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Cubic Symmetry Effects in Solid Hesf*
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A detailed analysis is made of the single-particle model for solid He' at O'K under an external pressure
of 30 atm. The correct Hamiltonian being assumed, it is shown at the outset that the calculation gives a
rigorous upper bound for the ground-state enthalpy of the system. The many-body wavefunction is taken
to be a product of single-particle wave functions which are cubically symmetric about their respective
lattice sites. In order to obtain the best product wave function of this type, the usual minimization principles
are applied, and a set of self-consistent equations are obtained which diBer as expected from the spherically
symmetric Hartree equations. These cubically symmetric equations are then solved numerically, and the
ground-state energy obtained is 10/o lower than that obtained in the spherically symmetric approximation.
This result is still significantly higher than the probable experimental value.

I. INTRODUCTION
' 'N the past several years there has been considerable

- theoretical interest in the properties of solid He at
O'K. Most prominent have been those calculations in
which the many-body wave function is ultimately taken
to be a product of single-particle wave functions (single-
particle model), ' ' and it is with a calculation of this
type that we will be concerned in this work.

Unlike most solids which may be treated classically,
with the application of quantum mechanics to explain
the small deviations from classical theory, solid He' is
a manifestly "quantum solid. " Because of the small
He' atomic mass and the relatively weak interaction
between the He' atoms, the zero-point kinetic energy of
solid He' is of the same order of magnitude as the po-
tential energy and hence may not be' treated as a
perturbation on the classical potential energy. (In addi-
tion to requiring the use of quantum mechanics, this
large zero-point energy results in an expansion of the
system with the result that over 30 atm of pressure are
required to solidify He' at absolute zero. ) Moreover,
because of marked anharmonicity, it is dificult to deal
with the potential energy by the usual quantum-
mechanical perturbation techniques. Hence, since nei-

ther the potential nor the kinetic energy may be easily
treated by perturbation methods, the quantum solid
He' presents us with an interesting theoretical problem.

In this work we give a detailed exposition of the
single-particle model for this problem, emphasizing ex-

plicitly the sects of cubic syounetry but neglecting
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correlation eGects although these are clearly important
in the case of solid He'. Our purpose is to present cer-
tain features of the theory in some detail and especially
to show the effects of the "symmetry of the lattice. "
In Sec. II we review basic principles and assumptions,
and in Sec. III we show how to obtain the best varia-
tional results using a many-body wave function which
is a product of single-particle wave functions each of
which is cubically symmetric about its own lattice site.
This method allows us to obtain a rigorous upper bound
for the true enthalpy of the system. In Sec. IV we give
the results of our calculations and review the known
experimental data. The computational methods used
are given in Appendix B.

U(S=O, V) = Up(V), (2 1)

where Up(V) is the lowest energy state of the system
of volume V. Let C (V) be the true wave function for
this state, and let @(V) be any typical wave function
which is used in calculation. Then it is well known that

U'p(V) & Up(V), (2.2)

where the quantity with the tilde refers to the energy
calculated using the variational wave function %(V),
and the quantity on the left refers to the true lowest
energy which is obtained by using the true wave-
function 4 (V).

e H. B. Callen, Thermodynamics Qohn Wiley gr Sons, Inc. ,
New York, 1960).
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II. BASIC PRINCIPLES AND ASSUMPTIONS

In general, to obtain the energy of a given system for
temperature T&0, one must calculate several eigen-
states, determine the probability of the system being in
each state, and then use statistical averaging to deter-
mine the energy. At absolute zero, however, Planck's
statement of the Nernst postulate' implies that there is
one particular state of lower energy than any other,
and it is this state alone which is occupied by the sys-
tem at all times, i.e., at absolute zero the energy is
simply
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Fro. 1. Kxainple of a possible case in which Uo(V, ) (Uo(Vo) b«
Xo(Po) &Xo(Po). See Sec. II for discussion.

Using Eq. (2.2) it is straightforward to show that the
proper variational theorem to be used for systems under
pressure E at T=O'K is

SCp(P) (fCp(P), (2 3)

where 3'.o is the thermodynamic enthalpy at T=O, and
(—P) is defined as the volume derivative of the true
and calculated energies, respectively.

The significance of Eq. (2.3) is described graphically
in Fig. 1. It should be noted that for P)0 it is impera-
tive to keep the pressure term in Eq. (2.3), for we can,
in fact, have the situation shown in the figure where
Up(Vo)(Up(Vp), yet we still have BCp(Po))BCp(P, )
which is consistent with Eq. (2.3). In the above, V, is
the volume of the system under a given pressure P,
and T=O, i.e.,

d V, (V) dorp(V)
(—P,)= (2.4)

dV y y d~ Fv,
In addition to other assumptions which will be intro-

duced as required, we use the following throughout
this work:

(a) In accordance with experimental observation, '
solid He' exists in bcc lattice form for pressures from
30—40 to 100—150 atm at T=O'K. (b) At T=O'K, the
He' atom remains intact as a fermion with two paired
electrons. (c) The Hamiltonian for the system is

(2.5)

where E is the total number of atoms in the system,

has the usual signi6. cance thati, j go from 1 to E with

IIL SINGLE-PARTICLE MODEL

In this section we limit ourselves to a special class
of variational wave functions which have many of the
basic properties of the true wave function provided the
assumptions in Sec. II are valid. From this class we
show how to obtain that %(V) which gives the lowest
calculated energy for each V, i,e., we obtain the best
Up(V) as a function of V. We then calculate SCp(P) to
obtain the lowest upper bound for the ground-state
enthalpy of the system under pressure P.

Taking into account thoughts of simplicity as well
as the basic assumptions, we choose initially as our
generic many-body wave function

(3 1)

where

is the permutation operator for Fermi statistics, and the
spin function of;($;) describes particle i in spin-state of;.

Now, because er, z(r) is strongly repulsive at small
distances, we expect each P; to be rigorously confined
to a single-lattice cell. We therefore postulate (and
verify self-consistently later) that our iP; are of the
Heitler-London type and have zero overlap, so that

p;(r)p;(r)dr=0, iWj. (3 2)

Because of this zero overlap, it is clear that

&+~I&l+~)=&+I&i+), (3.3)
where P is the Hamiltonian given in Eq. (2.1), and

(3.4)

Since the simpler generic wavefunction + gives the
same energy as the more complicated +p, we use it
instead of 0 ~.

Because of the spatial symmetry of the crystal, and
for reasons of simplicity, we postulate that each f; has
the same functional form relative to its own lattice
site, i.e.,

f;(r;)=)(r;—R;), (3.5)

where R; is the position of the ith lattice site, and, for
convenience, we choose lattice site j. to be at the origin
of our con6guration space coordinates, i.e., Ri ——0.
l From Eq. (3.5) it is clear that the wave function 4
is a function of the volume since the P; are functions of

the case i =j excluded, and vr, z(r) is the Lennard-Jones
potential

(2.6)

where, for He', e=10.22'K and o =2.556 A.
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R;, and these lattice site positions are, of course, func-
tions of the volume. ]

Because of the cubic symmetry of the crystal, we

would like it to be cubically symmetric and, in par-
ticular, we may choose it to have the form

lP(r) =Np(r)+N4(r)E4(Q) (3.6)

Q(r) I4(r)) =1, (3.8)

and, in order to simplify the manipulations, we further
assume that%' is real. Our problem then becomes, in the
language of the calculus of variations, to solve

(3.9)

subject to the constraints

(a) 4'=4(r' —R'),

(b) Q(r) IEi(Q))=0, l)6,
(c) 8 (r) Ilt (r))=1.

The constraints imply that

(g (r) I
E', (Q) )=0, l)6,

and
&&A(r) I4 (r) &

=0

(3.10a)

(3.10b)

(3.10c)

(3.11)

from which it follows in a straightforward fashion that
a sufficient condition for Eq. (3.9) to be satisfied is
that f(r) satisfies, in addition to the constraints (3.10),
the equation

[(—ls'j2rrs) |r'P+W(r)]g (r)

= p~t (r)+Ex Pi(r)&i(Q) (3 13)

where E4(Q) is the Kubic harmonic of the tz type
(identity representation) with angular momentum 1=4;
Np(r) and u4(r) are arbitrary functions of r. [These
Kubic harmonics (KH) were introduced by Von der
Lage and Bethel in 1947. In Appendix A we give a
table of the n type KH up to 1=8, state their basic
properties, and explain our motivation for choosing
these n type KH.] The wave function shown in Eq.
(3.6) satisfies

(3.7)

and it will be seen to be convenient to use Eq. (3.7),
which is less stringent than Eq. (3.6), as our constraint.

%e normalize our wave functions,

p is the single-particle energy eigenvalue, and P&(r) is
an arbitrary function of r to be determined later.

means that the sum includes only those / for which
there exist Kubic harmonics of the n type starting from
l=6. It is also easily shown that

where

E=$[p—-', W],

W—= (&(r) I W(r) Ik(r)).

(3.15)

(3.16)

P(r) =Np(r)+N4(r)E4(Q), (3.18a)

(3.18b)

To start the iteration procedure, let us guess at some
initial wave function which satisfies Eqs. (3.18), and
then consider the sum formed using this wavefunction,

(3.19)

Recalling the properties of the KH given in Appendix
A, it is straightforward to show that S(r) remains in-
variant under all cubic-symmetry operations so that
we may expand S(r&) in the form

P [P(r,—R;)]'=P S„(r,)Z„(Q,), (3.20)

Note that Eq. (3.13), for various values of p and Pi(r),
will be valid for any local minimum of the energy, i.e.,
for excited energy eigenstates as well as for the ground
state of the system. To obtain the ground state, we see
from Eq. (3.15) that the energy does not depend ex-
plicitly on the functions P&(r), and is a minimum when
p is a minimum. Hence, when solving Eq. (3.13) we
seek the lowest possible eigenvalue, eo, and then the
lowest calculated energy state for the system is

Up= &[op—l W]. (3.17)

The choice of the functions Pi(r) will be explained subse-
quently. In the usual derivation of the spherically
symmetric Hartree equations, z the constraints (3.10b)
are not used, and hence the Pi(r) do not appear. It will,
however, be manifest in the following that, whenever
dealing with a cubic lattice, self-consistency demands
the use of these Pi(r).

YVe now proceed to show that, by using a self-
consistent iteration procedure, a solution of Eq. (3.13)
can be found which satisfies the constraints (3.10). In
particular, we will exhibit a solution of the form

where W(r) is the Hartree potential given by

W(ri) =g [p(rp —R;)]'vJJ (rip)drp, (3.14)

where

n=o

1
S„(r)= Q[P(r R)]'E —(Q)d—Q. (3.21)

4m i&&

' F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947l.

'F. Spitz, 3foderri Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1960).
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We also expand wr, s(r):

where

&1J (r12) 2 +l(rl r2)P1(cos712)
L=O

(3.22)

Before proceeding to the potential energy, we note
first that the product E4(Q)E;(Q) remains invariant
under all cubic symmetry operations so that we may
write

Z4(Q)K;(Q) =Px D;,Z, (Q), (3.30)
Ji (ri, r2) =

2 (2l+1) vi, g (r12)P1 (cosy12)
—1

Xd(cosy12) . (3.23)
where

1
D,= E—(Q)Z, (Q)X,(Q)dQ.

kr
(3.31)

(From the rules for the addition of angular momenta,
it is clear that D;&NO only if j, k satisfy

~ j—4~ &k
&j+4.) The potential energy term is then

(3.24) [gx W„(r)E (Q))[uo(r)+u4(r)E4(Q))n=O

We then use the addition theorem for Legendre poly-
nomials on Pi(cosy12), and putting Eqs. (3.20) and
(3.22) into Eq. (3.14), recalling the well-known orthogo-
nality conditions on the transcendental functions and
on the Legendre polynomials, we obtain at once

W(r) =Px W„(r)K„(Q),

where

W (ri)=

n=O

=Px Z„(Q)[uo(r)W„(r)+u4(r)gx D2 W2(r)). (3.32)
o(r2 o(rl f2)r2 r2 ~ ( ~ =0 kM

To obtain the expansion (3.24), we used only the
following three properties: (a) All the f; have the same
functional form about their respective lattice sites,
(b) P(r) remains invariant under all cubic symmetry
operations, and (c) the sum

Putting Eqs. (3.29) and (3.32) into Eq. (3.26) and
recalling the orthogonality of the KH, we see that the
necessary and sufficien conditions for Eq. (3.26) to be
satisfied are that we set

p&(r) =uo(r)W1(r)+u4(r)px D»W&(r), l&6, (3.33)

and that s(r) and g(r) satisfy the coupled set of
equations

was taken over a cubic lattice. In particular, it should
be noted that we would have obtained the same ex-
pansion (3.24) even if we had taken f(r) to be only
spherically symmetric.

Using Eq. (3.24), our problem now is to show that
there exists a solution f(r) of the equation

[( I4'/2m—)V'+P Wx(r)K (Q) —o)f(r)

t' —F2 d's(r) l
i+Wo(r)s(r)+ W (r)g(r)

&2m dr2 j —os (r) =0, (3.34a)—hol d'g(r)l
~+B(r)g (r)+W4(r) s(r)

2mj dr2 jn=O —og (r) =0, (3.34b)=P P,(r)Z, (Q), (3.26)
l=6 where

+0.713Wo(r)+0.682W2(r) . (3.35)

which satisfies Eqs. (3.18). For our present purposes, —l'22 20
the W„(r) in Eq. (3.26) are taken to be any given real B(r)=— —+Wo(r)+o. 577W4(r)
functions of r, and we ignore the fact that they are
actually functions of P. Define

o()—= ()/,
u4(r) =—g(r)/r.

(3.27a) In the above we have used

(3.27b) DQ4 D4Q —1
~

D44= 0.577,

D44= 0.713,

Using the properties of the KH, and the well-known

fact that

(3.36a)

(3.36b)

(3.36c)
8—sin8—~+

sin8 88 88j sin'8 8 oo

Yi-(8, 2 )

l (l+1)Yi„(8,vp), —(3.28)

we obtain for the kinetic energy term

(—F42/2m) V'iP (r)
F2 1- dos — -(dog 20g-—+Z4(Q)~ — . (3.29)

2m t' df &dr' r'

D84= 0.682. (3.36d)

Note further that if [s(r),g(r)) satisfies the coupled set
of equations (3.34) so does [Cs(r),Cg(r)) where C is
any constant. We choose C to be such that our wave
function [Eq. (3.18a)) is normalized to one, i.e.,

(3.37)
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We have thus shown that if we use any initial wave
function which satisfies Eqs. (3.18) to calculate the
Hartree potential W(r), then Eq. (3.13) may be written
in the form (3.26) and we get back a solution which
satisfies Eqs. (3.18). This then serves as the basis for
an iterative self-consistent solution of Eq. (3.13) subject
to the constraints (3.10).

For convenience, we now summarize the calcula-
tional procedure to be followed. The details of the
numerical methods used are given in Appendix B.

(a) Calculate Ji(rt, rs) using Eq. (3.23) for /=0, 4,
6, 8. (b) Choose an initial I/(r) which satistms Eqs.
(3.18). (c) Calculate St(r) using Eq. (3.21) for /=0, 4,
6, 8. (d) Calculate Wi(r) using Eq. (3.25) for /=0, 4,
6, 8. (e) Solve the coupled set of equations (3.34) for e

and Ls(r),g(r)]. In this solution we seek the lowest
possible e. (f) Normalize the wave function I/ (r). That
is, use $Cs(r),Cg(r)g where C is given by Eq. (3.37).
Then

where
U, =&L.,—;Wj, (3.38)

W=4or DVos'+2sgW4

+g'(We+0. 577Wo+0. 713Ws+0.682Ws) j«(3 30)

We now use [Cs(r),Cg(r)$ to replace the initial choice
given in step (b), and repeat the subsequent steps.
Repeating this procedure several times, we obtain a
(hopefully) convergent set of minimum energies

U "& U &" U &'& ~ ~ ~ (340)

where the superscripts refer to iteration numbers. When

I
Uo" "—Uo"' I/I Uo"'I

is small enough to insure an accuracy of better than
1/o, we stop the procedure and take the last obtained
U0 as our calculated ground-state energy.

The magnitudes of the lattice-site positions are ex-
pressible as multiples of the nearest-neighbor distance
A, and thus by varying A we are able to obtain Uo as a
function of the volume. We plot Uo(V) versus V and,
using Eq. (2.4), we determine V, corresponding to the
experimentally observed pressure I',. We then obtain
the lowest calculated upper bound to the enthalpy, viz. ,

BCo(E,)= Uo( V,)+P,V, . (3.41)

The results obtained by applying the methods of this
section to solid He' at O'K are given in Sec. IU.

One obvious point should be mentioned before pro-
ceeding. If we wish to find a rigorous upper bound for
the energy using only spherically symmetric single-
particle wave functions, we must explicitly use the
constraint

Q (r) IEi(Q))=0, all /NO, (3.42)

instead of constraint (3.10b), at the start of the prob-

I I '. I I I I I I. I I I

40-

C3 32

—28-
O'

24-

20-
tV&for P&=30attn

angen

lem. For, as shown above, the Hartree potential for a
cubic lattice is cubically symmetric even if the wave
functions are taken to be only spherically symmetric,
and the constraints (3.42) are necessary to supply
sufhcient Pt(r) functions to cancel out the "unwanted"
terms in the infinite expansion of the Hartree potential.
We may then obtain the spherically symmetric self-
consistent solution

a()= ()t,
where s(r) satisfies the equation

h' d's—+Wo(r)s(r) —es(r) =0,
2&l (&

(3.44)

where Ws(r) is defined by Eq. (3.25) with is=0. Equa-
tion (3.44) was solved numerically for solid He' by
Xosanow and Shaw. ' Because of the simplicity with
which our computer programs can be adapted to this
case, we will repeat it as a comparison base for the
cubically symmetric calculation and as a rough check
on the computer programs we use.

IV. RESULTS AND DISCUSSIOÃ

The results of our calculations are given in Table I
and Figs. 2 to 5 inclusively. The numerical computa-

TABLE I. Values of the enthalpy (Xo), the ground-state energy
(Uo), and the volume (tr) for solid He' under a pressure of 30
atm at T=O'K. C refers to cubically symmetric single-particle
wave functions and S to spherically symmetric ones. Both calcula-
tions were done using the Lennard-Jones two-body potential. See
remarks on the experimental value in Sec. IV.

Calculation S
Calculation C
Experiment

V(cmojmole) Uo(caljmole) Xo(cal/mole)

27.5 30.8 50.8
27.5 27.3 47.3
24.9 —1.6 16.5

l
I I I I I I t I I I I I I

20 22 24 26 28 30 32 34 36 38 40 42 44
V(cm /mole j

FIG. 2. Calculated ground-state energy of solid Hes as a func-
tion of volume, using the Lennard-Jones two-body potential. The
top curve was obtained by using spherically symmetric single-
particle wave functions, and the bottom one was obtained by
using cubically symmetric single-particle wave functions of the
form P(r) =oio(r)+os(r)E4(Q) and the Hartree potential W(r)= Wo(r)+W4(r)E4(0), as explained in Sec. IVB.
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curve for He' exhibits a minimum at 0.3'K, it is very
dificult to extrapolate and find the melting pressure at
O'K with any confidence. The choice of 30 atm at O'K
could therefore be wrong by as much as 10 atm or
more.

cal/mole. The difference between our calculated value
and the experimental value is thus 30% of the quantum
effect, and this is to be attributed to the fact that we
did not include either exchange or correlation sects in
the calculations.

B. Single-Particle Model

First, we see in Table I that an improvement of only
8% is obtained in the calculated enthalpy (at 30 atm
and O'K) by using cubically symmetric single-particle
wave functions instead of spherically symmetric ones,
and this despite the fact that the cubically symmetric
Hartree potential differs significantly from sphericity
(Figs. 3 and 4). The best calculated enthalpy (47.3 cal/
mole) is still significantly higher than the probable
experimental value (16.5 cal/mole).

It is seen explicitly in Fig. 5 that W(r) —+~ as
y -+ (i~A) so that rigorously preventing our single-
particle wave functions from overlapping leads to com-
pletely self-consistent results.

The "change of phase" which both the energy curves
exhibit (Fig. 2) occurs at approximately 25 atm. Its
significance is not completely clear since a fixed crystal
structure was imposed upon the calculation for each of
the plotted points.

At a volume of 23.49 cm'/mole (A=3.7$),
complete calculation was carried out using the four
potentials Wo(r), W4(r), W6(r), Ws(r), and, for com-

parison, the calculation was repeated using on]y the
two potentials Wo(r), W4(r), and setting W6(r) =W8(r)
=0, all r. The results of both calculations were the
same to three figures of accuracy so that subsequently
only the two potentials Wo(r), W4(r) were used, it being
assumed that W&(r), W8 (r) always have negligible effect
in comparison. Certain numerical approximations were
also made during the course of the calculations and
these are described in detail in Appendix B.The calcu-
lated volumes shown in Table I were obtained by
plotting )UO(V)+ PV$ versus V for P= 30 atm, and then
6nding that V at-which the minimum occurred. Because
of unavoidable inaccuracies in plotting, these values
may be in error by as much as 0.5 cm'/mole. The energy
and enthalpy values are considered to be accurate to
within 0.1 cal/mole.

It is instructive to compare our results with the
classical enthalpy of a crystal with the same external
conditions imposed on it as were imposed on our
quantum-mechanical calculation, i.e., we wish to com-

pare our results with the classical enthalpy of a bcc
crystal under 30 atm pressure. This value is roughly
obtained by considering the atoms to have no kinetic
energy, and (at 30 atm) to be rigidly spaced at a nearest-
neighbor distance of about 2.8 A (just above the bottom
of the LJ well). We then see that the classical enthalpy
is of the order of —80 cal/mole. Hence, the difference
between the experimental and classical values of the
enthalpy (the "quantu~ effect") is of the order of 1pp

APPENDIX A. KUBIC HARMONICS

Von der Lage and Bethe' have shown how to con-
struct wave functions whose group is the full cubic
symmetry group. These wave functions, which they
named Kubic harmonics (KH), fall into 10 irreducible
representations (types). In this Appendix we state some
of the important properties of the n-type KH (identity
representation), and then explain our motivation for
choosing this representation.

Proyerties of the Kubic Harmonics

The eight n type KH which we have occasion to
use are

5X (3X7)'" *'+y4+z4 3

r4 5

(A1)

(A2)

3X7X11X(2X 13)'" +y's'
E6

1
+ PE4] —

, (A3—)
22 105

5X13X(3X11X17)'' x'+y'+s'
Ks

28 210 1——L&6j— 2&4j—— (A4)
5 143 3

where functions in square brackets indicate functions
with normalization factors omitted. (E'8 as given in
Ref. 8 is erroneous. )

Any of the n type KH can be written in the form

(A5)

ACKNOWLEDGMENTS

The author is most grateful to Professor Keith A.
Brueckner for suggesting this problem and for his con-
stant encouragement and advice, and to Dr. Katuro
Sawada for many constructive criticisms and illuminat-
ing discussions. He also wishes to thank. Professor
Clay Perry, Director of the Computer Center at the
University of California, San Diego, for the full co-
operation of his organization, and Mrs. Anna J.Devore
for much helpful advice on computer programming.



CUBIC SYMMETRY EFFECTS IN SOLID He'

or

Z4(Q) =g (A~~ cosrrtq+84~ sinner)P4~(cosg), (A6)
m 0

calculations
v(r) = vr.g(r), r)1.60 A,

e(r) = 10' 'K, r(1.60 A.
(83)

where F'~ (e,q) and P4 (costI) are the usual spherical
harmonics and Legendre polynomials, respectively, and
A ~, B~, C~ are constants, some of which may be zero.
The KH are normalized to 4x.

Being the identity representation means, of course,
that the o. type KH remain invariant under all 48 cubic
symmetry operations. Moreover, from their mode of
construction' it is clear that the O.-type KH span the
space of all well-behaved functions of the angles 0 and

p which remain invariant under all cubic symmetry
operations. That is, if f(r) is a well-behaved function
of r such that

f(@ 'r) =f(r) (Aj)

for all cubic symmetry operations 6l, then f(r) may
always be expanded in the form

dp, —&

(a+bp) 6 bm+1

(y-a)"
dy. (84)

However, if a is large and 5 is small, this will give very
poor numerical accuracy since, in evaluating P&0(t4)
(especially for /= S) we will be dealing with very small
diGerences between large numbers, such that we would
have to use double-precision computer accuracy to
obtain meaningful results. Hence, in the case a))b, we
use @=bt4/a as an expansion parameter and obtain, for
example,

Noting that P~o(t4) is a polynomial of powers of t4,
it is clear that the integral (81) can be done explicitly
by using the transformation y ~ a+bt4,

where

f(r) =Z a~(r)&4(Q),
L=O

1
gt(r) = f—(r)Z4(Q)dQ.

4

(AS)

(A9)

gn+1 gn
dp= dx.

(a+bt4)' a'b"+' (1+x)'

Then, expanding the denominator and integrating, we
get

APPENDIX B. NUMERICAL METHODS

Calculation of J4(r~, r2)

For the I.J two-body potential we have

012

Jt(rg, r2) =- 4e
2

P(o(J4)dp, (81)
(a+bt4)' (a+bt4)'

Choice of Irreducible Reyresentation

It is well known that irreducible representations
generally do not mix so that, if we pick one part of our
wave function to be of the o. type, we must continue
with this type for the remainder. The irreducible repre-
sentation member Eo——1 is desirable since it has no
nodes, and therefore No(r)+N4(r)E'4(Q) may also turn
out to have no nodes which is the usual situation for the
ground-state wave function of any given system. This
choice has the additional advantage that one of the
limits of the wave function is the spherically symmetric
case, thus facilitating comparison with previous work.
Also, the 0. type KH are nondegenerate which is again
typical of ground-state wave functions. Finally, (and
perhaps above all) a posteriori, we see that the wave
function f(r) =440(r)+N4(r)E4(Q) leads most simply and
directly to self-consistent results.

~n pn+1-
Ip=

(a+bt4)' a' rt+

6x 6(6+1)x'
+

1 rt+2 2!(rt+3)
(86)

The sum in square brackets is continued until terms
are so small as not to aGect the final result to within
our desired accuracy (typically until we reach terms
which are 10 r of the leading term)

Using the above methods we calculate and store on
tape the functions J~(rq, r2) for all values of rq and r2
which will subsequently be needed in steps of 14=0.05 A.

Calculation of 8~(r) and W~(r)

We 6rst define the coordinate notation to be used in
the following: R; is the position of the ith lattice site,
and, for convenience, lattice site 1 is chosen to be at the
origin of the configuration space coordinates, i.e., R~ ——0.
A set of parallel Cartesian coordinate systems are as-
sumed to be aKxed one at each lattice site. r;('& is then
the position of the jth particle (subscript) relative to
the coordinate system at lattice site i (superscript). A
similar notation is used for the angles. Both the sub-
script and superscript 1 will be suppressed when
convenient.

Define

where
S,(~, )= Q(r—R;)g Z, (Q—)ZQ.

4m.
(8j)

a:rP+r2'—b—=—2rgr2. (82)

Now for convenience on the computer, we use in
actual fact as our two-body potential in all the

Let our lattice sites be so numbered that the sites
j=2 to j=9, inclusively, refer to the nearest neighbors
to site No. 1, and let lattice site No. 2 be s,t (~,~,~).
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1'k the case before rotatio ),systems un i e e

(2) —(1)= P

From Fig. 6 we note that

s8—Rs+ r cos8 (B15)
FIG. 6 Coordinate so thatnotation after rota-

g~Z
where z and R2 are
collinear.

r cose Z
cose("=

(2) r(2)
(B16)

d from Eq (B10)

(,)2+ (R,)'—(r"')'
cos9=

St 2)r), ~. Th coordinates centered at
h t z where z ando. 1 are rotated so t a s —&

similarly the coordinates centeredy
at site No. 2 are rotated so t at ey

1. Putting in the proper
es or e 1 functions in the trans-

red at site No. . u
es for the transcendenta unc iovalu

ed rotation matrix, we

x(')

y "& = 1/V2 —1/Q6 1 g ', s', =,
z "& 0 V2/V3 1/V3i

erms«r +2g and ~ may-(2) be expreSSed '"
(» so that we may de6ne

I) ~ r)r ) 2 — dI&&'(r, r&s&,Rs) =—K&(8,g &c,
2%

, &'&,R =—Z4(8 "&,g)K&(8, g)d &a,I &'& (r, r&'&,R (B18b)

&'& -)7%&(8,&)j~& . (B1«)Ii&'& (r r&'& Rm) =—LX4 8,p i
— — 8c

from which, fofor all /,

Ei (8&'&, q &'&) =Xi(8 ', &c
(~) -(~)

g
—g

where Zi indica eates a change o uf f nctional form from
h wn in Fig. 6, andE&. The new coordinate ys stem is s own

'

it is seen at oncece that

o) o)( ) ' ( 0)(r"')'= tr'= ( &'&"+ (R )'—2r & R2 cos8
~ ~

from whic i o
'

h 't f llows by differentiation that

r(2)dr (2)

above are independent of the wave func-
1 ltd( 11)otions they need o y 1nl be calcu a e)

f the arameters which are subse-for those values o p
d the are t en s oret d on tape forquuently needed, an y

d (B18), thm h eFrom Eqs. (813) an

&'& R r) (B19)S&(2r)=-, i, =-:~ . (R )+Q«(R., )+-.Q ( .. .
where

sine(')d0(' =
r(')g2

(B11) Q&&'& (Rs,r) =
E2r

~ ~

The value of the ddeter minan ot f the rotation matrix is
n for the transformationone and this. is the Jacobian or e)

so that

(f)C(f)
Qi&'& (Rs,r) =

R2r p

dQ —+ dQ=—sine(')de(')d g (') =
r(i)E2

Q&&'(R2,r) =
R2r

(„,,R,)d, . (B20,)

1 s(r&'&)+g(r&'&)Z4(8&2&, p)
S(2, )=—

r(')dr(')d g
XE,(8, p)

rz2

t that in the new coordinatewhere we avhave used the fact a in

tein Qassscal Mcchassscs (Addison-Wesley
ing Company, Reading, Massac u

in e
'

d out during each iterationinte rations are carrie ou u
'

's rule" with step size k=0.05 A.
d o S (3, ).

'
ate s stems centere a aRotate the coordina e y

o. 3 keeping them para e,B
th rotated coordinate-fashion that wit reference to e

No. 3 has t e same coordinates assystem lattice site o.

. L. Baron, Sumerico, t Methods zrl
ntice-Hall, Inc. , Eng ewoo1 d Cliff, N JPublish- Engineering (Prentice- a,

19{it).
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site No. 2 had with reference to the coordinate system
before rotation. This rotation is clearly a cubic-sym-
metry operation, and hence the functional forms of the
KH with respect to the new coordinates remain un-
changed. Also, the magnitudes r('& and r remain
unchanged by this (or any) rotation. Thus we see that
Si(3,r) is given by the same integral as Si(2,r), Eq.
(813).Similarly, we get the same contribution for each
of the other members of the 6rst shell. Hence, if R is
the magnitude of the distance of any member of the
6rst shell from lattice site No. 1, the total contribution
of the Grst shell is

Once we have Ji(rt, rs) and Si(rs), we calculate Wi(ri)
by using Simpson's Rule to evaluate

Wi(ri) = Si(rs)Ji(rt, rs)rs drs. (825)
2l+1

Solution of Coupled Equations

In this section we review briefly the methods used
to solve numerically the coupled set of Eqs. (3.24)
which are of the form

d's(r)
+PA(r)+cps(r)+B(r)g(r) =0, (826a)

dr'

+-'ei" (~r)3 (821)

For the set of second-nearest neighbors (j=10 to
15 inclusively), the rotation of coordinates so that s ~ z
where P. and R;(10&j&15) are collinear, is a cubic-
symmetry operation, and the KH thus remain invariant
in functional form. (Of course, for one of the members
of the second shell no rotation at all is required to make
z and R; collinear. ) This shell is then dealt with

analogously to the erst shell.
In the next 11 shells (we do 13 shells in all) we make

the following two approximations: First, that these
shells contain spherically symmetric wave functions at
each lattice site, and, second, that the lattice sites for
each shell (& third) are spread out uniformly over a
sphere. This latter condition is equivalent to setting

Si (r) =0, l &4, shells & third. (322)

These approximations should have negligible effect on
the results since each particle, and in particular particle
No. 1, should be rigorously confined to its own lattice
cell, and hence should not be significantly affected by
the detailed structure of the outer shells (& third).

Returning to the wave functions, we use only Ns(r)
and set N4(r)=0. Then, of course, see(r) must be re-
normalized to have the same normalization as the
original total wave function. Defining therefore

d'g (r)
+LC(r)+ e]g(r)+D(r)s(r) =0. (826b)

df

We follow the Inethods suggested by Fox," and the
reader is referred to Ref. 12 for more complete details.
Throughout the following we use the notation

r =—mh (827)

where h is some given step size, and m is an integer.
As explained subsequently the boundary conditions

we use are

where

s(rs) =g(rs) =0,
s(r-) =g(r.)=o,

(828a)

(828b)

(829)

where A is the nearest-neighbor distance.
The boundary condition at the origin is chosen to

insure that the wave function f(r) remains finite as
r ~0. In the case of the IJ potential, since vzs(r) ~~
as r —+0, we see at once from the Hartree potential,
Eq. (3.14), that any overlap of the single-particle wave
functions is rigorously forbidden, and thus we have the
boundary condition at r„=—,'A.

Now, using Noumerov's method" for the derivatives,
we start out from the origin in steps of le=0.05 A, with

the erst two steps being given by

Cs—' ——4sr $s(r) )'dr, (823) s(rs) =0, g(rs) =0,

s(ri) =0.001, g(rt) =p, (330b)

P Si(j,r) =
shell 2'

Ls(l )3'
dp, (324)

where X, is the number of lattice sites in the shell.
The contributions from all the shells up to 13 are

added to obtain Si(r) for l=0, 4, 6, 8, for those values
of r (in steps of k=0.05 A) which are subsequently
required.

we then have as the contribution of any shell& third at
distance R from lattice site No. 1,

where p is a parameter whose value may not be fixed
arbitrarily. It arises since s(ri) fixes the normalization
of the solution, and hence we cannot choose g(ri)
arbitrarily. Thus, in addition to the functions s(r), g(r),
Eqs. (826) must be solved for the parameters s, p. We
make an initial guess at e and p, the first guess for e

being e= Ws(rs), and starting from Eq. (830) we inte-

i'Leslie Fox, in Boaridary Problems eN DeJferewlea/ Eqlateols,
edited by R. E. Lsnger (The University of Wisconsin Press,
Madison, %'isconsin, 1960).
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grate out to r„.In general this will not give s(r„)
=g(r„)=0 as required by the boundary conditions, and
from the mismatch at r„we are able to determine an
improved e and p for the next trial. We repeat the
procedure until our iterations for e and p "settle down. "

Experiment has shown" that the above method does
not produce good eigenfunctions throughout the whole
range of r. The eigenfunctions are important in our
case since they are used to get the Hartree potential
for the subsequent major iteration. Hence, we use the
above method to get a rough idea of the correct eigen-
values and, using these as starting values, we use the
following method (also suggested by Fox) to obtain the
final results. We integrate both forwards and backwards
and our aim is to have the forward and backward solu-
tions meet at some central point r, with the same height
and slope. We keep the same forward boundary condi-
tions as before and, in addition, we take as the starting

conditions for our backward solution

s(r„)=0,

s(r„,)=0.001, g(r„ t) = q.

(831a)

(831b)

The backward solution must be associated with a factor
k to be determined so that the normalization of the
backward solution is the same as that of the forward
solution. After an initial guess, the new e, p, g, and h
for the next trial are determined from the conditions
required in order that the forward and backward solu-
tions meet at r, with no discontinuity. This procedure
is repeated until the iterations "settle down" for e in
particular, and this, then, is the solution for the eigen-
function $s(r),g(r)$ and the single-particle energy eo.

By "settle down" we mean typically in our calculations
that we continue iterating until the change is less than
0.5%%uo of the last-obtained e.
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Method. of Solution of the Percus-Yevick, Hyyernetted-Chain,
or Similar Equations
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1t is shown that if the direct correlation function c(r) in classical statistical mechanics vanishes beyond
a range E, then the equation relating it to the radial distribution function may be used to derive a further
equation which involves both functions only over the range (O,R). The analytic solution of the Percus-
Yevick (PY) equation for hard spheres follows as an immediate consequence, and since c (r) normally tends
rapidly to zero with increasing r, it is expected that the result should be of use in numerical solutions of
PY, convolution-hypernetted-chain, or similar approximations.

I. INTRODUCTION
' 'N the classical statistical mechanics of homogeneous
- ~ Quids various approximations have been proposed
which involve the direct correlation function c(x),
defined by

the approximate relation

e P«*&c(x)= ie—»&*&—1)g(x), (3a)

while the convolution-hypernetted-chain (CHNC)
approximation' 4 supplements them with

c(x)=h(x) —logg(x) —Pg(x). (3b)
h(x) =c(x)+p dy c(y)h(x —y)

where p is the particle density and h(x), the indirect
correlation function, is defined in terms of the radial
distribution function g(x) by

h(x) =g(x) —1.

In particular, if g(x) is the interaction potential and

P is the 8oltzmann factor (hT) ', the Percus-Yevick
(PY) approximation" supplements (1) and (2) with

' J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1950).
s J. K. Percus, Phys. Rev. Letters 8, 462 (1962).

In solving any such approxiInation it is found that the
direct correlation function tends to zero with increasing
~x~ much more rapidly than the indirect correlation
function'; for instance, the PY relation (3a) shows that
c(x) vanishes exactly outside the range of p(x), while
the CHNC relation (3b) predicts that it behaves as
—',h'(x) when h(x) is small. It is therefore unfortunate
that in considering the solutions of the equations the

' J. M. J. Van Leeuwen, J. Groeneveld, and J. de Boer, Physica
25, 792 (1959).

e T. Morita and K. Hiroike, Progr. Theoret. Phys. (Kyoto) 25,
1003 (1960).

e L. Goldstein, Phys. Rev. 100, 981 (1955).


