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Equivalent-Potential Calculation of ~ N Scattering*
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The equivalent-potential method is extended to permit a calculation of xX states with J=l+-, . With
the potential given by nucleon and ¹(1238)exchange, there are no free parameters in the calculation. The
N* is then "predicted" at a mass of 1100 Me&. The nonresonant phase shifts also agree in a general way
with the results of phase-shift analysis; in particular, the SII scattering length has the correct sign, while

N/D calculations produce the wrong sign. It is argued that this result indicates that the force due to iteration
oi the potential, included in this method but not in fV//D, can be important.

I. INTRODUCTION

A N important problem in strong-interaction physics
has been the calculation of scattering amplitudes

from input "forces," which are assumed known. One

way of doing this is the ft'f/D approximation. A few years
ago Charap and I'ubini' and Balazs suggested an
alternative procedure for these calculations. In a
previous paper, ' I reported an application of this
procedure to mm and mE scattering. In this paper, I
extend the method to apply to the ~E amplitude.

At moderate energies the "force," or at least the
1ong-range part of it, may be considered to arise from
the exchange of simple systems in the crossed channel.
Let us suppose that we have written down a satisfactory
representation of the force, and wish to construct the
corresponding scattering amplitude. More precisely,
suppose that we believe we know the nearby t discon-
tinuity Atn(s, t) (where s and t are the squares of the
center-of-mass energy and of the momentum transfer,
respectively, and all amplitudes have definite exchange
parity), and that we will settle for an amplitude A (s,t)
which (a) satisfies elastic unitarity, and (b) has its t

discontinuity equal to At~, at least for small t. The
reason that such an amplitude might be satisfactory is, of
course, that the closest singularities are included correct-
ly. We can certainly use the N/D equations to insure
requirements (a) and (b). However, since Atn does not
contain the iterations of the input forces, the ampli-
tude we obtain will not have some of the properties that
it would if the iterations were included: for example,
correct threshold behavior will not automatically
appear.

As an alternative to the ft//D approximation, we
could consider, for spinless external particles, the
amplitude f(s, t) obtained from a Schrodinger equation
with the energy-dependent potential

~
—r&t

V(r,s)= dt 2s 't At (s,t)
2xpg tp r

+Work done under auspices of the U. S. Atomic Energy
Commission.' J. M. Charap and S. P. Pubini, Nuovo Cimento l4, 540
(1959);15, 73 (1960).' L. A. P. Bali,zs, Phys. Rev. 187, 81510 (1965).

s J. Finkelstein, Phys. Rev. 145, 1185 (1966).

pg being the reduced mass. This potential is
actually the first term (the long-range part) of an
iteratively constructed potential discussed in Refs. 1
and 2 which, when inserted into the Schrodinger
equation, would reproduce exactly the scattering ampli-
tude generated by the Mandelstam unitarity iteration. 4

However, the amplitude f already satisfies requirements

(a) and (b); moreover, since it comes from a Schrodinger
equation, it will, under one stipulation, have correct
threshold behavior and the structure in t which we

expect from the Mandelstam representation. This
stipulation is that V(r, s) be less singular than r ' at
the origin, which from (1) means AP goes to zero
faster than t '~' at large t. Whenever the input forces
are given as pole terms, this requirement is surely
satisfied.

Although solving a Schrodinger equation implies

going off the mass shell, it is not necessary in this
method to assume anything about off-shell scattering,
since the only input is the on-shell potential At .
Blankenbecler and Sugar' have recently proposed a
method of making dynamical calculations which shares
with this one the feature of including the force due to
iterated exchange, but which requires the off-shell

potential.
H the external particles do have spin, there may be

several coupled amplitudes, in which case Eq. (1)
becomes more-complicated. Balazs has tried to write a
Schrodinger equation for the xE amplitude which is a
matrix in spin space. ' He found that the attractive
potential corresponding to nucleon exchange behaved
like r ' at the origin, which he proposed to handle with
a cuto8. My approach will be diferent: to de6ne a
single, unitary amplitude, which I will call F(s,t), and
its nearby t discontinuity Ftn. I can then use (1)
together with the Schrodinger equation to recover P
from a knowledge of Iit~. In Sec. II below I construct
this amplitude, discuss its crossing relations, and
discover that my method is applicable to ~X states with
5=i+is, but not those with J=/ ——,'. In Sec. III, I

4 That even a knowledge of the full t discontinuity does not
uniquely determine the amplitude follows from the Castillejo-
Dalitz-Dyson ambiguity. The method discussed here selects that
amplitude which is analytic in angular momentum.' R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).' L. A. P. Balazs, Phys. Rev. 139, B1646 (1965).
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display the potentials corresponding to F and E* that
I have used, and in Sec. IV present numerical results
and a few conclusions.

g
ImF~(s, t) =— dQ F~(s,t')Fg*(s, t"); (3)

F+ and F are not coupled by unitarity.
The price we pay for eliminating spin from the

unitarity equation is that the crossing relations become
complicated. In the Appendix, the following points are
established: The exchange of a particle contributes to
F+(s,t) not only a pole, but also a cut extending from
the pole position to t=+ ~. Thus F~~~ corresponding
to a single-particle exchange force can be written

F,~&(s,t) =g~(s)b(t —t,)+I+(s)4~(s,t), (4)

where g~ and h~ are kinematic factors, t„ is the position
of the pole in F~, and P+ is zero if t(t~ Also, at lar. ge t,

~ P (s,t) ~
(const&(t 'I' and. Q (s,t))const& 0.

From Eq. (1), this means that the potential corre-
sponding to Ft ~ behaves like r ' at the origin. Thus I
cannot use a (nonsingular) Schrodinger equation to
satisfy requirements (a) and (b) applied to F (as
could also have been seen from the fact that F has no
s wave). For this reason my method does not enable me
to calculate scattering in those states with J=/ —~.
However, the potential corresponding to Ft+~ behaves
like r ' at the origin, and so I am able to produce an
amplitude satisfying (a) and (b). In fact, it will turn
out that for the range of energies considered, the effect
on the amplitude of p+ is very small and might as well
have been neglected; this is consistent with the hope
that for moderate energies we need only consider the
long-range parts of forces.

To summarize this section, the plan is as follows: to
construct the potential corresponding to particle
exchange according to Eqs. (1) and (4) with the + sign,
and to numerically solve the resulting Schrodinger

'S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960).

II. SPIN-INDEPENDENT AMPLITUDES

The kinematics of mE scattering have been sum-
marized by, for example, Frautschi and Walecka, ' whose
notation I shall use. Consider the partial-wave ampli-
tudes f~~(s) for orbital angular momentum I and
J'= /&2, which are normalized to (e" sinb)/q under the
assumption of elastic unitarity. Then, let F~ be defined
by

F~(s,t) =g (2t+1)ft+(s)F&(1+t/2q') (2)

in the physical region, and by analytic continuation
wherever the sum in (2) does not converge. The sum
de6ning P+ begins at 1=0, the sum for P at l=1.
Since the f&~ satisfy the unitarity of spinless particles,
so will P+ and F .That is, we have the familiar relations

equation for the amplitude f T. his amplitude will,
within the limitations of the approximations implicit in
my method, coincide with F+(s,t), whose partial waves
are the physical partial waves f&+.

III. THE POTENTIAL

I consider the forces due to the exchange of the
nucleon and the $*(1238).The couplings of the p are
somewhat uncertain, and in any case the p contribution
is expected to be small. ' Since one of the virtues of the
method I use is that there need be no adjustable
parameters, I simply neglect the p force.

The contributions of E and S* exchange in the I
channel to the invariant amplitudes A and B have
been given by Sall and VVong. For the amplitudes of

isotopic spin (-'„~a) these contributions are

a (,t,l)=(-'„-',)g .(a,—a, )/(A —I),
B (s,t,l) = —(-'„-',)g "(b —b s)/(d, '—I)

+(1, -2)g '/(~'-. ), (5)

where in units in which m =c=5= 1, the E*mass 6 is
8.9, g~e'/8~=0. 06, gag/4m=14. 4) ay=842, as=23.4,
bj = —157, and b2=1.5. Projecting the partial waves of
definite exchange parity from (5), we have

AP+(s) =~(-;,)g„.'$(a, a,s)/q'j—Q, (1+t„./2q'),
&8+(s)= ~(a)a)gN"E(b~ —b»)/q'jQi(1+t~ /2q') (6)

~(1, —2)g~'L1/q'jQ~(1+t /2q')

where, because of the unequal mass kinematics, the
pole positions t~ and t~* depend on s:

tN ~2 (~2 1)2/s tx+ +2 (~2 1)2/s (7)

—1 ~
—r&t

Ct FP~(s, t)V+(r,s) =
2' pB tN

the 2s '~' normalization factor in Eq. (1) being already
contained in Ft~+. The numerical values of V depend

8 E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963).' J. Ball and D. Wong, Phys. Rev. 131, 2305 (1963).

I now drop the subscript & from Ft~~, since I can work
only with Ft+~, and adopt a superscript & to indicate
exchange parity, so that Ft~+ is physical for J—~~ even,
and FP for J—~~ odd. Then from Eqs. (6) and (A13),

F, +(s,t) =+{(1, —2)g~'E(C» —C22/pz)2~8(t —tN)
—(C22/q')ImS(1+t/2q', 1+t~/2q')6(t tN)j—

'L((a,—a,s)(C —C /p )
+ (bq —b») (—C»+C22/Pz)) 27rb(t —4r*)

+ (1/q') (—(a&—a2s) C~~+ (b~—b2s) C22)

XlmS(1yt/2q', 1+t~./2q')e(t —tN )j}, (8)

where p&
——1+t/2q +D2+t/2q')(t/2q')g'~' the C's are

given by Eq. (A3), and S is given by Eq. (A12). The
Schrodinger equation potential is given by
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only on the experimentally determined masses 3f and
6 and coupling constants gN' and g~*'.
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IV. RESULTS AND CONCLUSIONS

As mentioned above, only the phase shifts for the
states with J=l+-,'could be calculated. Below 1500-
MeV total energy, the calculations show one resonance,
in the F33 state at 1100 MeV, just above threshold.
Its width I' is 1.5 MeV; this corresponds to a reduced
width X=m'I'/qs of 6.2, to be compared with the
experimental value of 13.5. The nonresonant phase
shifts also agree in a general way with the results of
phase-shift analysis, even though there were no param-
eters that were adjusted to make them agree. In Figs. 1
and 2 the nonresonant phase shifts with l&2 are
compared with the 0- to 700-MeV phase-shift analysis

by Roper. '0

At higher energies the results were not consistent with
experiment. Between 1500 and 2500 MeV, the only
resonances to appear were a second P~~ at 1600, and an
S» at 2140, and this is clearly wrong. In particular, the
Regge recurrences of the N*(1238) never appear; the
trajectory rises only to 3=2.1 at 1920 MeV. However,
the slope of the trajectory at the resonant energy is 0.9
(GeV) ', which is the same slope as that obtained from
a straight-line Gt to the E* and its observed recur-
rences. "This result is not surprising if we believe that,
while at low energies the 6 trajectory is primarily
coupled to the xlV channel, at higher energies channels

with higher thresholds (and probably higher external

spin) are important. In general, my method could not
be expected to be correct at high energies, for at least
three reasons: At high energies (a) the simple form of the
generalized potential is not justified, (b) the assumption
of elastic unitarity is wrong, and (c) the differences
between the present calculation and the full Mandel-
stam iteration becomes more acute. Therefore, it is
understandable that the calculation should fail above
1500 MeV, and still produce reasonable results at
lower energies, where these three faults seem not to be
so important.

The reported results were all obtained from the
potential given by Eq. (8). If the cut in Iis has been
neglected (S set equal to zero), none of the qualitative
features would have been changed.

It is interesting to try to understand the relation
between the calculation reported here and elastic N/D
calculations. For this purpose let us suppose that the
assumptions common to both methods, such as elastic
unitarity and the particular choice of the generalized

potential, were correct. Under this supposition, the
approximation involved in N/D is to neglect contribu-
tions to the left-hand cut of all but the lowest Mandel-
stam unitarity iteration. As mentioned in Sec. I,
solving the Schrodinger equation means including all

the terms of the unitarity iteration. Only the lowest
term is included exactly (with relativistic kinematics)—
to include them all would require aa. infinite iteration
just to construct the potential —but it seems reasonable
to hope that this is better than neglecting them
altogether. If this be correct, then a given (attractive)
generalized potential should produce more scattering in
the present method than in N/D, which neglects the
attraction produced by iteration of the potential. For a
repulsive potential, the iterations alternate in sign, and
hence tend to cancel; taking only the lowest order
contribution to the left-hand cut meaa. s using too much

repulsioo. We would expect, then, that in the calculation
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Fxe. 1. I=~~ phase shifts for /&2 and J=l+—,'. Solid lines are
the phase shifts calculated in this paper; dashed lines the results
of Roper, Wright, and Feld (Ref. 10). (a) Si~ phase shift; (b) Era
phase shift; (c) DIS phase shift.
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' L. D. Roper, R. M. %right, and B.T. Feld, Phys. Rev. 138,
B190 (196S).

"V.Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966).
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FIG. 2. Same as Fig. 1 for nonresonant I=f phase shifts.
(a) Ss& phase shift

& (b) D8q phase shift.
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described in this paper attractive forces would appear
stronger, and repulsive forces weaker, than in lq/D
calculations.

Unfortunately, this comparison is made difEcult by
the fact that with an adjustable cutoR, any force can
be made as strong as one pleases. We then have to
push the argument further: if E/D neglects important
attractive contributions to the left-hand cut, then in
order to obtain a resonance or bound state at the
correct mass, it is necessary to make the cutoff higher
than if the extra attraction were included. This means
that the D function would change more slowly with
energy, and residues would thus be greater. So if the
method used in this paper is a reliable approximation to
the unitarity iteration, we would expect it to produce
smaller residues than lV/D calculations. Indeed, this is
the case. The residue of the E*reported here is only one
half of the physical value, while N/D calculations
predict it to be too large. '"Also, in a previous study of
~x scattering using the same methods, ' the residues,
although larger than the experimental values, come out
smaller (and the trajectories came out steeper) than in
analogous E/D calculations.

However, a comparison of the eRective strengths of
forces in my method and in X/D can be made in a more
direct way. Consider the case of two forces, of opposite
signs but comparable magnitudes. If the forces are of
the same range, then they will cancel within the Born
term. If they are of diRerent ranges, the iteration will
make the attractive one stronger, and the repulsive one
weaker, although changing the cutoff might not aRect
the relative strengths of the two forces.

An example of such a case can be found in the ~S Si~
partial wave, where E* exchange is repulsive and E
is attractive. Abers and Zemach estimate the magni-
tude of the E*force to be 1.1 times that of the E force;
the important point is that they be comparable. Also,
the ranges are quite diRerent: because of the unequal m

and E masses, the ratio of the ranges of the two forces is
not M/6, =0.75 but rather is (t~/t~~)'i' which at thresh-
old is about 0.44. The facts that the energy dependence
of the two forces is diRerent, and that the coupled Pii
amplitude, although far away, is strong, make diKcult
the application of the above reasoning to the E/D
calculation of the Srr. Nevertheless, E/D calculations
do produce a negative scattering length (i.e., a net
repulsive force), " although it is known that the
scattering length is positive. ' " Coulter and Shaw"
obtained a negative scattering length even when they
took account of inelasticity.

As can be seen from Fig. 1(a), the scattering length
predicted by my calculations is positive. Its value
turns out to be 0.29m ', Hamilton and Koolcock"
give a value of 0.17m '. The potential I used differed

from that used in Refs. 9 and 12 in that I did not
include the force due to p exchange. However, since the
p force is attractive in the Sii state, including it would
not have decreased the attraction.

One might suspect that the failure of E/D calcula-
tions for the Sii state indicates a failure of the assump-
tions, in particular that unknown short-range forces are
very important, at least for the s wave. The results
presented here suggest the opposite: that when intera-
tions of the potential are taken into account, simple X
and X* exchange is adequate to obtain a reasonable 6t
to Iow-energy mE scattering.
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APPENDIX

We need to know the contribution to F~~ of a particle
pole in the crossed reaction. The invariant amplitudes
A and 8 satisfy simple crossing relations, so this
contribution to 2 and 8 is a pole in t or e. The partial
waves will then be given by expressions of the form

A~(s)=Er(s)Q&(so), Bi(s)=Ep(s)Qi(sp). (A1)

Comparison with Eq. (6) shows, for example, for
nucleon exchange, Ei(s)=0, Eo(s)=&(1, —2)g~'/q',
sp= I+Irtr (s)/2q'. In this Appendix we determine P~
when A & and Br are given by (Ai).

From Ref. 7,

fr~(s) =&11A l (s)+C'12&i(s)+C21A l+1(s)

+CppBg~r(s), (A2)
the matrix C being given by

32mW'

(W+M)' —~ L(W+M) —& 1LW—Mjixi
E—(W—M)'+p' L(W—M)' —p'jLW+Mj)

(A3)

with W'=s and p, =pion mass. Substituting (Ai) and
(A2) into the definition

P+(s,t)=g(2l+1)P~(1+t/2q') fi~(s), (A4)
we get

P~(s, l) = (ErCrr+Ep&rp)g(21+1)&i(1+&/2q')Q~(so)
+ (ErCp, +EpCpp)P (2l+1)

&&8)(1+t/2q')Qr~g(sp) . (A5)

The first sum is easy:

» p. gr ConIter and G. L. S. haw, Phys. Rev. 141, 1419 (1966)."J.Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 73'7

(1963).
~(2l+1)P ()Q ( )=I/("- ) (A6)
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The second sum is not so easy. Define

S~(z,zp) =Q (2t+1)P1(z)Qlpl(so) ~ (A7)

For s fixed in the physical region, zp will be fixed and
greater than 1. We shall need to evaluate the dis-
continuities and the asymptotic behavior of S+ in the
z plane for fixed zp. The sums in (A7) converge only in
an ellipse passing through zp so lt ls necessary to do
the sums where they converge, and then continue
in s Lthis continuation is implied in writing (A6)j.

Let us first sum S+ for 1(z&zo. We can use Laplace's
integral representations for Pl and Ql.

The sum can be done inside the integrals,

Z(2t+1) 'P ' '= +
a-(~-a)' (A11)

00

S(z,sp) =
p2 ]

(x'—1)'"P (P'—2P»+1)"'

since
~
a/P j (1 throughout the region of double integra-

tion. We can now do the integration over 8 to get

P, (z) =— dgLa(s g)j' a—=s+ (s'—1)'/' cos8,

Ql (zp) = dx(x2 —1)—1/2[j9(zp x)P'—'

zo+ (z—o' —1)'"x (A&')

It is straightforward to show that this integral exists
for all s except for s=sp and »QL —1, +1j, that
~S( ~ constX ~z~

'/' at large [z~, and that S has a
cut from —1 to +1 (which does not appear in S+) and
another from zp to +ap. Combining (A5), (A6), and
(A9), we have

Although I'~ is an entire function, let us choose to stay
on the sheet of (»' —1)'/' in which (s —1)'/' ~ s at la, rge

(z(. From (A6) and (A7),

F~ (S,t) = L (E1C11+E2C12)+(E1C12+E2C22)/P/2 j
X (»o—s) '+ (ElC21+E2C22)S(s,so), (A13)

with z= 1+t/2' and p/2=»+ (»2—1)'/'. The function S
can be evaluated numerically from (A12). Fls is the
imaginary part of (A13), which is 0 if z(zp.

We can sum S (s,zo) in a similar way, and obtain

1
S(z,zp) =—S+(z,zo) —— =2 (2t+1)Pl(z)Q1+l(zo)

Pz zo—z

1——Q (2l+1)P1(s)Q1(sp) . (A9) l4
S (s,sp)= +4

(x'—1)'" (P'—2Ps+1)'/'
The choice Pz ——s+(s' —1)'" will mean that S has no

pole. Now substitute (A8) into (A9):
X

P—s+ (z' —1)'/'1 00

S(s,so) =—P (2l+1)
(»2 1)1/2 (8 z (»2 ] )1/2)

(A14)
(x2 1 )1/2

P z (»2 1)1/2y (P2 2P»y 1)1/2

X d8~ ——~a'P ' '. (A10)
&p p.& but the imaginary part of this integral is )lr/4 at large s.


