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The Bakamjian-Thomas theory is used to obtain relativistic scattering equations for the relative motion
of two particles. These are presented in a squared and in an unsquared form, and both forms are realized
in Cartesian coordinates and reduced to partial-wave equations for the case of an isotropic potential de-
pendent only on the Bakamjian-Thomas relative coordinate. These equations are shown to bear a re-
semblance to the Klein-Gordon equation with Serber's potential A. The erst Born approximation of the
scattering amplitude computed from the Bakamjian-Thomas equations and that computed from the Klein-
Gordon equation are shown to agree as k ~~. DiBerences between these approaches are expected to show
themselves mainly at large-angle scattering, since the (unsquared) Bakamjian-Thomas Green s function
divers appreciably from that of the Klein-Gordon equation only for small r.

I. INTRODUCTION

'HE Bakamjian-Thomas (B-T) model for describ-
ing interaction relativistically but with potential

functions is employed to derive a state-vector equation
of motion similar to that postulated in Serber's model.
The equation is presented in "squared" and "un-
squared" versions; each is realized in Cartesian co-
ordinates, and on assuming a potential independent of
the relative momentum, each is then separated into
partial-wave radial equations. Computations of the
relevant kernels and Green's functions are presented.
The squared and unsquared B-T equations are com-
pared with Serber's Klein-Gordon (K-G) equation with

regard to Born approximations and Green's functions.

II. A REVIEW' OF B-T THEORY

Bakamjian and Thomas' have formulated a rela-
tivistic theory, which instead of resorting to field

operators, is based on a relativistic Schrodinger equation
which acts directly on a Hilbert space. A potential
energy V is incorporated in the theory in such a way
that the ten generators of the proper inhomogeneous
Lorentz group satisfy the usual commutation relations
of this group. ' Comparison of the B-T equation and
Serber's KG equation will show that V corresponds
roughly to the "V" in the (V,P,P,O) four-vector-
potential inserted into the K-G equation. Comments on
the appropriateness of Serber's imaginary-isotropic V
are given in Appendix I.

Recently, the question of defining scattering in the
B-T theory has been investigated by Fong and Sucher'
and by Coester. ' For a bibliography the reader is
referred to these two papers.

*This work was supported in part by the U. S. Atomic Energy
Commission (Report No. NYO-2262TA-131).

t This work is in partial fulfillment of the Ph. D. requirements
of Brown University, Providence, Rhode Island.

r B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).' The V here is equal to the s/2 of Fong and Sucher and should
not be confused with their V =H —Hp.' R. Fong and J. Sucher, J. Math. Phys. 5, 956 (1964); see also
their bibliography.

4F. Coester, Helv. Phys. Acta 38, 'I (1965); see also his
bibliography.
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where

g,—(yg, 2+p .2) 1/2 w = (m'+k')'i' e,=-'(E;+w;)

t'= 1, 2, and k' is obtained from

w (k')+w (k') = (P')"'
and where I'; is the total-four-momentum vector.
Although the expression for k appears formidable, it is
simply the momentum of particle 1 in the center-of-mass
system which is traveling with a velocity u= (pt+ps)/
(Et+Es) (and, of course, —k is the momentum of

i583

The ten infinitesimal generators corresponding to two
free spinless particles, space translation (three mo-
mentum), time translation (Hamiltonian), space-time
rotations (velocity boosts), and spatial rotations
(angular momentum), are

Ho= Ht+Hs,
PO pl+ps)
Ks s (rtH1+Hlrl)+s (r2H2+Hsrs)

Js=rt &pt+rs &ps ~

where H;=(m; +p )'~s. The subscript P indicates no
interaction, and r; and y; are the usual canonically
conjugate single-particle position and momentum
operators. Hp, Pp Kp, Jp trivially satisfy the commuta-
tion relations of the inhomogeneous Lorentz group.

To introduce an interaction without disturbing
Lorentz invariance it is necessary to modify these
operators in such a way that the commutation relations
are still satisfied. As usual this is done in the "instant"
form of interaction, but without extending the two-
particle Hilbert space. Instead of creating and an-
nihilating particles, a "potential" is introduced in a way
reminiscent of nonrelativistic quantum mechanics.

The theory is formulated in terms of center-of-mass
variables obtained by a canonical transformation from

rt, pr, rs, ps to center-of-mass variables R, P, x, k,
where R is conjugate to P, x, to k. The transformation
is- de6ned by

P= pt+ps and k= (erpt —esps)/(et+as),
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potential 2). It is easy to show that

Ha ——Hg+B2 ——(P'+ho') '/',
where

h 2 (m 2+k2)1/2+(m 2+k2)1/2

A potential v(k, x) which is a rotationally invariant
function of k and x may be introduced into the infini-
tesimal generators B and K so that the commutation
relations are still satisfied:

ho —0 ho+ v(k, x)—=h,
so that

k' in the state IP& for large Ixi. It is convenient to
remove the factor ~ from these equations by introducing
V= v/2:

(—km+ k'2)
I p)

=L(m'+ k') '/'V+ V(m'+k') "'+V'j If&. (3)

B. Realization in Cartesian Coordinates

To realize this operator equation in a representation
with x diagonal (keeping P=O), complete sets of states
are introduced. (Notice that x is used as the eigenvalue
of the operator x, in order to save primes. )

(h2+. Px) i/u

K=-,'(R~+ ~R)—I x P(h+~)-' (1) d'x" (xi —k'+k"
i
x")(x"if)

where I is the internal angular momentum x xk. It is
this representation which was discovered by Bakamjian
and Thomas in i953. Fong and Sucher have shown that
the S matrix associated with the 8-T Hamiltonian is
"asymptotically covariant" for a potential v(k, x) which
is rotationally invariant and is suKciently localized
that scattering boundary conditions may be applied.
It should be noted that this leaves considerable freedom
for de6ning even an energy-independent potential;
see Appendix I. Fong and Sucher further argue that

if a two-body covariant S matrix has a 'potential'
origin ~ - then there always exists a 3-T type of
Hamiltonian which yields the same S matrix. "

III. THE SQUARED 3-T EQUATION

A. Derivation of the Squared Equation

For convenience the 8-T equation is written in the
center-of-mass system. Since the three components of
P commute, a basis on which they are simultaneously
diagonal exists. If the state vector is an eigenstate of P,
it will remain one with the same eigenvalue since

I H,Pj=O. Furthermore, any eigenstate of P can be
velocity-transformed to a state with P= 0. The scatter-
ing problem will be carried through for such states,
i.e., "in the center-of-mass system. "

In terms of the single-particle energy E, the 3-T
equation becomes

&14)=(v'h')14&=2&if& (2)

The squared equation follows from this by operating
on both sides from the left with H:

IJ&IW&=»&I P&=2~&10&,

H'l4') = (2E)xi''

On substituting from Eqs. (1), and putting mq= m2=—m,
this reduces to the explicit form

(—k'+ k")
I lP& = L(mx+k2) '/2v/2

+ (v/2) (m'+k') ' '+ (v/2) 'j
I P),

where k"=E'—m'. Notice that, because v +0 as-
ixi ~~, k'2 may be regarded as an "eigenvalue" of

d'x'd'x" L(x I
(m'+k') '/'I x')(x'I V

I
x")

+(xi Vi x'&(x'I (m'+k')'/'I x"&j(x"If)

dxe (xi Vxi x")(x"i|t&.

where

+ V(ixi)E(ix—x"I)]lP(x")+V'(Ixi)IP(x), (4)

E(ix—x'I) = (xi (m'+k')'"I x').

Z(i x—x'I) is computed by inserting a complete set of
states:

&(Ix—«'I) = d'k'd'k" (xik')

)&(k'
I (m +k') '/'I k")(k"

I
x')

d'k' e'~ &x x'&(m'+k")'/'
(2v.)'

dk k'(m'+k') '/2

(2v)' 0

d(cosg)elk(x x [ 0008

where k=
I
k'I and 8 has for convenience been chosen

as the angle between (x—x') and k. The 8 integration
yields

E(ix—x'I) = dk k(m'
(2~)'I x—x'I

+km)'/2 sink I
x—x'

I

E2(mix —x'I), (5)
2v'I x—x

The possible k2 and. k x dependences of V (Appendix I)
are now excluded, as in the case of Serber's potential:

V= V(ixi).
Then,

(V'+k")f(x)= d'x"
I E(ix—x"I)V(ix" i)
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(III&~
I
$12'* 2(m2+k2)1/2g'2'x)

Vol

Vo'l
d3z ~/2'x —.ik' x(m2+k~2)1/2

= 2(m2+k'2)1/2= 2+

the positive total energy in the center-of-mass system.
It is noted that this result does not depend on the
Hermiticity of V(lxl).

equal

III'&= ~L2(m2+k')'/'+2v(l xl) j'}'/'IP&=2~I'&

It is 6rst shown that this equation may be replaced by

&'lf)=L2(m'+k')"'+2V(lxl) j14&=2~II&, (11)

for any complex potential V(lxl) which decays suf-
6ciently rapidly. Then H=H', because any possible
ambiguity of signs which might have arisen on squaring
and then extracting the square root does not arise. The
scattering wave function P(x) is approximated asymp-
totically as lxl -+~ by

0 ( ) =(1/~ 1'")( '"'*+Lf(|/)/ 1 'I'~~*~},

where Vol—=volume in three-space. (H'& is given by
the inner product

(|t/(x), L2(m2+k') '/'+2 v( I
x

I )j4'(x)) .

Because of the 1/Vol'/2 in the normalization of the wave
function, the contribution to (H'& from any fixed
volume tends to zero as Vol~~. f may therefore be
replaced by f~ in a volume which starts at some large
radius so that even the e'~~~ ~*~/r terms do not contribute
to this volume integral. Thus

ordinates and on performing the angular integrations,

00

G(l x—x'I )=
22r'I X—X'

I

k sinklx —x'I
dk

(m2+ k2) 1/2
(14)

the integral representation of the nonrelativistic-
scattering Green's function, where the "2m" is included
in 6 instead of in U.

C. Partial-Wave Reduction

On resolving the wave function into partial waves

O(,e,~)=Z F "(~,~)«()

and using Eqs. (7) and (9), Eq. (12) becomes

r'
dr' —g(r, r'; l) V(r')«(r')

0

+ (2n.) 2i/2'(2l +1)j/(kr),

(Again k=
I
k'I.) This integral, which does not converge

as a real integral, . becomes a Green's function if the
contour of integration is moved away slightly from
the singularity at k={E2—m')'/'. The quadrature in
Eq. (14) was not performed; the branch points of the
integrand at k= ~im cause some difhculty.

It should be mentioned that G(lx —x'I) reduces to
the usual' nonrelativistic expression in the limit k((nz:
Abbreviating

I
x—x'I —=r,

k sinkr
G(r) = dk

22r2& (m2+k2) 1/2 '(m2+k~2) 1/2

k sinkr
dk2«" 2~'r 2 m+k'/2m m —k "/—2m

m " k sinkr
dk-

m'r 0 k'—k"

B. Realization in Cartesian Coordinates

To realize Eq. (11)in Cartesian three-space, complete
sets of states are inserted into the inverse equation

where

g(r, r'; i) =
2rr' " k' j&(kr) j&(kr')

dk
2r 2 (m2+k') "'—E

ui(r) = (2z.)'/'i '(23+1) 'r«(r)
yielding

f(x)=— d2x' G(l x—x'I) V(l x'l)f(x')
(16)

dr' g(r, r', i) V(r')u/(r')+rji(kr) .N/(r) =—

This is rewritten in terms of the usual radial wave

V(l xl) Iig&+ lk'&, (]2)
(m'+k') '"—8

Here
+(21r) ' 'e'"'* (13)

G(l x—x'I) =(xl
I
x'&

(m2+ k2) 1/2

Although the correct contour for the outgoing-wave
scattering problem is the contour C+ of the following
section, a variety of contours may be employed to
determine the phase shifts, 8~', see Appendix III.

6 E. Merzbacher, Quantum Mechanics (John Wiley R Sons, Inc. ,which becomes, after transforming to spherical co- New York, 1961),, Chap. 12.
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D. Zero-Mass Approximations

The Green's-function integral Eq. (13) may be
approximated

lim G(l x—x'l)—=G =0(lx—x'l)
m~0

FIG. 1. C+ and
C contours.

k-PLANE

Cg CONTOUR

k-PLANE

C CONTRA

k»nkl» —x'I
dk

k —k'

coskr
dk =P.V.

eg

so that

coskr 1 coskr
dk +- dk

k —k' 2 k —k'

G =0&+&(y) = Lcosk'r—Ci(k'r)+ ass sink'r
27r2r dr

+sink'r Si(k'r)&is cosk'rj.

From the definitions of Si and Ci,

d sink'r—Si(k'r) =-
dr r

—Ci(k'r) ='
dr

it follows that

G 0&+&(r) = (k'j2vr'r)L —sink'r Ci(k'r)+cosk'r Si(k'r)

+(1/k'r)+ ss cosk'r&i~ sink'r). (17)

This expression has a pole at k=k', but is adequately
evaluated by displacing the contour below or above
the pole, which corresponds, respectively, to choosing
outgoing (+) or incoming (—) scattering boundary
condition. This correspondence is established by Eq.
(18), and the definitions of these contours applies
retroactively to Eq. (12).

The integral G with m=0 may be reduced to Si and
Ci functions7:

1 d coskr
G„o&+&(y)= — — dk

eg
where

r= x—x';
C~ are shown in Fig. 1. G 0&+' is reduced by writing
it as the sum of the corresponding principal-value
integral plus or minus one-half the residue at the
pole k=k', i.e.,

Similarly,
2k~ e+iI 'lxt

G (2&(y) ~ ~wit' x'

~*& "4~ (18)

The unsquared 8-T equation, Eq. (13), with G
«p»ced by G =0'+', becomes, as

l xl ~m,
e+ik' jx/

g, (+&(x) ~ik z d3x'
(2 )'"

&« *"*'J'(Ix'l)4'i+&(x')

This is in the usual asymptotic form of a scattering
equation:

1
— f&+&(k')

P(+&(x)~ &ik'z+ &i''(x~

2m)'I' r(
19

(2s)'~'
2k' d'x'e '"'*'V(lx'l)f&+&(x').

where

f- o'+'(k') ==

f =o~+& looks like the expression for the nonrelativistic
Schrodinger scattering amplitude except that the
multiplicative factor 2k replaces 2'. Note that the
P&+&(x') must be found by solving the 3-T equation.
The wave function normalization is the same as that
given by Merzbacher. '

Using the identities

Si(s) —s and Ci(s) y+ 1ns,
z~0 z~0

where y is Euler's constant, ~ the singularity at r=0
is given by

G K&(y)
0 2+2r2

this limit is independent of k and of the choice of
contour C~.

The correction introduced into Eq. (17) by a non-
negligible mass m can be estimated:

For asymptotically large r, G =0&+) simplifies: since

lim Si(s) = ss and lim Ci(s) =0,
27r2r

k sinkr
dk

(m'+ k') '"—E

it follows that
2k' e+""

G 0(+& (y) -" 4' r

7 Handbook of Mathematical Fgnctions, edited by A. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser. 55, Chap. 5.

1 " k(m'+k') '" sinkr
dk +p

k' —k"
k sinkr

dk
k' —k"

where k"=E2—m2. The contours C+ are used as
before, and the integrals are each written as a sum of a.

principal-value integral and a residue, as before.
The residues are found without approximation, but
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2g r 0

(m'+ks)'I' is replaced by

P.V. " k' sinkr

k' —k"

e inte rais. These arek+m in'y'2k
'

the principalvalue in g . re

k sinkr P.V. d'
E dk

sinkr
dk -+

p k' —k"
sinkr

dk +-',m'
k' —k"k' —k" 2~ r dr p0

II sink'r Ci(k'r) c—osk'r Si(k r
s k' —k" 27r'r 2k

sinkr
(Q

p k' —k"

h the residue terms, this ieldsVVhen combined wit een the squared B-T equationBut a comparison between

—k' sink'r Ci(k'r) —cosk'r Si(k'r) j (V'+k")P(x)= d'g LE(lx—"x—x"I) V(lx" I)

—' E cosk'r+ +i7rE—stnk rg7r c
r

he erst terms in the expansion o
t tht btt m'm-2~ik&2i&l'2 —g. This suggests t a a

tion when m&0 is given by

+V(l xl)E(l x—x"I)jg(x )+v'(I l)~( ) (4)

and Seber's K-G equation

(V+k' M(x) =
I 2EV(l xl) — '( l)3(),

G (+)(r) =
X

cosk'r Si(k'r) —sink'r Ci(k'r)

d' l(l+1)i
-s. cos 'r — '

i r'r . (20), , )
dr' «(r, r', l)u((r')

between the radia sq1 s uared B-Tor a comparison e w

equation

im li6es as r-+00:The Green's function simp
'

2g ~+ik'r

G s(+) (r) (21)

=s&+&(r) has been replaced ydb Bin=0

correct nonrelat v

1 E . (15), i 1 d
=0 (see Appendix III).form except for l=0 see pp

BETWEEN THE B-T EQUA-V. COMPARISON - E UA-

TlON AND SERBER'S K-

erator form isThe square - ed B-T equation in opera

(m'+k')'~'V(I xl)+ V(I XI)
k')"'+v'(I l)jl4) (3)X(m'+ '

of the P' term, this "reduces" toExcept for the sign of t e
the K-6 equation of Serber'

—k'+ k")
I P)= (2EV—V')

I P),
k')'~' are replaced by the energyif the operators (ms+

eigenvalue E.

xl:v(")+v()j+v(). () (10)

and Serber's radial K-G equation

(r) =
I 2EV(r) —V'(r)pug(r)( +k"— u, r =

dr2 r2

all different fromshows that t eh B-T equation is actua y
q

The Born approximation applie o
a scattering amplitude

a *" k', k")= ——(k"
I
(m'+ ' "'V xf Tam s

V(lxl)(ms+k&)»s+V&(lxl Il'

=——L(k"
I V(f XI) I

k'}(m'+k"')'~'
4m.

+(I "I v(l xl) I
k'}(m'+I ' )'&

+(k"
I
V'(lxl) Ik')3,

an, ' = " and (msyk")'l'= (ms+k'")and, since Ik'I = lk", an m

G en's function instead ofluded in t e reen8 The factor 2m is inclu

od.337 (1963); Rev. Mo .R9 R. Serber, ys.
Phys 36, 649 (1964)..

'
I I)lk')3.

rn a roximatlonK-G equation, the Born pp
'

nFor Serber's - e
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yields

fx on '"(k',k")= —(1/4s.)(k"
I 2ZV(l xl) —V'(I xl) I

k')
= —(I/4~)l:2~(k"

I V(l xl) Ik')
—(k"

I
V'(Ixl) Ik')j.

Thus despite the diBerences between the 8-T and
Serber's K-G equations, in the Grst Born approximation
they yield the same result except for the sign of the V'
term. The matrix elements for Serber's potential are

a minor role at high k', so Eq. (21) is, in the high-
energy limit, expected to be adequate. But for large-
angle scattering —deeply penetrating collisions —it
would seem necessary, even in the high-energy limit
to use the full Green's function, Eq. (20).

Since the momentum-transfer distribution computed
from the 8-T equation is not expected to diGer in the
low-momentum-transfer region from the predictions
obtained from Serber's Klein-Gordon equation, and
since the latter leads to the result that'

(k"
I

Ik')=-
Ixl

2A)x(

2i

2 tan '(Ik' —k" I/2h. )

Ik' —k"
I

Ref(0')/Im f (0') =—0.01,

it is unlikely that Serber s potential used in the 8-T
equation could produce a real part sufBciently large
that

Ref(0')/Im f(0') =—0.3,
It is easily seen that already in the second Born

approximation fK o and fn T differ not only because of
the sign of the V' term, but also because the operator
(m'+k')'~' can no longer be replaced everywhere by
E. In particular the second Born term in fn T consists
of eight terms, four of which are identical with those in

fx o and four additional terms which do not occur
ln fK o.

If the V' term is neglected in Serber's K-G equation
then it becomes

(V'+k")tP(x) =2EV|P(x),

and the exact Green's function, appropriate if the 2E
is included in G instead of in the potential, is

GK o(+)(y)—
4x r

This coincides with the asymptotic form of the Green's
function, Eq. (21), obtained from the nonsquared
8-T equation.

The Grst Born approximation for the scattering
amplitude obtained from the unsquared 8-T equation
is easily got from Eq. (19) with k' replaced by E
[see Eq. (20)]:

2E
f--s'+)" (k', k")=— (k"

I V(l «'I)
I
k').

kr

This expression for f s&+&n"o is identical with the
first terms in fs T

" and in fK o "".Because of the
factor E, this term is expected to dominate at very
high energies.

The approximation of Eq. (20) by Kq. (21) actually
depends on the magnitude of k'r, and so becomes
valid at any impact parameter r for suKciently large
O'. However, kr'= constant corresponds roughly to
/=constant. Therefore, an approximation correspond-
ing to Eq. (21) is never expected to apply to Kq. (15)
for the first few partial waves. For small-angle scatter-
ing—peripheral collisions —the Grst partial waves play

as required by experiment, ""unless the 8-T equation
leads to very large real parts in the low-/ phase shifts.
Also, in order to Gt the high-momentum-transfer data,
such large real parts would have to interfere strongly
at high angles; in fact, the cross section at high-mo-
mentum transfers calculated at 30.0 GeV/c is already
too large owing mainly to the contributions of the real
parts

VI. PROSPECTS

A determination of the effect of the (unsquared)
B-T Green's function G o, Eq. (20), on large-angle
scattering, perhaps for Serber's potential, is indicated.
Following the implications of Ref. 10, this may require
a partial-wave analysis, and because of the complexity
either of the B-T Green's function g 0 and g or of the
8-T kernels E and x, such a computation would require
signiGcantly more analysis than the procedure given,
for example, in Ref. 10.

The arbitrariness of the potential in 8-T theory allows
models which involve momentum-dependent potentials.
As noted in Appendix I, this might be used to represent
Lorentz contraction of the protons. This picture in-
troduces a new distinction between longitudinal and
transverse directions, which might conceivably have
some relation with the empirical formula

d~/(4= As-»'~s,

where p, =p sine, "mentioned in Sec. II of Ref. 10.
Finally it is suggested with great reservation that the

consequences of replacing the usual Green's functions of
Geld theory with the 8-T Green's function might be of
interest.

"D. Avison, preceding paper, Phys. Rev. , 155, 1570 (1967)."L. Kirillova, L. Khristov, V. Nikitin, M. Shafronova, L.
Strunov, V. Sviridov, Z. Korbel, L.Rob, P. Markov, Kh. Tchernev,
T. Todorov, and A. Zlateva, Phys. Letters 13, 93 (1964)."G. Belletini, G. Cocconi, A. N. Diddens, E. Lillethun, J.
Pahl, J. P. Scanlon, J. Walters, A. M. Wetherell, and P. Zanella,
Phys. Letters 14, 164 (1965)."J.Orear, Phys. Rev. Letters 12, 31263 (1964).
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APPENDIX I: THE FORM OF THE POTENTIAL

In Serber's model, the very-high-energy scattering
of two protons is reduced to a discussion of the center-of-
mass scattering of a single particle by a complex
spherically symmetric potential. However, in the
center-of-mass system the two particles may be pictured
as severely Lorentz-contracted spheres. The overlap
of such spheroids would still be squashed. The spatial
extent of the potential is expected to represent this
overlap function. Thus the potential is not necessarily
expected to possess spherical symmetry, but only
cylindrical symmetry.

Serber's optical integral calculation in fact injects a
kind of total squashing: The phase function X(p), cal-
culated from an integral through the potential, is used
as a source distribution on a plane ("phase plate" )
perpendicular to the scattering axis. From this two-
dimensional distribution the differential cross section
is .computed. The partial-wave calculation of course
introduces no squashing, and to the extent that the
optical-model and the partial-wave calculations agree,
the effect of squashing would be judged unimportant.

The potential which occurs in the B-T theory is re-
quired to be a rotationally invariant function of x
and k, the coordinate and momentum variables for
the relative motion. It is noted that this requiren1ent
does not exclude powers of cos8=k x/~k~~x(, which
could be used to represent asphericity. (This should
really be replaced by an appropriate Hermitian opera-
tor. ) The cylindricity about k is easy to picture as
literal squashing of the potential if k is nearly constant
(small-angle, peripheral collisions); the rotation of the
axis of cylindrical symmetry as k changes is in fact an.
extra re6nement in representing a Lorentz contrac-
tion. In spite of this motivation to introduce coso
dependence, this has not been done in order to keep
things simple, and also to keep the Serber potential
intact so as to consider in isolation the effect of replac-
ing Serber's K-G formula by the B-T formula.

It should be noted that the v of the B-T model is
Hermitian whereas Serber's potential is not. This
rejects the fact that the B-T model deals with scatter-
ing without change in particle number, whereas
Serber's model represents the effect in the elastic
channel of many inelastic channels. Nevertheless, given
that the inelasticity is to be represented by an imaginary
potential, the 3-T formula is taken to indicate where a
potential function is to be inserted.

Note also that the non-Hermitian character of the
potential introduces no difhculty in setting up the 8-T
scattering equations. (See also Sec. IV A.)

where
l m l m

1 d d l(l+1)
k(= ———r'—+

r' dr d

Deri vatiorI, . Expand

then,

F(k') = Q a,(k') & .
q=o

F(k')LE Y~"(0A)g~l=E 2 a.(k')'LY~"(0A)el.
l, m q l, m

1 Y;(eA)g, ()= VY,"—(ttA)g ()= Y "(SA)k 'g ( ),
and

(k')'Y~ (g P)gt(r) = (—V')(—V') Y~ (g P)g~(r)
V'Y)"(8,y) k, 'g—((r)

= Y~"(~A) (k')'g~(r),
since

V'k('Y p(8,y) gt (r—)= —k('V' Yg"(8,&)g((r)
= Y "(~,~)(k ')'g ().

By induction it follows that

(k) Y-«,~)g()=-(v) Y-(0,~)g()
= Yi"(~,4)(k~')'g~(r)

from which Eq. (7) follows by multiplying a, and
Sun1II11Ilg.

2
X ~" dk F(k') j&(kr) j&(kr') . (9)

Derivatiort, The action. of F(kP) may be replaced by an
integral operator: Expand

g(.) = dk v, (r)j,(kr),

then

F(kP)Lg] (
„= dk y)(r)F(k') j((kr),

where k is the eigenvalue of k~. To And yg(r), the self-

APPENDIX II: TWO OPERATOR EQUATIONS

Equations (7) and (9) of the text are formally
derived here. They are applied for g=g& ——R&, for
g=g~=VE~, and for g=g~={1/L(m'+k')'t' —Ej}VR~.

F(k')LZ Y "(~A)g 3=2 Y "(0,&)F(k~')Lg 7, (7)
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It is noted that this is the same as the corresponding
expression for the Schrodinger equation except for the
factor of' 2k and of course the presence of the 3-T
radial wave function No instead of the Schrodinger

vive function. The 6rst Born approximation is of
course

tanbo ———2k" dr' r'fj e(k'r')]'U(r') .
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Decay Modes q ~ ~+~ ~ q and q ~ ~ qq
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We calculate rates and photon-energy spectra for the decay modes y ~ m+m m y and y —+ m yy, with the
aid of a new model. The relevance of the decay mode g ~ ~++ m'p to the possibility of C violation in electro-
magnetic interactions is discussed.

I. INTRODUCTION
" 'N this article, we propose a mechanism which can
i ~ account for a partial decay rate g —+ x yy compa-
rable in magnitude to the other major p decays. %e
also make a detailed analysis of the decay mode

p —+x+x x'p, which has not been treated previously
and for which no experimental data are yet available.
The ratio of these two decays is predicted by the model.
The y-ray energy spectra, whose knowledge is helpful
in the experimental detection of these decays, are also
presented.

A recent experiment of Dioiugno et al.' indicates that
(37.5+3.6) percent of the neutral decay products of st

consist of the decay mode g ~m'7y. They also obtain for
the ratio to the rt ~ yy decay, EL(rt —+ 7r'yy)/ (rt —+ 2y) $
=0.9~0.i. In apparent disagreement, Kahlig et al.'
report R((rt ~ sr'yy)/(rt ~ yy)$(O. S. Nevertheless,
two other experiments seem to confirm the abundant
occurrence of the q —+~'yy decay. Strugalski et al.'
obtain R/(rt —+ x'yy)/(g —+ yy)) =0.86&0.40, while
Grunhaus4 gives (27+9) percent for the percentage of
w'yy among the neutral decay products of eta.

A copious rate for g —+ x'yy causes some theoretical
embarrassment. The ratio of the other two detected
radiative decays of eta, namely g —& ~m7 and p ~Yp has

*Research sponsored by the Air Force OfBce of Scientific Re-
search, Once of Aerospace Research, U. S. Air Force, under Con-
tra,ct No. AF 49(638)-1389.

$ Permanent address: Department oi Physics, Israel Institute
of Technology, Haifa, Israel.

C. DiGiugno, R. Querzoli, G. Troise, F. Vanoli, M. Giorgi,
P. Schiavon, and V. Silvestrini, Phys. Rev. Letters 16, 767 (1966).' M. A. Wahlig, E. Shibata, and I. Manelli, Phys. Rev. Letters
17, 221 (1966).' Strugalski et al. , in Proceedings of the j.3th International Con-
ference on High-Energy Physics, Berkeley, California, 1966 (to
be published).

4 J. Grunhaus, Ph.D. thesis, Columbia University, New York,
1966 (unpublished), and (private communication).

been successfully accounted for' by using a basic tri-
linear vector-vector-pseudoscalar-meson interaction,
followed by transitions p —+ 2s. and (vector meson) ~y.
This rho-dominance model also fits very welP the
photon-energy spectrum in the decay g~x+x y. If
this is assumed to be the mechanism for all q radiative
decays, then p~m'pp is expected to be very small.
Roughly, we estimate

by using an effective rtpy vertex, which gives (1% for
this ratio. Alles, Baracca, and Ramos' have calculated
(g —& m'Vy)/(rt —+ Vp) with this model including all
possible vector-meson intermediate states and obtain
(g ~ sroyy)/(st -+ yy) = 1:06)&10 '. When considering
also g-X mixing they show that this number cannot be
significantly improved without badly damaging the
(rt —+ sr+sr y)//(rt —+ yy) ratio. —

II. FORMULATION OF MODEL
AND CALCULATIONS

As the trilinear meson interactions VVP and UPP
(U is the vector-meson nonet, I' the pseudoscalar-meson
octet) fail to account for rt ~ 7ryy by a factor of 10', it
is reasonable to expect that improvements like form
factors, etc. will not change this factor significantly.
We suggest therefore that the large rate for g —+m'yy
is related to quadrilinear meson interactions. A well-
known example of this kind is the X(et.or)' term of the
interaction Lagrangian. It is natural to enlarge this

~ M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).' L. M. Brown and P. Singer, Phys. Rev. Letters 8, 460 (1962);
16, 424 (1966).' F. S. Crawford, Jr., and LeRoy R. Price, Phys. Rev. Letters
16, 333 (1966).

8 W. Alles, A. Baracca, and A. T. Ramos, Nuovo Cimento 45,
A272 (1966).


