,

&Kyq, K at, p= 2/V(2/ay&i ay) V(2/KqgNq) V(2/K g,f'g 8)V(27K t,t g t)5 '~'

XP,'f.,-„.5 'P ',f'„,-,„,5 "I'(c+d)B)c,d; y/(1+y)5, (127a)

and

~. ." ..=2Ã(2 ~ f'. )V(2v..,f ..)V(2V".Z".)V(2V",f" )5 "'
X$'f,„„-,5 "[,'f'. , „-5 "'I'(c'+d')B/d', c', y'/(1+y')5, (127b)

where the parameters c, d, y, c', d', and y' are give by
Eqs. (60).

Now, we can write the relativistic correction due to
the Breit operator in 2)&2 supermatrix notation, and
Kq. (77) becomes

(Br(,„ Bs„,„)&~= Z(2i+1)(4'n. )I
~ ~

(128)
ng &B„t,„B„„,„i g.j

The 2X2 supermatrix in Eq. (128) is synunetric, be-
cause B~~,„and B„„,„are symmetric by definition, and
the relation B~„,„„,=B„~,„,„follows from the fact that

. yq, .8~,v=~.qy, . f,a, v

NUMERICAL APPLICATION

Peculiarities of the Relativistic Calculation

Much of the numerical technique developed for the
electronic computation of the nonrelativistic, analytic
expansion type wave function'4 may be used in our
scheme also. All of the basic mathematical manipula-
tions, such as the variation of the basis functions Lsee
paragraph (e) below), orthonormalization of the orbitals,
and the solution of the pseudo-eigenvalue equation (68)
may also be used with very little modification.

There are, however, properties peculiar to the rela-
tivistic formalism which complicate the computational
procedure. These peculiarities are discussed below.

(u) NNmericul accuracy. In the nonrelativistic case,
the numerical accuracy (within the framework of the
theory used) is normally limited by the accuracy of the
computer used. In the relativistic case however, the
velocity of light, which is equal to the inverse of the
6ne-structure constant 0, in the atomic units, enters into
the total energy expression. Hence the numerical value
of 0. sects the accuracy of the 6nal result. Although it is
dificult to express the o. dependence of the total energy
explicitly without using an additional approximation, it
is found that a small change of the value of n in the sixth
significant 6gure results in a minor change of the total
energy in the eighth signi6cant 6gure. This type of

difhculty cannot be overcome by simply using higher
precision in the numerical calculation, and the numeri-
cal accuracy for the relativistic SCF calculations is

limited probably to nine signi6cant 6gures with the
current knowledge of the 6ne-structure constant.

(b) Computation speed Th. e use of nonintegral princi-
pal quantum numbers in our basis functions slows down
the computation of all matrix elements with respect to
the basis functions. Factorials become gamma functions
in our case, and to some extent we lose either speed or
accuracy.

(c) Computer memory. The dimension of most of our
matrices will be twice that of the corresponding non-
relativistic matrices. In addition, the matrices K~„, K„b
B~„, and B„~ are not symmetric and we cannot
symmetrize our exchange supermatrix elements as was
done by Roothaan et al. '~ for the nonrelativistic
calculations. These conditions increase the corn-
puter memory storage required for the relativistic
computation.

(d) Small component. Although the nonrelativistic
radial functions are very good starting points for the
large component, some care must be taken in 6nding
the trial values of the small component. The properties
of the small component of the hydrogenic solution of
the Dirac equation' seem to be a good guide in the case
of light atoms. In general, the ratios of the expansion
coeS.cients of large and small radial functions are of the
order Zn. The numbers of nodes of the large and small
radial functions are the same if ~&0, and the small coin-
ponent has one more node if ~)0. For instance, the
small radial function of the 2p orbital can be constructed
from the linear combination of basis functions with
7=1 and y=2 whereas the large radial function will
depend very little on the basis function with p=1.
(Cf. Table V.) Also, near the origin the sign of the ratio
of the large and small radial functions agrees with the
sign of ~.

(e) The ground state. To improve the numerical
accuracy, we have shifted the energy scale by —moc' by
using P' matrix instead of P matrix Lcf. Eq. (4)5. How-
ever, as was mentioned earlier, the ground state of the
positive energy spectrum, which corresponds to the
nonrelativistic ground state, is a stationary value, but
not the lowest minimum. In the nonrelativistic case,
the variational calculation will not give a total energy
lower than the true ground-state energy. In the rela-
tivistic case, however, a poor approximation to the

'4 C. C. J. Roothaan and P. S. Bagus, Methodsin Computational
Physics (Academic Press Inc., New York, j.963), Vol. II, p. 47.

"C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.
Phys. 82, 186 (1960).
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TAnLE II. Comparison of total energies (atomic units).

Atom
('5'o)

He
Be
Ne

Nonrelativistic
calculations'

Relativistic
Total energy correction

—2.861680 —0.000070—14.57302 —0.00220—128.5470 —0.1312

Unperturbed
energy

—2.861838—14.57590—128.6919

This calculation
Breit operator

Magnetic Retarda-
interaction tion

0.000080 0
0.00116 —0.000004
0.0131 —0.0012

Total
relativistic

energyb

—2.861758—14.57474—128.6800

Qther relativistic
calculations

IIartree' Hartree-Slater~

—2.862 —2.965150—14.31500—126.547 —127.7752

a Reference 29. Sum of the first two columns should be compared with the total relativistic energy.
b Total relativistic energy =unperturbed energy + expectation value of the Breit operator.

Reference 8. This and the last columns should be compared with the unperturbed relativistic energy.
D. A. Liberman, D. Cromer, and J. Waber (private communication). The exchange terms were approximated by the modified Slater approximation

discussed by R. D. Cowan et a/. , Phys. Rev. 144, 5 (1966).

(s2 @2~2)1/2 (129)

so that in the Dirac equation the kinetic-energy term
and the nuclear potential term cancel each other for
small values of r (Cf. App. endix III.) Equation (129) is
equivalent to both the nonrelativistic cusP corsditio2222

and the requirement that the lowest power of r of an
orbital be equal to l+1.

(g) The sirial theorem. In our formulation, the unper-
turbed energy is not only the sum of kinetic and po-
tential energies, but also has the contribution from the

"For instance, the method described by B.J.Ransil, Rev. Mod.
Phys. 32, 239 (1960) was found to be useful for small atoms.

"The basis functions used by Parr and Joy, Refs. 13 and 19,
seem to violate this condition. They have used basis functions of
principal quantum numbers less than 1 in the nonrelativistic
radial functions of He atom and H2 molecule, and their radial
wave functions (radial function/r) are not Qnite at the origin.
The amount of singularity allowed in their calculation is larger
than that allowed in the relativistic theory. For a general dis-
cussion, see T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).

correct solution may give an energy lower than the
ground-state energy, because an approximate energy
value may be on either side of the correct stationary
value. Other quantities such as the virial theorem value
Lcf. (g) below7 may be used in finding the "correct"
solution. The total energy of He in the Hartree-Slater
approximation quoted in Table II is an example of the
"less accurate" case. The fact that it is lower than the
experimental value is insignificant in the relativistic
calculation. What matters is the accuracy with which
the conditions for the stationary property of the energy
value is fulfilled. The numerical technique needed in
computing the nonrelativistic wave functions of the
excited states must be used for the computation of the
relativistic ground state. "

(f) Singularity at the origi22 (the cusP corrditiors). In
the nonrelativistic case, we ruled out the radial solu-
cion which has singularity at the origin because it
violated the condition that the wave function be
corrtinuous arsd finite at all points in the space. sr In the
relativistic case, however, for s shells, the Dirac theory
introduces a weak singularity at the origin in order to
satisfy the relativistic wave equation there. This condi-
tion restricts the lowest power of r of a radial function to
be exactly

mass term, P'c2. Let

E= (EV)= (M)+(T)+(V),

where ( ) denotes the time average,

(M) =mass energy

(T)=kinetic energy

=(Q n„p„c),

(T)/(V) =22, (130)

if the potential-energy operator is a homogeneous func-
tion of radial parameters, i.e., if

Furthermore, if the potential is Coulombic (22= —1),
then

E= (3f).

Results

An IBM 7094 computer was used for the computation
of the ground states ('Ss) of He, Be, and Ne atoms. These
results have not yet been fully optimized, but further
optimization is expected to aRect the total energies

28 For a classical treatment, see H, Goldstein, Classical 3IIechan-
2cs (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1950), p. 69. Equation (130) may be derived by
using the methods described by L. I. Schiff, Quantum 3IIechanics
(McGraw-Hill Book Company, Inc. , New York. , 1955), 2nd ed. ,
p. 140, and by H. Eyring, J. Walter, and G. E. Kimball, Quantum
Chemistry (John Wiley Bz Sons, Inc. , New York, 1944), p. 355.
Equation (131) is given by M. E. Rose and T. A. Welton, Phys.
Rev. 86, 432 (1952). A general discussion of the virial theorem is
given by R. M. Schectman and R. H. Good, Am. J. Phys. 25, 219
(1957).

(V)=potential energy
=E—(M)—(T).

Then, in analogy to the nonrelativistic virial theorem, "
we get
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TABLE III. Orbital energies (atomic units).

Atom
('5'o)

This calculation
2$ 2P 1$

Nonrelativistic'
2$

He
Be
Ne

—0.91803—4.73349—32.81745
—0.30932—1.93599 —0.85284 —0.84848

—0.91796—4.73267—32.77276
—0.30927—1.93048 —0.85048

a Reference 31.

Tmz, z IV. Exponents of the Slater-type basis functions.

Atom
Basis

functio Exponent

$1
$2
$3
$4
$5
$6

p1
p2
y'3
p4
p5

P1
P2
P3
P4

0.9998935
1.9998935
1.9998935

He

1 AAA107

2.710702
1.731053

0.9995739
0.9995739
1.9995739
1.9995739
1.9995739
1.9995739

3.4703
6.3681
0.7516
0.9084
1.4236
2.7616

0.997334
0.997334
1.997334
1.997334
1.997334
1.997334

0.997334
1.997334
1.997334
1.997334
1.997334

1.998668
1.998668
1.998668
1.998668

Ne

9.5735
15.4496
1.9550
2.8462
4.7746
7.7131

9.5735
1.6663
3.0315
4.7746
7.7131

10.5420
4.9450
2.7935
1.6230

only in their sixth and higher significant figures, and
will not change any qualitative conclusions presented
below.

The energies computed by various methods are pre-
sented in Table II, and the orbital energies are given
in Table III. Our calculation clearly shows improve-
ment over the corresponding nonrelativistic Hartree-
Fock-Roothaan calculations, " except for the orbital
energy of the 2p orbital of Ne, which is expected to
improve when the orbitals are fully optimized. The
nonrelativistic total energies after the relativistic cor-
rections (computed by the first-order perturbation)
agree remarkably well with our relativistic total ener-
gies. This agreement is not surprising at all because the
Hamiltonian operators for the relativistic corrections
were derived from the relativistic operators we have
used. This agreement should, rather, be interpreted as
a support for the Pauli approximation procedure used
by Bethe and Salpeter' to reduce the Breit operator
into the operators H1 through B6 in their notation.

Also, it is interesting to see that the magnetic inter-
action increases the total energy, whereas the retarda-
tion effect decreases it. It is difBcult, however, to ex-
plain these eGects in terms of classical electrodynamics
because they all come from exchange matrix elements,
which have no classical analogy.

The retardation term amounts to approximately 10'Po
of the magnetic interaction term for Ne, although it is

29 H. Hartmann and E. Clementi, Phys. Rev. 133, A1295 (1964).

negligible for Be. The retardation term vanishes for He
because both electrons belong to the same shell, and
there is no retardation between the electrons belonging
to the same shell. Our result indicates that, for atoms
with p-shells, the retardation effect is by no means
negligible compared to the magnetic interaction.

The exponents for the Slater-type basis functions are
given in Table IV. The y exponents were not varied in
the present calculation, although we expect that the
number of basis functions may be reduced when 7's
are optimized as well. The basis functions for the He
atom were adopted from those used by Bagus and
Gilbert'0 for their nonrelativistic calculation, and the
basis functions for the Be atom are those used by
Clementi. "The basis functions for the Ne atom are a
cross-breed of those used by Bagus" and Clementi. e' It
was found that the nonrelativistic Hartree-Fock-
Roothaan wave functions of high accuracy" "provide
an excellent starting point for the relativistic calcula-
tion. In fact, Clementi's basis set for the Be atom was
used without any optimization, except for adjusting the
values of the y exponents to satisfy the relativistic cusp
condition (129). A more accurate relativistic calcula-
tion, based on the present formalism, for some isoelec-
tronic series and closed-shell configurations of small
atoms (Z~& 18) is in progress.

"P.S. Bagus and T. L. Gilbert (private communication).
s' E. Clementi, IBM J. Res. Develop. Suppl. 9, 2 (1965)."P.S. Bagus, Phys. Rev. 139, A619 (1965).
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TABLE V. Expansion coeKcients of the radial functions.

Atom
Basisg

function+Coeificient

(1s)
$1
$2
$3
s4
s5
s6

(2s)
$1
$2
$3
s4
s5
s6

(2p)
g1
g2
i3
p4
p5

(2P)
P1
P2
P3
P4

1.37099—0.09597—0.30310

He

g X10'

—1.00300
0.10309
0.31589

0.91784
0.08737
0.00144—0.00262
0.00217
0.00602

0.17051
0.01475—0.11676—0.67647—0.30353
0.09262

g X10'

—1.15951—0.20322—0.00041
0.00089—0.00117—0.00473

—0.20914—0.04005
0.02096
0.20611
0.02285—0.14454

0.93040
0.04595—0.00088
0.00329—0.00193
0.03550

—0.23196—0.00445
0.18078
0.66154
0 328AM

—0.14229

—0.00147
0.41897
0.47190
0.16635
0.04285

0.00940
0.24188
0.47964
0.36757

g X10'

—3.20705—0.26276—0.00004—0.00136
0.00038—0.08292

0.81387
0.03363—0.12231—0.52675—0.21934
0.52730

0.50594—0.12567
0.02062
0.28941
0.41291

—0.03622—0.43676—0.48906—0.21772

The expansion coefficients for the large and small
component radial functions are tabulated in Table V,
and the radial functions of the Ne atom are plotted in
Figs. 1 and 2. It is obvious from the values of the ex-
pansion coeKcients that one should not assume a con-
stant ratio between the large and small radial functions.
Such an assumption will force the large and small radial
functions to have not only an equal number of nodes,
but also to have them at exactly the same values of r.
Such a property does not hold, in general, for the hydro-
genic solutions of the Dirac equation, and it is not ex-
pected to hold for more complex atoms. "(Cf. Appendix
IV.) The ordinate of Fig. 2 is amplified compared to
that of Fig. 1 because absolute values of the small radial
functions are too small to be shown on the same scale
as the large radial functions. The large radial functions
Ps„(r) and Ps„(r)-are so close to each other that they
cannot be distinguished on the scale used in Fig. 1.'4
AVe found that maxima of the large radial functions occur
at the same points (e.g., Ar(0.02 a.u. for the 1s orbital
of Ne) as those of the nonrelativistic radial functions.

"For the trial input it is not necessary to use elaborate formu-
las for the ratio rf/g as was done by M. Synek (Ref. 11).The SCF
process will automatically adjust the expansion coeScients to
satisfy Eq. (68). A simple formula such as sf= —aZ'$, where
Z' =Z—(total number of electrons in the inner shells), is adequate
for the orbitals with negative K. For the orbitals with positive K,
the trial input must be chosen to represent the number of nodes
properly. LCf. paragraph (d) of previous section. g

'4 The numerical tabulation of the relativistic radial functions
and the charge densities will be included in the Technical Report,
Laboratory of Molecular Structure and Spectra, The Vniversity
of Chicago, 1966 (unpublished).

The nonrelativistic charge density differs little from
the relativistic one except that the relativistic charge
density is slightly larger near the nucleus (e.g. , Ap= 1%
at r =0.02 a.u. for the 1s orbital of Ne) than in the non-
relativistic case. Lower leading powers of the radial
variable, which are necessary to satisfy the Dirac
equation, lead to higher charge density near the nucleus,
and consequently to larger binding energy for the elec-
trons than in the nonrelativistic case.

CONCLUDING REMARKS

Comparison of our result on the He atom with the
experimental value, E, ,t———2.903571(&0.7&(10 ')

2.0-

I.O-

r (atomic units)

FIG. 1. The large-component radial functions of the neon atom.
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.05

- 2s

-.05-

-.IO
r (atomic units)

FIG. 2. The small-component radial functions of the neon atom.

atomic units, " indicates that a significant part of the
total energy is yet to be explained by many-body
theory. According to Pekeris, "the relativistic correction
corresponding to ours (Eq—2n' atomic units in his
notation) computed from his correlated wave function
for the ground state of He is —23 cm ' whereas ours is
—17 cm '. This shows, as expected, that many-body
effects also contribute a substantial amount to the
relativistic correction. On the other hand, for small,
closed-shell atoms, all the relativistic energy corrections
that can be computed in terms of the relativistic
Hartree-Fock model can also be computed with equal
accuracy by applying the perturbation method to the
operators given by Bethe and Salpeter4 with accurate,
nonrelativistic Hartree-Fock-Roothaan wave functions.

The numerical results presented in Table II speak for
themselves on the importance of the correct treatment of
the exchange terms in any relativistic calculation, as is
also the case for the nonrelativistic one. In fact, our ex-
perience shows that the so-called nzieinslm basis set
relativistic wave functions lead to results so bad that it
makes no sense to do any relativistic calculation with
them. It is the great advantage of the analytic expan-
sion method that it can handle the exchange matrix
elements as easily as the direct matrix elements. Even
in the nonrelativistic case, the exchange terms cause a
great deal of difhculty in the numerical solution of the
Hartree-Fock equation, and the situation is worse in the
relativistic case.

Our formalism will be more valuable when it is ex-
tended to open-shell con6gurations. This can be done

for con6gurations containing only one or two open-shell
electrons, and for corresponding hole con6gurations be-
cause, in such cases, we know how to couple the orbitals
in j-j coupling to construct the total wave function
which is an eigenfunction of J, L, S, and 3f, where J is
the total angular momentum, L is the orbital angular
momentum, S is the spin angular momentum, and 3f is
a projection of J.'~ Such an extension of this theory,
although of limited scope, will greatly in.crease the
variety of atoms and con6gurations which can be
treated relativistically. The formulas for the relativistic
Slater coefficients presented here can be used for the
coupling of open-shell electrons also. To treat the open-
shell configurations, the theory should also be extended
to include corlggrzration mixing Th.e ground state of
the carbon atom ('Ee) will serve as an example. The
eigenfunction of the 'Eo state is constructed from a linear
combination (in a definite way) of (2p)' and (2P)'
con6gurations. The formalism to handle such open-
shell cases can easily be extended to include other con-
figurations. Extension of our formalism to general cases
of open-shell con6gurations will require a considerable
amount of work on the theory of angular momentum

coupling, including the introduction of a seniority
scheme, to construct an eigenfunction of J, L, S, 3f, and
the seniority number(s) by j jcouplin-g.

At present, the outlook for the application of our
method to large atoms (Z&50) or molecules is not
bright. The computers currently available are too slow

and short on memory storage to handle the large num-

ber of basis functions needed to represent the Hartree-
Fock solutions to an accuracy which makes any rela-

tivistic calculation meaningful.
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APPENDIX I: THE MATRIX ELEMENT OF THE RETARDATION TERM

Let I be the large component and e the small component of an orbital, that is,

(NAI

VA

"G.Herzberg, Proc. Roy. Soc. (London) A248, 309 (1958).
C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

'7 Reference 18, p. 291.
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Then,

2EABcD= (i/A(1)ipse(2) I L(n(1) .V) (1)(n(2) V(2))rrs7 I pc(1)pii(2) &

= &N~(1)~~(2) l~ I oc(1)»(2))+&1~(1)»(2)I &I oc(1)»(2)&

+&»(1)N~(2) I &I &c(1)»(2)&+&»(1)»(2) I
~ INc(1)go(2) & (A1)

where

&=( (1) V(1))( (2) V(2)) (A2)

and e's are the 2X2 Pauli spin matrices. The gradient operator V(i) and o(i) operate on the orbitals containing
the coordinates of the ith electron. The interelectronic distance r~2 may be expanded as"

ris ——P W„(1,2)C„(1) C„(2)

=P W„(1,2)Q(—)"C,, (1)C, (2), (A3)

where

C„„(i)= t 4—7r/(2v+1) 7'I'Ir„„(e;,(p,)
is the unnormalized spherical harmonic, and W, (1,2) is given by Eq. (105).

Furthermore, we note that"

V„(i)C, (i)=p C(v1X;00)C(v1)i; mp)Cq, +„(i)Bi,(i), (A4)

where B& is defined by Eqs. (104), and C(v1)~; 00) and C(v1X; mp) are the Clebsch-Gordan coefficients. If we substi-
tute Eqs. (A3) and (A4) into (A2), we get

E=Q Q Q Q(—)v+'+mC(vD 00)C(v1)i —m p)
V 6 g)yq Xsjtl

Xo. v(1)C), v „(1)Bg(1)C(v1p,'00)C(vip; mq)o, (2)C„,,+ (2)B„(2)W„(1,2). (AS)

From Eqs. (8) and (AS), we have

(»(1)»(2)I~lee(1)»(2)&=X, r. r. 2 2 2 (—)"+'+"

XC(lzsj z', mz —oz, oz)C(lcs jc, mc —oc, oc)C(v1X;00)C(v1X; —m, p)

XC(lssjs mI3 0)3 os)C(tD 'j n, mr) oD, oi—))C(v1p, 00)C(vip, mq)

X(I'i.,.„,(1)y.„(1)I
~ .(1)C~,~.(1) I

I'ic,.c,(1)y.c(1))

X(I'i, .,(2)p.,(2)l~,(2)C„,,+ (2)II'iD, o . (2)p. (2))

Xi drrdrs P~(1)Eii(2)Qc(1)Qii(2) Bq(1)B„(2)W„(1,2), (A6)

where (F I
A

I
I' ) is the matrix element of A with respect to the spherical harmonics. With the help of the Wigner-

Eckart theorem, "we get

&I'i. ,-.-"(1)&"(1) I ~-.(1)C~. -(1) I
I'i. ,-.-"(1)~"(1)&

= &4~~ I
rr v I

4'~c&&F'ix, mz —~s I Ci, n m—
I
F'ic,mc—~c&—

=C(-', 1-,', oc, —p, o~)(sllell-,')C(lcXlg, mc —oc, p —m, mg —o~)(l~llCglltc), (A7)
where

together with
(s ll~ll s) =&3

(4II C~lltc) =C(td 4; oo)L(24+1)/(2tc+1)7"'

gives the reduced matrix elements.

"H. Horie, Progr. Theoret. Phys. (Kyoto) 10, 296 (1953).' M. E. Rose, E/ementary Theory of Angular Momentum (John Wiley Bz Sons, Inc. , New York, 1957), p. 85.
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The surrnnation over p and m may immediately be carried out in Eq. (A6) because the triangular conditions of
the Clebsch-Gordan coefficients in Eq. (A7) limit the values of p and m to

p= &c—&~,

Similarly,
5$=1St.—18'.

(F(o, o,o(2)g,o(2)
~
o,(2)C„,,+ (2) ) Fro,~~',o(2)g,o(2))

=C(~1-', ; on, 0 o&)(2llo'Ilk)C(t»l&' rN& oa 0+rN, rN~ o~—)(ls(( C„[[i~),

and the values of q and m are limited to

and

m 18+ mg) ~

Hence, Eq. (A6) reduces to

(Ng(1)N~(2) ~E~ac(1)on(2))=2+ Q Q P (—)'" &'" "&+'& '
v X,p o'&, erg o'&, o'&

XE(24+1)(21&+1)(2tc+1)(2')+1))'IL(2v+1) (2K+1)(28+1)j '

XC(-,' —',1; oc, —oz)C(lc4X; esc—oc, oz —mz)C(4-',jz, oz —esp, oz)

XC(tc~gc', nsc —o'c, oc)CP, 1v; o'z —o'c+rlc —mg, o'c cg)C(~ ~1; o—'a, o'D)—
XC(~BtDV ~B oB &D mD)C(~B jA rNB &J3 &B)C(~D jD &D ~D &D)

XC(y1v j 0B+cD rrID+15B) 0D+ oB)(—)I''+' "C(v1X;00)C(tcl&X; 00)

XC(v1p, 00)C(lgtDy;00)5„„+„o,„o+ o drqdr2 P~(1)Qc(1)P~(2)Q~(2)Bq(1)B„(2)W„(1,2) . (AS)

The summation over the o's can be carried out by using Eq. (14.41) of de Shalit and Talmi, "and we have

C(42j c, ~c—oc, oc)C(4kjA &A &2 oA)C(fc4X; rrlc oc, og ——rNA)
~A, ~C

XC(-', —',1;cc, —oz)C(X1v; mc —my+ay —cc, oc—og)

Zg

= t.3(2jr+1)(2jc+1)(2K+1)j'~'C(jcjzv; mc, —~z)~ lz ~ j~ ~ .

P ~

A similar relation also holds for the sum over o~ and on. ~ith these results, Eq. (AS) becomes

&»(1)N~(2) I
&

I oc(1)»(2))= 6 2 2 (—)'" '"-""+'
V

XL(2j~+1)(2jc+1)(2jr+1)(2jz+ 1)(24+1)(2lc+ 1)(2l&+1)(2lD+ 1))'~'

X(2v+1) 'C(tc4X) 00)C(lst», 00)C(v1X; 00)C(v1p, 00)

'Zc p je ~a

XC(jcj&v; mc, m~)C(j~jnv; rl~, —m~) E~——, j~ ~ ln

«X 1 p& «p

Xi drqdrm P+(1)Qc(1)PB(2)Qg)(2) By(1)B„(2)W„(1,2), (A9)

where the fact that p= v&1 was used to eliminate (—)v "+'.The rest of the matrix element of the retardation term,
Eq. (A1), znay now easily be deduced from Eq. (A9). The general expression for the matrix element of the re-
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tardation term is

RABcD= —Q Q(Rx.(j clcmc', jA/AmA)R„. (j o/omjs', j nLamrs)Gzlv. (AC; BD)

—Rz, (j clcmc j A/AmA)R„. (jel+me j g)/g)mb))G), „,(AC; DB)

Rz.—(j c/cmc, 'j A/AmA)R„, (j B/BmB'j D/DmD)GX (CA ' BD)

+Rz„(j c/cmc, jA/AmA)R„, (j zlzmjs', jz/Dmgj)G), „,(CA; DB)), (A10)

where R,(j/m; jVm') is given by Eq. (102), and Gq„„by Eq. (103).

APPENDIX II: THE SYMMETRY RELATIONS
AND THE TABLES OF THE RELATIVISTIC

SLATER COEFFICIENTS

(a) Symmetry relations. The following symmetry rela-
tions can easily be verified froIn the symmetry proper-
ties of the Clebsch-Gordan coeKcients and the 9-j
symbols. Let s„(Km; Km') be any of the relativistic
Slater coefficients

tegrals, namely, a„(jm;j'm') and d„(Km; K'm'):

and
a„(jm;j 'm') =a, (j m; j', —m'),

d (Km' K m )= d„(Km' K m ) .

(A15)

(A16)

(b) Tables of the re/atieistic Slater coegciersts. We pre-
sent tables of the coefficients which are summed over
the magnetic quantum numbers m and ns'.

a„(jm;j'm'),
e„(jlm; j 'l'm'),

g„'(jim; j 'l'm'),

and

b„(jm;j'm'),
f„(Km; K'm'),

h„(Km; K'm'),

k, (Km; K'm') .

d„(Km '
K m )

g„(jim; j 'l'm'),

h„'(Km; K'm'),
K V=O

1/2

1/2
0
0

1/4

0
1/6
0

1/6
0
0

0
0
0
0

1/10
1/20

TABLE VI. The values of the coeKcients b.(jj').

s„(Km; K'm') = s„(K, —m; K', —m')

= s„(K'm', Km).

(A11)
For a„(jj') and d„(KK), simple relations exist. )Cf.

(A12) Eqs. (32) and (86).7

When the summation over m and m' is carried out, we

get from Eq. (A12) and
a, , (jg') = S„, (A17)

S„(KK')=S„(K'K).
Note that Eq. (A13) means, for instance,

(A13) p d„(Km'K'm')=(2j+1)(2 'j+1)d„( KK)=0. (A18)
m, m'

From Eq. (33), we have

5.(D') =(2+1)-'Ã(8'; l, -l)7',
e,(j l; j'l') = e„(j'l';j /) Q e„(jV; jl),

(A19)
and similar relations for g„(jl;j'/'), g„'(j/; j'/'), and
e.'(jl j'l'). and the expressions for the coefficients of the Breit

Additional symmetry relations exist for the rela- operator can be obtained from Eqs. (98), (99), (100),
tivistic Slater coefficients arising from the direct in- (111), (112), (113), and (114).

TABLE VII. The values of the coeKcients e„'(jl; j'l'), e„'(jl;j 'l'), f„'(KK'), and k„'(KK').

e„'(i t;i 'i')
K K V 2es gy 1 g„+1

s s 1 1/2 —1/6 0
p s 0 1/6 0 —1/6

2 4/15 —1/15 0

p p 1 1/2 —1/6 0

p s 0 2/3 0 —1/6
2 1/6 —1/15 0

p p 1 1/2 0 —1/6
3 0 0 0

p p 1 1/4 —1/12 1/60
3 3/28 —3/70 0

es

1/3
0

1/5
1/3
1/2
1/10
1/3

11/60
9/140

e„'(il; j't')
2es gy 1 gs+1

1/2 —1/6 0
3/2 0 —1/2

0 0 0
1/2 —1/6 0

0 0 0
3/10 —1/10 0
1/10 0 —1/15
6/35 —3//0 0
1/4 —1/12 1/60
3/28 —3/70 0

» Ie,

1/3
1
0

1/3
0

1/5
1/30
9/70

11/60
9/140

f„'(KK')

2/v hv-1 hv+1

1/3 1/6 0
1 0 —1/6
0 0 0

1/3 1/6 0
0 0 0

1/5 —1/30 0
1/3 0 —1/30

0 0 0
1/30 1/12 1/75
9/70 9/700 0

k.'(ee')

jv hv-y

1/2 0 0
5/6 0 —1/3

0 —1/3 0
1/2 0 0

-1/6
1/6 —1/6 0
3/10 0 —3/10

0 —3/10 0
39/300 0 —3/50
99/700 —3/50 0

0
—1/3

1/3
0

—1/6
1/6

—3/10
3/10

—3/50
3/50
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We have tabulated the values of these coef5.cients up
to P(j= -,') symmetry in Tables VI and VII. The values
of the coefiicients which make up e„'(jt; jV) and
f„'(sr&') Lcf. Eqs. (117) and (118)g are also given in
Table VII so that the coefFicients from the exchange
matrix elements of the magnetic interaction term
(2e„and 2f„) and those from the retardation term
(g„ i, g~i', h i, and h„+i') may be compared directly.

As is mentioned in the main text, the direct integral
of the retardation term vanishes identically. We expect,
therefore, that the contributions from the exchange
matrix elements of the retardation term will cancel
each other when the orbitals in the radial integrals of
Eq. (120) are identical, i.e., if 2 =B.This can easily be
checked to be true from Table VII, using the identity

00 ~v

PA(~)QA(N)PA(o)QA(p)
pv+1

PA(~)QA(N)PA(o) QA(o)
p N"

00 00

dridr2 U„(1,2)

(VA+&A)pAO (Z/c)qAO=0,

(Z/c) pAo+ (pA ~A) qAo =0.
(A26)

To have a nontrivial solution for PAo and qAp from Eqs.
(A26), the determinant of their coefficients must vanish,
v1z.)

yA2 gA2+ (Z/c) 2 0

from which Eq. (129) follows.

where the PA, and qA; are constants. For small r, low
powers of r in Eqs. (A21) and (A22) dominate, and we
need keep only terms of the lowest power in r, namely,
of r» '. Then, we have

PA (")+(pA/r)PA(r) —(Z/«)QA(r) = o
(A25)

QA'(r) (~—A/r) QA(r)+ (Z/cr)PA(r) =0,

to be satisfied simultaneously. Using an argument
similar to that given by Hartree' for the nonrelativistic
case, it can be shown that the leading powers of r in the
relativistic two-electron integrals are higher than that
retained in Eqs. (A25). If we substitute Eqs. (A24) into
Eqs. (A25), then, after factoring out r», we get

p 0 APPENDIX IV: NONRELATIVISTIC I IMIT OF
THE RELATIVISTIC HARTREE-FOCK-

ROOTHAAN EQUATION

XPA(1)QA(1)PA(2)QA(2) . (A20)

APPENDIX DI: THE RELATIVISTIC HARTREE-
FOCK EQUATIONS

F«g+Fp„o) = OSg, (A27)

Equation (68) can be written as a pair of coupled
linear equations for and 2) as

The relativistic Hartree-Pock equations for the
closed-shell configurations are"

PA'(r)+(aA/r)PA(r) —(cr) 'QA(r)fr(2c +OA)+Z F„o(+F«g=oS2). (A28)

(2j&+1)UO(BB;r)$—(cr) ' P P(2 j&+1)
B v B

Xb„(jAj&)U, (AB; r)Qa(r)=0, (A21)

QA (r) —(~A/r)QA(r)+(cr) 'PA(r)LroA+Z

—P(2 j&+1)U, (BB;r)$+(cr)—' P P(2j&+1)

Xb,(jAj&) U, (AB; r)P&(r) =0, (A22)

where the prime stands for the derivative with respect
to r. The allowed values of v are specified by Eqs. (31),
and

U„(AB; r) = ds (s/r) "[PA(s)P+($—)+QA($)Qs($) j

+ ds (r/s)"+')PA($)PZI($)+QA($)QB($) j ~ (A23)

For brevity orbital labels e and ~ are omitted in above
equations. The leading terms in F„O and F«are cT+
and —2c'S, respectively, Lcf. Eqs. (71) and (72)j.
Hence, by neglecting the terms of lower orders in Eq.
(A28), we get

or
T+g 2cSrg, —

2)—(S 'T+/2c)g. (A29)

Equation (A29) is the approximate relation between
the large and small components. It also confirms our
expectation that 2) (o/c) (, because T+ comes from the
momentum operator in the Dirac Hamiltonian and the
denominator of Eq. (A29) from the rest-mass term.
Hence, (T+/(22mpcS) ).,=P/2moc= o/2c.

If we retain only —cT in Fo„, then from Eqs. (A27)
and (A29) we get

(A30)
The condition on the cusp at the origin $cf. Eq.

(129)j is found as follows. Let, near the origin,
where

~= —T-S 'T+/2. (A31)

PA(r) =r "(pAo+pAir+pA2r'+ ~ ~ )
QA(r) =r (qAo+qAlr+qA2r + ' ' ')

In Eq. (A31) ~ corresponds to the matrix of the non-
relativistic kinetic-energy operator.


