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Relativistic Positron-Electron Bremsstrahlung at Wide Angles:
A Numerical Calculation*

STANLEY M. SWANSON

1Nstitttte of Theoretica/ Physics, DePartmelt of Physecs, Stanford Urtieersity, Staeford, California
(Received 29 September 1966)

The bremsstrahlung spectrum for the process e++e ~ e++e +y has been evaluated at photon-emission
angles of roughly 30' to 120 from the incident particles in the c.m. system. The phase-space integrals of
the exact, lowest-order differential cross section were evaluated numerically. A computer program was used
to reduce the Dirac traces to invariants and to further simplify them until reasonably compact expressions
were obtained. Numerical results for selected photon angles and energies are given for 15-BeV positrons
incident upon electrons at rest in the laboratory and for 600- and 4000-MeV positrons in the c.m.
system (colliding-beam experiments). It was found that certain relativistic approximations to the spectrum,
which are valid for forward angles, are still fairly good at wide angles; an empirical modification to such
an approximation is given which provides a useful interpolation formula for the wide-angle region.

I. INTRODUCTION

'HE bremsstrahlung produced in positron-electron
collisions is of interest for the estimation of back-

ground in various processes: for positron annihilation
in Qight to produce a gamma ray beam' and for colliding
beam experiments. This work was originally undertaken
as part of a calculation of the photon spectrum in the
process e++e —+ 2y which has been suggested as a
means of producing a high energy, nearly monochro-
matic photon source with the Stanford two-mile linear
accelerator. ' The complete spectrum requires calcu-
lation of two and three quantum annihilation, radiative
corrections, and bremsstrahlung from the nucleus used
to localize the target electrons. ' Such an analysis indi-
cates that the optimum photon production angles are
near 90' in the c.m. system (but only 0.008 rad in the
laboratory for 15-BeV positrons). The results of this
work are also of use in the analysis of wide angle e+—e
scattering experiments in the c.m. system which have
been proposed as tests of quantum electrodynamics at
small distances.

For relativistic particles at forward angles, very
satisfactory approximations to the bremsstrahlung
spectrum can be made by analytically integrating only
two of the eight lowest-order Feynman graphs, but
it was not apparent that this would work at wide angles.
Instead, we did numerical phase-space integrals of the
exact, lowest-order differential cross section. Although
the traces involved in the square of the matrix element

(Z~ M~s) for this process have been evaluated before,
once by Votruba' for pair production in the field of an
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electron and again by Hodes' for electron-electron
bremsstrahlung, the application of the substitution rule
to such long expressions is tedious and subject to error.
Hence we started anew, using a computer program to
reduce the Dirac traces algebraically to invariants and
eventually to further simplify them.

The results of the numerical integration over the
phase space of the unobserved e+—e pair show that
the small angle formulas are remarkably good even at
90', and that a simple empirical modiIication will
give a 1 to S%%uo numerical 6t to the exact spectrum
except near the high-energy end where other diagrams
introduce a peak. Some numerical results are given to
illustrate the accuracy of this and other approximation
schemes; more extensive cross-section tables are avail-
able elsewhere. ' The interest of this paper lies also in
indicating some of the problems encountered in doing
the numerical phase-space integrals in the ultrarelati-
vistic region, so the technical details and some general
remarks about the use of computer programs in quan-
turn electrodynamics are given in the Appendix.

II. PERTURBATION CALCULATION

In lowest order (n'), the eight Feynman diagrams of
Fig. 1 define the matrix element of positron-electron
bremsstrahlung. Ke denote the initial electron and
positron four-momenta by pr and ps, respectively, the
final photon by k, and the 6nal electron and positron
by ps and p4, respectively. There are three distinct
types of traces in Z

~

3II
~

', once these are reduced to dot
products, all other traces may be obtained by substi-
tutions among the invariants.

Before specifying these traces we introduce a short-
hand notation. Let the particle propagators and pro-
jection operators be S(q)=(q y —m) ' and A(&p, )
=(m+p; y)/2m, and the four possible internal elec-
tron momenta: qt=pr —h, qs=k —ps, gs ——h+ps, and

'I. Hodes, Ph.D. thesis, University of Chicago, 1953 (un-
published).

6 A. Dufner, S. Swanson, Y. Tsai, SLAC Report 67, Stanford
Linear Accelerator Center, Stanford, California, 1966 (unpub-
lished).
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TAggLE I. The computer-generated traces from Eqs. (2—4). Note that twice the interference traces (2B,2C) are given and that the
m 4 from the particle projection operators has been factored out in the definitions of A, 8, and C. We use the abbreviated symbols:
E] O'P1 K2 —P'Pg E3—k P3 E'4=& P4, Q=m' —P~ P4, Q ™P1 P3, S=P1 P2 U= P', U=P3. P4.

A = —sm'(1/Egg+1/Kgg)+1/Eg —1/Eg —(S+V+Q+m')/EgEg mg—Q '(S/E g V'/—Eg 1)'—
Q—g(mg(1/E g 1—/Eg)Lmg(1/Eg —1/Eg)+1+S/Eg V/Kg—/+V/Eg S/E—g

y (S'+V')/EgEg+ ', (Kg/-Kg+Kg/Eg) (1+m'/Q) }
2B= (1/QQ') (-,' (1/EgEg+1/EgE4) (S+V)L (S+V) (S+V+Q+Q') +Q'+Q" +2m'(Q+Q') g—-', (1/E E +1/E E ) (S+V+Q+Q') L(s+V+Q+Q')'+2S'+2 V'+4m'(Q+Q')g

+-', (S+V+Q+Q')+-,'(E /E +E /K +K /K, +K /K') (S+V—Q—Q')
—-',mgt'(Q+Q'+2S+2V) (1/Kg+1/E4 —1/Kg —1/Kg)
+ (Es+E4) (1/Kg+1/E, )+ (Kg+Kg) (1/Es+ 1/E4) g)

2C= (1/Q U)( L(Q+U)' m4$$ —ms/Eg—g+2/Es 2/Eg+—V/E, E, (Q —m—)g/K gK,

+(m' Q —U—3Kg)/—EgKQ+ ', m'f(3Q-+3U E4)/K—g 3$—
+—', (1/Ks —1/Eg) P(Q+ U) (5Eg+3K4)+Kg(2Eg+E4)+E4(E4+m' 2m'(Q—+U+m')/Eg)5
+s (U/Eg —Q/Eg)L(2Q+2U —ms) (1+Kg/Eg)+Eg+K4'/Kg g

—(Eg/KsEg) /Kg(3Q+3U+Kg) 3m'—(Q+ U)/2$)

q4
———k—p4. Then define the symbol

[st ]= [e &S(q;)p„+&„S(q, )e &],

the fact that the trace of a string of Dirac matrices is
equal to the trace of the string written in reverse order):

(1)

where e is the polarization vector of the external
photon. When the photon polarization sum is taken,

~ .e y .e y is replaced by (—yg, ) (yg, )
Denote by A, 8, and C, the three parts of Z

l
M

l

' arising
from the two graphs of Fig. 1(a) combined with those
of Figs. 1(a), 1(b), and 1(c), respectively:

~-4A = (p,—p4)-' tr{A(ps) [3+1]A(pg)[1v3]l
X«{A(—ps)y„g1(—p )v,}, (2)

m '8=(P P) '(P P-) '
Xt {A(P )[3&1]~(P)&,&

X«{A(—ps)7 A( P4)l 4g 2]) (3)

m 'C= —(ps p4) (ps+ p4)
' tr{h(ps)[3p1]

X&(P )[1 2]A(—P )v,A(—P ) .) (4)

With the following indicated substitutions, these three
traces suflice to evaluate Z

l
3f l' (to verify this requires

I~is=~+~(pg~ —p4, ps~ —ps)
pol. , spins

+~ (Ps ~ Ps)+~ (P g
—~ P4)—

+28+28 (pi ~ —p4)+2C+ 2C (pi ~ —p4)

+2C(pi ~ ps, ps~ p4, k+-+ —k)

+2C(pg~ —ps, ps+-+ —p4, k ~ —k). (5)

The actual reduction of the three basic traces to dot
products was done on an IBM 7090 computer by a
machine language program written to do Dirac algebra
symbolically. ' With the conditions p =trg' and k'=0
imposed, the computation time was about 5 sec per
trace. In this case, A had 48 terms, while 8 and C had
about 120 terms apiece, resulting in almost 900 terms
for the full expression of Eq. (5). Each term is a product
of three dot products, divided by four propagator
denominators. Using other identities, it was possible to
coinbine or cancel (by hand) about 30%%u~ of the terms.
The end result in Table I was achieved after the algebra
program was rewritten to allow substitutions of linear
combinations of invariants for individual dot products.

A cross section is obtained by multiplying Z
l M l ' by

the phase space factor and dividing by the Aux; to get
the photon spectrum, we must integrate over the
possible momenta of the unobserved 6nal particles.

harp m coda)dQp

ggrs((pg 'ps)s rgg4)g/s

(C) (d)
FIG. 1. The Feynman diagrams for e+—e bremsstrahlung,

paired according to common photon propagators.

X dg d(cose)Pggg'Z l3f'l'. (6)

A description of this program has been given in S. M. Swanson,
Institute of Theoretical Physics, Stanford University. Report No.
ITP-120 (unpublished).
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TA&LE II. Dot products and related kinematical quantities as functions of m, co, E, x, 8, @. In the laboratory frame, the incident
positron (p,) has energy E and the incident electron (pi) is at rest with energy m, whereas in the center-of-mass frame, both incident
particles have energy E. In either frame, a 6nal photon of energy co is emitted at an angle X from y2,' co,„is the maximum possible
photon energy. The special direction of the final positron (p4) is given by the angles 8, p in the special frame. The quantities t, P, p
are auxiliary variables, introduced only for convenience.

P = (E'—m')'~'

Laboratory frame quantities:

PI, ' pg mE
co, =m(E m)/(—m+E Pcos—y)

Center-of-mass system quantities:

PI P2=E2+I'2
(o, =E—(m'/E)

t„= (pi+p4)„

k 'PI =5$07

k pi cu(E+——P cosx)

p = (1—4mst-')'~'

k ps=co(E Pco—sx)

k ps=a)(E-P cosy)

Other dot products:

t k=4 PI+A P2 t'=2(m'+pi ps t k)—
P3.P4 ——~st2 —m' t P2=m'+Pi P2—k P2
k Ps

——$t k(1+tl cos8) k P4=t k—k P3
p, p, = ', t p,+-,'p. c o-s(et p, kp:—(t') (t k)-')+-', p sine cos)(t k)-iDs(t'+2t k)k p, (k.p,)—mits(t k)s]i~s

PI P3=kt'+& P3-P2 P3
P2'P4 Pl 'P3+~'Pl ~ P3
P1 P4=-,'t'+k P4—P2 P4

Note that the remaining phase-space of the photon,
coCkodQ~, is separately invariant and can be evaluated in
that frame in which the spectrum is desired. Since the
kinematical constraints on ps and p4 take a complicated
form in the laboratory frame, we have chosen to do this
integration in the frame where the 3-vector part of
p, +p4 is zero. We shall call this the "special frame. "In
the special frame, the direction of p4 is arbitrary, and
the energies of the 6nal electron and positron are equal
and are determined once the photon energy and angle
and the incident energies are fixed in some system. We
have chosen the s axis of the special frame to be along
k and 8 to be the angle between k and p4 (see Fig. 2),
so that d04 ——d(cosg)dg. A straightforward application
of Lorentz kinematics gives the dot products in terms
of m, e, P, and the initial system quantities E, oi, X (see
Table II). Some numerical integrals of the exact ex-
pression for X M~' )Eq. (5)j are shown in Table III
in column 3 and the technical details of the integration
are given in the Appendix. The accuracy of the nu-
merical integrals is believed to be better than 1%%uo

except in a few low-energy (y«1), small-angle cases
marked by an asterisk which are probably 3 to 6%%uo

lower than the correct values.

directions near the minima of the quantities k P„k.P4,
nP —p, p4, and m' —pi ps which appear as propagator
denominators. This corresponds to the tendency of
electromagnetic processes to peak in the forward
direction at these energies; most of the radiation occurs
when one of the 6nal particles is only slightly deviated
from its initial motion, or comes away near the photon
direction. These peaks have made the numerical inte-
gration dificult, but have suggested an effective ap-
proximation motivated by the Schi6 approximation to
the Bethe-Heitler cross section for electron brems-
strahlung in the Coulomb field of a nucleus. '

The approximation consists of evaluating all the
invariants, except the one whose minimum produces
the peak, at the peak center and integrating the
resulting function of the single invariant. In addition,
we make a small-energy approximation, with

y=t k/(-,'t'+t k)=oi/oi, (lab)=oi/E(c. m.)«1. (7)

Consider the peak in q'=m' —ps p4 for the trace A.
At ~q'~;, we have k ps=% pi(1+0 Ps/t ps), which

III. DISCUSSION

The numerical calculation of the exact cross section
values in Table III is somewhat complicated and time
consuming, so it was deemed desirable to develop fairly
accurate approximate formulas for interpolation and
extrapolation to nearby points in the spectrum. Two
approximations were investigated: The erst depends
on the dominance of the propagators in determining
the behavior of the integrand and the second depends
on an empirical modification of a small-angle formula.

Perhaps the most striking feature of Z~M~s in the
ultrarelativistic region is an extreme peakedness in

FlG. 2. The coordinate
system in the special
frame; y1, y2, and k lie
in the x-s plane.

s L. I. Schiff, Phys. Rev. 87, 750 (1952).
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TanzE III. Cross sections for the photon spectrum (d'e/dcadQ)) in the process e++e ~ e++e +7 for selected photon angles and
energies in three initial systems. The photon is emitted at an angle x with respect to the initial ositron direction yz and has a fraction
y of its maximum possible energy co, . Column 3 contains the numerical integrals of the exact Z M ( LEq. (5)j.The other five columns
are various approximations which are more fully explained in the text. Column 4 omits the contributions of the annihilation graphs of
Figs. 1(c) and 1(d), while column 5 omits both the annihilation graphs and the interference term between the graphs of Figs. 1(a)
and 1(b). Columns 6 and 7 are, respectively, small- and wide-angle approximations to column 5. Column 8 is the result of an empirical
modification to column 6 to fit the exact values LEq. (12)g. The numerical integrals in columns 3 and 4 are believed to be accurate to
better than 1% except in a few low y, small-angle cases (marked by an asterisk) which are probably about 5% low.

j'ABA

39.6
131.1
819.0

15600.0
83300.0+

8.09
27.4

173.0
3095.0

17050.0
1.36
4.57

29.18
427.0

2390.0
0.489
1.59

10.14
102.1
578.1

0.449
1.50
9.57

57.2
327.0

Fudge

40.57
126.7
796.8

15240.0
84940.0

8.413
26,48

167.5
2986.0

16660.0
1.404
4.468

28.48
415.'4

2324.0
0.4933
1.579

10.10
101.1
568.9

0.4601
1.468
9.374

55.92
318.2

J'AA

38.47
129.3
815.8

15620.0
87180.0

7.603
26.67

170.4
3050.0

17080.0
1.187
4.274

27.90
412.4

2328.0

45.99
170.4

1026.0
18670.0

102500.0
9.040

33.51
203.4

3489.0
19270.0

1.348
5.019

31.05
445.3

2491.0
0.4264
1.602

10.09
100.8
572.2

0.4257
1.590
9.900

58.41
332.8

43.82
134.4
834.6

15900.0
88590.0

9.39
28.81

178.9
3170.0

17680.0
1.639
5.029

31.22
451.8

2526.0
0.5886
1.806

11.21
111.2
625.3

0.5421
1.664

10.33
61.17

347.5

0.8
0.4
0.1
0.00706
0.00141

0.8
0.4
0.1
0.00756
0.00151

0.8
0.4
0.1
0.00911
0.00182

0.8
0.4
0.1
0.0129
0.00259

0.8
0.4
0.1
0.0208
0.00415

38.66
128.6
805.0

15380.0
83930.0*

7.847
26.52

169.3
3015.0

16710.0
1.323
4.448

28.28
415.4

2336.0
0.4902
1.573

10.03
101.9
571.4

0.4413
1.461
9.337

55.64
318.4

0.002

0.003

0.005

0.008 0.4028
1.435
9.484

96.69
552.0

0.3836
1.379
9.047

54.55
313.9

0.012

Cross sections in mb/BeV sr for a 15-BeV positron incident upon an electron at rest in the laboratory. The two low y points at each
angle correspond to i00- and 20-MeV photons. Some auxiliary parameters for these initial conditions are given in Table IV.

x
(rad) y Exact Wide

0.524

1.571

0.8
0.1
0.8
0.1

Cross sections in nb/BeV sr for

188.2 194.0
3608.0 3681.0

5.995 6.071
117.2 119.0

600-MeV positrons in the center-of-mass system.

189.6 218.2 213.9
3670.0 3779.0 4337.0

5.309 7.796 5.595
112.8 135.0 118.7

200.5
3592.0

6.531
121.6

0.524

1.571

0.8
0.1
0.8
0.1

Cross sections in nb/BeV sr for 4-BeV positrons in the center-of-mass system.

0.8119 0.8382 0.8230 0.9443 0.9058
14.45* 14.77* 15.18 15.65 17.50

0.02502 0.02550 0.02294 0.03373 0.02413
0.4751 0.4827 0.464 I 0.5589 0.4861

0.8679
14.87

0.02826
0.5036

introduces considerable simpli6. cation for smaB y.
Under these conditions, the peak shape is

(U'+(~ ~'Ps/f Ps) I
V'I m)e)

Instead of the q
4 behavior of potential scattering,

there has been a cancellation in the numerator to pro-
duce a q

' peak with still further cancellation at the

center which introduces a "crater" of several orders of
magnitude. ' Such cancellation may be understood

qualitatively on the basis of helicity conservation in

the electron-photon interaction. "Doing the same thing

'The actual cancellation was somewhat larger than that indi-
cated by Eq. (8). For example, in the case Eq,b=15 Beg,
x&,b =0.008, y =0.1, the photon peak A ccq 4(q'+0.99 q'

~
m;~).

"At least in the case of the electron propagators (k p)), k p4),
we can argue: If the electron mass is neglected, the interaction of

for k.ps, and by symmetrizing the formula to include
the other two propagators, we obtain

O.fo m co

f'Ps y k Ps $2—(8—6r) f+ &+ (2—y) ln-
pl'ps) — h 'k m'

+(pt ~ps) (9)
electrons and photons conserves fermion helicity. Photon emission
in the same direction as the fermion 3-momentum is forbidden
by helicity conservation. With fermions of nonzero rest mass,
emission in this direction is no longer strictly forbidden, but at
high energies it is much less probable than emission at nearby
angles, where the photon has a small transverse momentum.
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From the numerical values of Eq. (9) in column 7 of
Table III, we see that the approximation is remarkably
good as y approaches 1 and that the major contri-
bution to the cross section comes from only a few of
the traces in MIMI'. Strictly speaking, this approxi-
mation does not include interference terms from trace
8, so that the close agreement with the exact values at
90', indicates an overestimate. The overestimate
worsens at small angles since the peaks are treated
independently, whereas in fact the electron and photon
propagator peaks coalesce.

In small-angle, small-momentum transfer brems-
strahlung, the process is dominated by radiation from
the incident lepton. This is described by neglecting all
but the two graphs of Fig. 1(b), leading to a trace of
type A. Theoretical arguments that the contributions
from other terms should be less than a few percent for
X&.~.&0.1 have been given by Altarelli and Buccella."
The integrals involved for the trace A are elementary
but tedious and there is a large cancelation between the
integrals coming from terms containing q 4. What is
surprising is that the result, when symmetrized to
include the graphs of Fig. 1(a) but not the interference
term (see Table III, column 5), should come so close
to the exact result at all angles. The effect of including
the interference term (trace 8) in a numerical inte-
gration is given in column 4 of Table III, showing that
the annihilation graphs LFigs. 1(c), 1(d)] can be neg-
lected for y~0.8 to an accuracy of a few percent.
However, for co very close to ~, , the graphs of Fig.
1(c) dominate the cross section; this will be discussed
below.

At forward angles, the analytic integral of the trace
A

I Eq. (2)] can be considerably simplified. This has
been done by Altarelli and Buccella":

CEPp 8Z GO

2D+(1—S)']
doidQ 2a-(k P2)'

1—f
— P

+8 (1—y) ln —(2—y)'
m'y

The parameter f=k p2(P+2t k)/m't k approaches 1
as y and X both approach 0. The discrepancy between
the two. formulas is as high as 7% at small angles; a
numerical comparison with the unapproximated integral
indicates that Eq. (10) is probably correct. The formula
of Altarelli and Buccella is identical to SchiR s approxi-
mation when the eGect of screening is omitted in the
latter. " At wide angles, these formulas must be sym-
metrized (pi ~ p2) to include the backward angle peak
and both formulas give essentially identical values (see
Table III, column 6). They give an overestimate near
90', when compared to column 5, since negative
contributions from terms in (k p4) ' and (m' —Pi pa)

'
have been ignored in the small-angle approximation.
The neglected terms and the contribution of the inter-
ference trace proved di%cult to estimate for large y;
it was felt better to devise a fudge factor to apply to
the symmetrized Eq. (10) in order to reproduce the
exact integral, rather than to take a selection of the
neglected terms from column 5. One possible form is

d 0
= L1—0.09(1+y) sinX&

dordQ

X(Eq. (10), symmetrized pi~ p2). (12)

The agreement between the values of this numerical
fit and the exact integral (compare columns 8 and 3 of
the first part of Table III) is typical of that obtained for
laboratory energies between 2 and 30 BeV; the worse
6t in the second and third parts of Table III suggests
that the numerical coeKcient of sinX, is energy-
dependent. (See also Table IV.)

Near the tip of the bremsstrahlung spectrum (for
y) 0.999), the process is dominated by the annihilation
graphs of Fig. 1(c) whose photon propagator P is
approaching 4m'. This gives a spike of the same (1—y) '
shape as the two and three quantum annihilation
spectrum with its radiative corrections, ' but whose
integrated contribution" is several orders of magnitude
below the annihilation cross section. The phase-space
integrals in this case are

—16(1—y)l 'i (10)
Sir ( 1~ 1q

A (p2~ —P3)d04 ———
I
s+-

I
1+-

I

3P l si xi
and by Tsai':

d'o nre'm'to
2L1+ (1—r)']

do&dQ 2s (k.p2)' l

1—f t'
+8(1—y) I

ln —(2—y)'
5 p m'y

10 42 20' i
+(1—y)l 1—+——

I
. (11)

p
"G. Altarelli and F. Buccella, Nuovo Cimento 34, 1337 (1964).

P t' 1yp 9 2~ 1(4
+ I

1+-
II 4+-+—I+—

I

—2
4k P, & sit x eJ xsEx

1 1 9 3 2)
1+—

8(k Pi)' s' x4 2x' x' xi

1 2 3 11 2)-+- 4+ + + I, (13)
x4i

"L.I. Schiff, Phys. Rev. 83, 252 (1951).' For a previous derivation of the integrated contribution, see
U. Mosco, Nnovo Cimento 33, 115 (1964) and G. Longhi ~ iNd,
35, 1122 (1965).
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TABLE IV. Additional parameters for each of the photon labo-
ratory angles z of Table III (first part). The lowest order annihila-
tion cross section tta/dQ(e++e ~ 2y) is given in mb/sr in the
laboratory for an incident positron energy of 15 BeV (the corre-
sponding c.m. energy is 126 MeV). Radiative corrections depend
on the experimental resolution and so are omitted. The monochro-
matic photon energy co~ is essentially equal to co „ for the brems-
strahlung process. The corresponding center-of-mass angle is x,
and s=k ps/k. pi is a convenient dimensionless parameter to
express the angular dependence in the wide-angle range.

(rad)

0.002
0.003
0.005
0.008
0.012

(IieV)

14.17
13.25
10.97
7.734
4.820

80'/dQ
(mb/sr)

605.0
239.0
65.7
21.2
10.6

Xc.m.
(rad)

0.475
0.697
1.09
1.54
1.94

0.059
0.132
0.367
0.939
2.11

where s=k ps/k pi and x=t'/2m'. Near the tip, the
bremsstrahlung spectrum is well approximated by

d'o nrssmsoiP ( 2ms) 1 / 1)
I 1+

I
-I s+-

I

doidQ 3u (pt. ps) 5 ts j ts 5 sl
(-'t'+t k)

+ . (14)
(& pi)(& ps)-
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APPENDIX

The historical development of this work has been
in the reverse of logical order as refinements were
added to surmount various diKculties which appeared.
It had been originally hoped that we could simply
grind out numerical integrals of the traces produced
by the computer program, giving numerical values for
the photon spectrum in the regions where the small-
angle approximations were not expected to hold. This
was frustrated by truncation errors and the extreme
variation of the integrand which caused poor numerical
and temporal convergence of the integrals until parts
of the calculation were done in double precision and. a

change of variables devised which smoothed out the
integrand. The first expressions for the basic traces of
2

I
M I' remained an unintelligible jumble of terms until

the capacity of the trace program was increased to
allow substitutions of linear combinations of terms for
invariants. Then the traces could be reduced to func-
tions of a minimal set of invariants, and after con-
siderable juggling, in which guesses for simplified forms
were subtracted from. the traces and then refined by
analyzing the residue, the expressions of Table I were
produced. The substitutional symmetries of the traces
helped to suggest which variables and forins to use for
the guesses. It is a simple matter to produce arithmetic
expressions automatically from the output of the trace
program which are then acceptable compiler input for
subsequent numerical calculations.

A computer is ideally suited for the bookkeeping
involved in the analytic evaluation of matrix elements.
One might therefore expect that it could be used to
evaluate many high-order quantities in quantum
electrodynamics. Aside from the inordinate complexity
of the intermediate results, one further trouble is that
we have no algorithms for handling graphs with
multiple, closed, internal loops. Such graphs, even
if they are first obtained analytically, will probably
have to be evaluated numerically. Thus the following
discussion of the details of our numerical work may have
some general interest if the singularities encountered in
the general graphs are similar to those in our problem,
and it will of particular interest to anyone who might
wish to compute other points in the bremsstrahlung
spectrum.

There are two principal sources of computational
errors: (1) The numbers are represented by finite
strings of digits; if the Anal answer is the result of a
near cancellation of several terms, there can be appre-
ciable truncation error. (2) A numerical integration of
a rapidly varying function such as ZI3III' may be
inaccurate because the mesh points miss important
regions of variation of the integrand.

We have estimated the errors of type (1) by calcu-
lating MIMI' at various points (8, g in special frame)
in double precision and comparing this to ZIMls
calculated at the same point, but in single precision. '4

Our conclusion is that the "single-precision" calcu-
lation gives at least one or two significant decimal
digits in the worst case (in the depressions near the
center of the peaks, in regions contributing about 8%
to the total integral), and that the round-o8 and trun-
cation errors in the final answers are less than 0.1%.

The final-state integration was initially attempted
with respect to d(cos8)dt's, using a recursive Simpson's

'4 Double precision is about 23 decimal digits on the Burroughs
B-5500. Actually, in our "single-precision" calculation the dot
products of Table II and the photon propagators were evaluated
in double precision and then truncated to single precision. The
ZlMl' and subsequent numerical integration was then done in
single precision.
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rule. This algorithm re6ned the mesh in regions of
rapid variation of the integrand until a specified agree-
ment was obtained between two successive approxi-
mations. "Blind application of this routine gave very
poor accuracy; apparently, sometimes one of the peaks
was completely missed. By requiring that the initial
trial mesh contain several points in the vicinity of each
maximum, we obtained more accurate answers, but
excessive computation time was needed to get better
than 10% accuracy for small-angle, small-photon-

energy points. At such points, the convergence of our
integral routine was not completely satisfactory because
of the extreme variation of 2

~ 3I
' near a maximum. It

was suggested to us that by a transformation of vari-
ables, equal intervals of integration could be made to
have approximately equal contributions to the anal
answer. " In other words, by introducing a variable
change of scale, the integrand can be made much
smoother and better convergence results. In principle,
the recursive mesh refinement also spends approxi-
mately equal times sampling the integrand in regions
of equal contribution to the integral; it turned out to
be less efficient in practice under conditions of extreme
variation. The numerical answers obtained by using
this change of variables are estimated to be accurate
to 1% except for a few points at small X and small y
(these points are marked by an asterisk in Table III,
and are probably 3—6% low). This estimate of accuracy
is based on a comparison of the numerical and analytic
integrals of the part of X~M~' used in the approxi-
mations discussed in the article (column 5). Since this
truncated integrand closely resembles the exact ex-
pression, we assume that the exact integral is also
accurate to 1% when the comparison on the truncated
integrals shows this accuracy.

We now indicate the exact nature of the change of
variables used to smooth out the integrand. Bear in
mind that the integrand is approximately proportional
to an appropriate q

' near a peak. For the electron
propagators, )'s Ps and k.P4, the maxima occur at 8=0,
v and the integrand is approximately constant in p.

15''e are indebted to C. H. Moore, formerly of the SLAC
Computation Group, for this algorithm."E.A. Allton (private communication).

The substitution is

q2= a&b cos8= be", (15)

tan-', y= (a' —b')"'(u'+b') —'" tanv, (2o)

tants(8—8;)= (8—b)'"(a+b) '" sinhl (21)

d(cos8)dg= —4q'(u+b) '"(a'+b') '"
Xsin8 cosrs(8—8~)dvdl. (22)

The integration was done by iteration of single integrals,
with J'~bt or J'dv performed first. Note that since the
integrand depends only on

21r

cos$, dp= 2 dp.

Because of the difhculty in obtaining convergent,
accurate numerical integrals, our conclusion is that any
computer evaluation of complicated matrix elements
cannot ignore physical insights about possible singu-
larities. In particular, a program designed to evaluate
any arbitrary (lowest order) process is feasible, 'r but
if it is to be useful over the range of energies presently
available experimentally, it will probably have to
perform arithmetical operations in double precision
and include some means of locating and treating care-
fully the near zeros of propagator denominators. Per-
haps bremsstrahlung is a hard test case, since photon
propagators are generally much more singular than
electron propagators.

' Large steps toward the development of such a program have
been made at Stanford in the list processing language resp 1.5:
A. C. Hearn, Bull. Am. Phys. Soc. 9, 436 (1964); Commun. ACM
9, 573 (1966).

bd(cos8) ~=a g'du~. (16)

In the photon propagators, the peak is associated with
@=0,and

cos8, = —
(& p, pp.—p,/& b)[(& p,) ypp—] (17)

or
cos82 (& ps ~2)'s. p2/~ ~)L(~' ps)2 ris2$2]

—i/2 (1g)

We put

g'=a —b(cos8; cos8+sin8; sin8 cosP) =a' —b' cosg, (19)


