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The Bakamjian-Thomas theory is used to obtain relativistic scattering equations for the relative motion
of two particles. These are presented in a squared and in an unsquared form, and both forms are realized
in Cartesian coordinates and reduced to partial-wave equations for the case of an isotropic potential de-
pendent only on the Bakamjian-Thomas relative coordinate. These equations are shown to bear a re-
semblance to the Klein-Gordon equation with Serber’s potential 4. The first Born approximation of the
scattering amplitude computed from the Bakamjian-Thomas equations and that computed from the Klein-
Gordon equation are shown to agree as k£ — . Differences between these approaches are expected to show
themselves mainly at large-angle scattering, since the (unsquared) Bakamjian-Thomas Green’s function
differs appreciably from that of the Klein-Gordon equation only for small 7.

I. INTRODUCTION

HE Bakamjian-Thomas (B-T) model for describ-

ing interaction relativistically but with potential
functions is employed to derive a state-vector equation
of motion similar to that postulated in Serber’s model.
The equation is presented in “squared” and ‘“un-
squared” versions; each is realized in Cartesian co-
ordinates, and on assuming a potential independent of
the relative momentum, each is then separated into
partial-wave radial equations. Computations of the
relevant kernels and Green’s functions are presented.
The squared and unsquared B-T equations are com-
pared with Serber’s Klein-Gordon (K-G) equation with
regard to Born approximations and Green’s functions.

II. A REVIEW OF B-T THEORY

Bakamjian and Thomas! have formulated a rela-
tivistic theory, which instead of resorting to field
operators, is based on a relativistic Schrédinger equation
which acts directly on a Hilbert space. A potential
energy V is incorporated in the theory in such a way
that the ten generators of the proper inhomogeneous
Lorentz group satisfy the usual commutation relations
of this group.? Comparison of the B-T equation and
Serber’s KG equation will show that ¥ corresponds
roughly to the “V” in the (V,0,0,0) four-vector-
potential inserted into the K-G equation. Comments on
the appropriateness of Serber’s imaginary-isotropic V
are given in Appendix I.

Recently, the question of defining scattering in the
B-T theory has been investigated by Fong and Sucher?
and by Coester.* For a bibliography the reader is
referred to these two papers.

* This work was supported in part by the U. S.- Atomic Energy
Commission (Report No. NYO0-2262TA-131).

t This work is in partial fulfillment of the Ph.D. requirements
of Brown University, Providence, Rhode Island.

1 B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).

2 The V here is equal to the v/2 of Fong and Sucher and should
not be confused with their V=H—H,.

3R. Fong and J. Sucher, J. Math. Phys. 5, 956 (1964); see also
their bibliography.

4F. Coester, Helv. Phys. Acta 38, 7 (1965); see also his
bibliography.
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The ten infinitesimal generators corresponding to two
free spinless particles, space translation (three mo-
mentum), time translation (Hamiltonian), space-time
rotations (velocity boosts), and spatial rotations
(angular momentum), are

Hy=H\+H,,

Po=pi+p2,
Ko=3(t:H1+Hutr)+5 (r2H o+ Hors)
Jo=r1 %X pitr2 X2,

where H;= (m2+p2)'/2 The subscript 0 indicates no
interaction, and r; and p; are the usual canonically
conjugate single-particle position and momentum
operators. Ho, Py, Ko, Jo trivially satisfy the commuta-
tion relations of the inhomogeneous Lorentz group.

To introduce an interaction without disturbing
Lorentz invariance it is necessary to modify these
operators in such a way that the commutation relations
are still satisfied. As usual this is done in the “instant”
form of interaction, but without extending the two-
particle Hilbert space. Instead of creating and an-
nihilating particles, a “potential” is introduced in a way
reminiscent of nonrelativistic quantum mechanics.

The theory is formulated in terms of center-of-mass
variables obtained by a canonical transformation from
i, p1, s, p: to center-of-mass variables R, P, x, k,
where R is conjugate to P, x, to k. The transformation
is defined by

P=p;+p: and k=(epi—eps)/(ate),

where

Ei=(mi+p3)'?,

i=1, 2, and k2 is obtained from
wi(k)+wy(k?) = (P2,

and where P; is the total-four-momentum wvector.
Although the expression for k appears formidable, it is
simply the momentum of particle 1 in the center-of-mass
system which is traveling with a velocity u= (p1+p2)/
(E1+E;) (and, of course, —k is the momentum of
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potential 2). It is easy to show that

Ho=H+Hq= (P*+h?)12,
where

h02= (m12+k2)1/2+ (m22+k2)1/2.

A potential v(k,x) which is a rotationally invariant
function of k and x may be introduced into the infini-
tesimal generators H and K so that the commutation
relations are still satisfied:

ho— hoto(kx)=h,
so that
H= (h2+P2)1/2,
K=1(RH+HR)—1xP(h+H),

where 1 is the internal angular momentum x xk. It is
this representation which was discovered by Bakamjian
and Thomas in 1953. Fong and Sucher have shown that
the S matrix associated with the B-T Hamiltonian is
“asymptotically covariant” for a potential (k,x) which
is rotationally invariant and is sufficiently localized
that scattering boundary conditions may be applied.
It should be noted that this leaves considerable freedom
for defining even an energy-independent potential;
see Appendix I. Fong and Sucher further argue that
“... if a two-body covariant S matrix has a ‘potential’
origin --- then there always exists a B-T type of
Hamiltonian which yields the same .S matrix.”

®

III. THE SQUARED B-T EQUATION

A. Derivation of the Squared Equation

For convenience the B-T equation is written in the
center-of-mass system. Since the three components of
P commute, a basis on which they are simultaneously
diagonal exists. If the state vector is an eigenstate of P,
it will remain one with the same eigenvalue since
[H,P]=0. Furthermore, any eigenstate of P can be
velocity-transformed to a state with P=0. The scatter-
ing problem will be carried through for such states,
i.e., “in the center-of-mass system.”

In terms of the single-particle energy E, the B-T
equation becomes

Hly)=Wn")|$)=2Ey). @

The squared equation follows from this by operating
on both sides from the left with H:

HH|y)=2HE|y)=2EH|Y),
H2[Y)=QE)*|¢).
On substituting from Egs. (1), and putting m;=ms=m,
this reduces to the explicit form
(— KK ) =[n-+ K112
+(@/2)(m*+k3V2+(v/2)7]|¢),

where k'?=FE?—m? Notice that, because v— 0 as
|x| =, k2 may be regarded as an “eigenvalue” of
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k? in the state |¢) for large |x|. It is convenient to
remove the factor 3 from these equations by introducing
V=v/2:

(—k+k?)|¢)

= [(m"—l—kz) 1lzv+ V(m2+k2) 1/2+ sz [ ¢> . (3)

B. Realization in Cartesian Coordinates

To realize this operator equation in a representation
with x diagonal (keeping P=0), complete sets of states
are introduced. (Notice that x is used as the eigenvalue
of the operator x, in order to save primes.)

[ 1=
= [ sl iyl i)
G V] (R XYY 1)
+ [ vl .

The possible k? and k-x dependences of V (Appendix I)
are now excluded, as in the case of Serber’s potential:

V="(|x]).
Then,

(PR ) = f &5 K (Ix—x"V (| x"])

+V(IxDE(|x—x" W &)+ V(|3 )¥E), 4)

where

K(|x—x'|)= (x| (m*+k)""2[x').

K(|x—x'|) is computed by inserting a complete set of
states:
K([x—x’|)=/d3k’d3k” x| k)

XK' | (m*+k2) 12 K ) (k" | x')

/ e S O

" (@)

dk k2 2 k2 1/2
(277)2/; (8

X / d(COS@) etk|x—x’| cosf ,
6=0

where k= |k’| and 6 has for convenience been chosen
as the angle between (x—x’) and k. The 6 integration
yields

—2 )
K(|x—x’ )=—————/ dk k(m?
| | (2m)¥x—x| Jo
. +£2)12 sink | x—x/|

— L Kum|x—x)
= m|X—X
2r?|x—x'|2 : ’

®)
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where K, is the second-order modified Bessel function of
the second kind. It should be noted that the integral
in Eq. (5) does not literally converge but may be
defined by introducing a cutoff function of the form
¢A* and after the integration letting A — 0.5
Introducing Eq. (5) into Eq. (4) yields
2
272| x— ’Isz(mlx_ xD

XV (xD+ V(X DWE)+V2(x| ¥ Ex). (6)

It should be noted that nonlocality enters this equation
not only implicitly in the use of an instantaneous-action-
at-a-distance potential but also explicitly in the way
this potential is incorporated into the equation.

(PR (x)= f P

C. Partial-Wave Reduction

The squared B-T equation may be realized in spherical
coordinates in terms of an indicated integral. To ac-
complish this it is helpful to find the action of any
smooth function F(k2) of the operator k2 on a partial-
wave expansion

£ T re0an0).

nMs

It is shown in Appendix II that
F (kz)[lZ Y i(0,6)8:(r) 1= lZ Y (0,.0)F (k) gu(r)] 0

where
1dy7 d\ I(0+1)72
rdr\ dr 72

and also that for any smooth function g(r),

F?)g()]= f ar (v

x[gr'z fo " E2F () ji(kr) jl(kr’):l . (9)

™

Equation (3) is now realized in spherical coordinates by
applying Egs. (7) and (9) with g=R; and g=VR;:

(— b+ E)R() = / dr V)RA)
]

2 -]
X[—f’zf dk kz(mz_|_k2)1/2j,(kr)jl(kr’)]
0

00 2 0
+V) / & R(/)[—ﬂ / Ak (m+ B
><j;(kr)jl(kr’):l-l—V2(r)R;(r).

5A. Erdélyi, Table of Integral Tramsforms (McGraw-Hill
Book Company, Inc., New York, 1954), Vol. 1.
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Substitution of the usual radial wave function #;
=7Ry(r) yields the partial-wave equation

a2 I+ °
(St (r ))ulo) [ i sttt

XVE)+V () IV ()mlr)

(10)
where

2rr"
x(r,r’;l)=—/ dk k2(m2+-Ek%) V25 (kr) ju(kr) .
T Jo
D. Zero-Mass Approximations
From Eq. (5),
lim K (|5~ |)=Knuol| x—¥|) =

w2 x—x'|* )
It is noted that this result is identical with that obtained
by replacing (x| (m?+k2)'2|x’) by (x||k||x’).

The radial function «(r,”’; 1) has been evaluated in
closed form only for zero mass:

i
lin(l) k(r,?" ; D) =km=olr,r’; ) =— f dk k35:(kr) 71(kr")
m=> T Jo

1‘_ -]
" / dk LR 3 (k)]

20/ 12(yy Y112 [
X Tuiy(kr’) (k') 12,
and

/ dk B2 13 (kr) T oy (k") (") 12
0
1 72--7'2
=—_Ql( > )
wri/? 2rr’

1 d \? o 72472
27r”+1(r_'d_r;> l:r QIMK 2rr’ :I) '

IV. THE UNSQUARED B-T EQUATION

so finally

kmao(7,7 3 1) =

A. Derivation of the Unsquared Equation

Squaring the B-T equation has been shown to yield
Egs. (6) and (10), three-dimensional and radial K-G
equations with potential terms on their right-hand
sides which involve convolutions with a kernel. Be-
cause the scattering Green’s functions for the Cartesian
and radial K-G equations are known, the application
of either Eq. (6) or (10) to scattering is, except for the
complexity of their right-hand sides, straightforward.

To avoid the complications of these convolution
integrals, the unsquared B-T equation is considered
directly. The scattering Green’s function however
becomes more complicated. From Egs. (1) and (2),
recalling that v=2V, and again putting the masses
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equal
H|yy={[2(m>+ k)2 12V (|x]) ]} 2|¢)=2E¢).
It is first shown that this equation may be replaced by
o'|y)=[2(m*+ k) ">+2V(|x[)][¥)=2Ely), (11)

for any complex potential V(|x|) which decays sul-
ficiently rapidly. Then H=H’, because any possible
ambiguity of signs which might have arisen on squaring
and then extracting the square root does not arise. The
scattering wave function y(x) is approximated asymp-
totically as |x| —« by

Y4(x) = (1/ Vo) (¢ =+ [ 1(6)/rJes1)

where Vol=volume in three-space. (H’) is given by
the inner product

W), (20m*+k2) 242V (| x]) W(x)).

Because of the 1/Vol/2 in the normalization of the wave
function, the contribution to (H’) from any fixed
volume tends to zero as Vol — . ¢ may therefore be
replaced by ¥4 in a volume which starts at some large
radius so that even the e?¥lIxl /7 terms do not contribute
to this volume integral. Thus

1
<H’> — ___[eik’-x, 2(m2+k2)1/2e'ik’~x]
Vol

2

@ ¢ T X (2 K212
Vol

=2(m*4K'2)12=2E,

the positive total energy in the center-of-mass system.
It is noted that this result does not depend on the
Hermiticity of V(|x]).

B. Realization in Cartesian Coordinates

To realize Eq. (11) in Cartesian three-space, complete
sets of states are inserted into the inverse equation

S— NPT
=g (DI, 2
yielding
W) =— / a% G(|x—x )V (| ¥ W)
+(2m) -z x| (13)

Here

G(|x—x[)=(x| x)

(m2_|_k2) 1/2__E

which - becomes, after transforming to spherical co-
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ordinates and on performing the angular integrations,

©  Esink|x—x/|
G(|x—x'|)= / dk . (19)
22| x—x'| Jo  (m24+kD)V:—E

(Again k= |k’|.) This integral, which does not converge
as a real integral,. becomes a Green’s function if the
contour of integration is moved away slightly from
the singularity at k=(E?—m?)'2. The quadrature in
Eq. (14) was not performed; the branch points of the
integrand at k= -im cause some difficulty.

It should be mentioned that G(|x—x’|) reduces to
the usual® nonrelativistic expression in the limit A<m:
Abbreviating |x—x'| =7,

0 k sinkry
dk :
0 (m2+k2)ll2_ (m2+k/2)1/2
1 1]
_ — dk
o m+kY2m—m—Fk'% 2m

k«m 27!'27

1
G(r)=—

2w

k sinkr

m [° ksinkr

)

wrJo kPR

the integral representation of the nonrelativistic-
scattering Green’s function, where the “2m” is included
in G instead of in U.

C. Partial-Wave Reduction

On resolving the wave function into partial waves

¢(770:¢) = lz Ylm (O,d))Rz(T) .

and using Egs. (7) and (9), Eq. (12) becomes
Ry(r) —— / ar (_r_) g, ; DV () R')
0 v
+ 2m) 3124 214-1) 7y (kr) ,
kzjz(kr)yz(kr’)
o m2+ kz)uz :

where

glry’s l)~—~ (13)

This is rewritten in terms of the usual radial wave
function

wi(r) = (2r)3/% 204+ 1)"rR,(r),

® 16
ul(r)=——/ ar’ g(ry’; DV () ui(r')+r(kr). {16)

Although the correct contour for the outgoing-wave
scattering problem is the contour C of the following
section, a variety of contours may be employed to
determine the phase shifts, é;; see Appendix III.

¢ E. Merzbacher, Quantum Mechanics (John Wiley & Sons, Inc.,
New York, 1961),. Chap 12,
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D. Zero-Mass Approximations

The Green’s-function integral Eq. (13) may be
approximated

lin% G(|x—x'|)=Gnoo(|x—x'|)

1 /“” k sink|x—x’|
= dk .
2w |x—x'| Jo k—Fk

This expression has a pole at k=%, but is adequately
evaluated by displacing the contour below or above
the pole, which corresponds, respectively, to choosing
outgoing (+) or incoming (—) scattering boundary
condition. This correspondence is established by Eq.
(18), and the definitions of these contours applies
retroactively to Eq. (12).

The integral G with m=0 may be reduced to Si and
Ci functions’:

1 d coskr
Greo® (r)= ——— — d _
e drJoy k—F

)

where
r=lx=x;

C, are shown in Fig. 1. G,—o® is reduced by writing
it as the sum of the corresponding principal-value
integral plus or minus one-half the residue at the
pole k=%, i.e.,

coskr ®  coskr 1 coskr
/ dk =P.V. / dk =+ f dk ,
cx hk—Fk o k—Fk 2 k—Fk

so that

1 d
Gneo® (r)=———[cosk’r Ci(k'r)+3m sink’r
2n%r dr

+sink’r Si(k'r) 4w cosk'r].

From the definitions of Si and Cij,

sink’r cosk’r
, — Ci(k'r)= ’
dr

r

d
— Si(k'r)=
dr

7
it follows that
Gmao® (r)= (k' /2w%)[—sink’r Ci(k'r)+cosk’r Si(k'r)
+(1/k'r)+37 cosk'rim sink’r]. (17)
For asymptotically large 7, Gn—o™® simplifies: since

lim Si(z)=%7 and lim Ci(z)=0,

z2—>0 z2—>0

it follows that
k' gtik'r
Gueo® () ~ —
7->0 47r 7

7 Handbook of Mathematical Functions, edited by A. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), Appl. Math.
Ser. 55, Chap. 5.

BAKAMJIAN-THOMAS THEORY AND SERBER MODEL

1587
k-PLANE k-PLANE
Fic. 1. C, and ‘ & I o
C- contours. l I ¥
C. CONTOUR C_ CONTOWR
Similarly,
2B ki Izl

Gm=0(i)(7) ~ — eTik x| (18)

Ixl>e 4z | x|

The unsquared B-T equation, Eq. (13), with G
replaced by G0, becomes, as |x| -,

etk (x|

oik’z— 2k
(2m)32 4r| x|
Xe ¥ =V (|x| W (X).

This is in the usual asymptotic form of a scattering
equation:

‘/, +) (X) ~

YO )~

dx’

[ ivrey FOE)
PO
(27312

elxl |
where

fm=o(+)(13’)= —

(19)
2k / o' e V(| X YO X)),

4

Sfm=0) looks like the expression for the nonrelativistic
Schrodinger scattering amplitude except that the
multiplicative factor 2%k replaces 2m. Note that the
Y@ (x") must be found by solving the B-T equation.
The wave function normalization is the same as that
given by Merzbacher.®

Using the identities

Si(z) ~E and Ci(z) ~ v+Inz,

where v is Euler’s constant,” the singularity at r=0
is given by

G @ () ~ .
70 2722

this limit is independent of 2 and of the choice of
contour Cj.

The correction introduced into Eq. (17) by a non-
negligible mass 7 can be estimated:

® E sinkr

dk————
(m2+-E2)12—E

27!'27’ 0

L[ kOw+k)' sinkr 0
— dk LE / dk
0

k sinkr]
ol R—pn ’

kZ_k/ 2
where k2= E?*—m? The contours C, are used as
before, and the integrals are each written as a sum of a

principal-value integral and a residue, as before.
The residues are found without approximation, but
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(m2+k?)1/2 is replaced by k+m?2/2k in the principalvalue integrals. These are

PV.[ r*° EkZsinkr ©  sinkr © [ sinkr
———I: / dk +3m? / dk +E / dk
2rl)y B2—R? o R—PR? o R2—PR2

d 0
— F—
dr 0

When combined with the residue terms, this yields
1 m?
—[— (k’+——> [sink’r Ci(k'r)— cosk’r Si(k'r)]
27% 2K
1
37E cosk'r+—+irE sink’r] .
7
k'+m?/2k' are the first terms in the expansion of

(m2+k'?)1/2= E. This suggests that a better approxima-
tion when 340 is given by

E
Gmro®(7) '=———|:cosk’r Si(k'r)—sink’r Ci(k'r)
27?y

1
ir cosk’r—l—E:I:ivr sink’ r:I . (20)
7

The Green’s function simplifies as 7 — 0 :
2E e+’

GmNO(:!:)(r) ~ —
7->00 47|'

21

The factor £’ in Gneo™® (7) has been replaced by E in
Gm~0@®(r). Note that this form goes over into the
correct nonrelativistic form (2m/4w)et*'7/r.8

It is noted here that the zero-mass approximation did
not simplify the partial-wave Green’s function suf-
ficiently to compute the integral, Eq. (15), in closed
form except for /=0 (see Appendix III).

V. COMPARISON BETWEEN THE B-T EQUA-
" TION AND SERBER'’S K-G EQUATION

The squared B-T equation in operator form is
(=K +k2) [¢)=[(m*+k)"2V(|x[ )+ V(| x])
X m*+k)24+-V(|x])]|¥). )

Except for the sign of the V2 term, this “reduces” to
the K-G equation of Serber?

(—k+k?)|9)=QEV-V)|¥),

if the operators (m2+k?)/2 are replaced by the energy
eigenvalue E.

8 The factor 2 is included in the Green’s function instead of
in U.
9R. Serber, Phys. Rev. Letters 10, 357 (1963); Rev. Mod.
Phys. 36, 649 (1964).

P.V.r d® r*  sinkr ®  sinkr
= - / dk +3m? / dk
21r2rl_ drtJo 0

i coskr ] 1 [ (k " mz)[ L 1
=—o —| &'+—)[sink’r Ci(F’'r)—cosk’r Si(k'r) |H+irE cosk’r-i——l——] .
B—k2) 2n% 2% &) ®n) I+ r

k2__k/2 k2__k/2

But a comparison between the squared B-T equation
(7900 [ LR (x=x" V()

+V(xDE(|x—x")WE)+ V(x| ¥x)  (4)
and Seber’s K-G equation
(VK2 (x)=[2EV (| x[)— V(| x]) W (x),

or a comparison between the radial squared B-T
equation

L G
(___+k/2_

dr? 72

)u;(r)= /0 " b s D)

XLVE)+V (@) I+HV)ml(r) (10)
and Serber’s radial K-G equation

a2 1(1+1)
(v
dr? 72

)ut(r>=[2EV(r>-V2<r>]uz(r>

shows that the B-T equation is actually different from
Serber’s K-G equation.

The Born approximation applied to Eq. (3) yields
a scattering amplitude

1
foPom(l )= — (k"] (m*+ RV (Ix])
V(x> 2+ V(| x]) [ K)
1
== L V(DK ke

+&" [V ([ x)K)(m*+-k2)1
+{& V(x| K],

and, since |K'|=|k”|, and (m?+k'?2)1/2= (m24k'2)1/2

foxPomn (K K) = — (1/4m)[2EEK" | V(| x|) k')
+ &7 72(|x[) [K)].

For Serber’s K-G equation, the Born approximation
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yields

fra®om(l,K") = — (1/4m) (k" | 2EV (| x|)— V*(|x|) | k')
=—(1/4m)2EE"| V(| x]) | k')
— & 72(x)[K)].
Thus despite the differences between the B-T and
Serber’s K-G equations, in the first Born approximation

they yield the same result except for the sign of the V2
term. The matrix elements for Serber’s potential are

Al 2 1
| ky=— ’
le (27!')2A2+lk'——k”l2
e—2Alx] 2 tan}(|k'—K"|/2A)
<k"I | k’):
x| 7 @2 K-k

It is easily seen that already in the second Born
approximation fx.¢ and fp.r differ not only because of
the sign of the V2 term, but also because the operator
(m2+k£%)12 can no longer be replaced everywhere by
E. In particular the second Born term in fp.r consists
of eight terms, four of which are identical with those in
fx-c and four additional terms which do not occur
in fK-G.

If the V2 term is neglected in Serber’s K-G equation
then it becomes

(V42 (x)=2EVY(x),

and the exact Green’s function, appropriate if the 2E
is included in G instead of in the potential, is

2E ¢xit'r
GK-G (&) (7’) Fp—

r

This coincides with the asymptotic form of the Green’s
function, Eq. (21), obtained from the nonsquared
B-T equation.

The first Born approximation for the scattering
amplitude obtained from the unsquared B-T equation
is easily got from Eq. (19) with %’ replaced by E
[see Eq. (20)]:

Frrea P K = — | V(Y.
4r

This expression for fn~oBem is identical with the
first terms in fp.r®™ and in fx.gBo™. Because of the
factor E, this term is expected to dominate at very
high energies.

The approximation of Eq. (20) by Eq. (21) actually
depends on the magnitude of %7, and so becomes
valid at any impact parameter r for sufficiently large
k. However, kr'=constant corresponds roughly to
I=constant. Therefore, an approximation correspond-
ing to Eq. (21) is never expected to apply to Eq. (15)
for the first few partial waves. For small-angle scatter-
ing—peripheral collisions—the first partial waves play
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a minor role at high %, so Eq. (21) is, in the high-
energy limit, expected to be adequate. But for large-
angle scattering—deeply penetrating collisions—it
would seem necessary, even in the high-energy limit
to use the full Green’s function, Eq. (20).

Since the momentum-transfer distribution computed
from the B-T equation is not expected to differ in the
low-momentum-transfer region from the predictions
obtained from Serber’s Klein-Gordon equation, and
since the latter leads to the result that!®

Ref(0°)/Imf(0°) ~—0.01

it is unlikely that Serber’s potential used in the B-T
equation could produce a real part sufficiently large
that

Ref(0°)/Imf(0°)~—0.3,

as required by experiment,!!!2 unless the B-T equation
leads to very large real parts in the low-/ phase shifts.
Also, in order to fit the high-momentum-transfer data,
such large real parts would have to interfere strongly
at high angles; in fact, the cross section at high-mo-
mentum transfers calculated at 30.0 GeV/c is already
too large owing mainly to the contributions of the real
parts.

VI. PROSPECTS

A determination of the effect of the (unsquared)
B-T Green’s function Gm~o, Eq. (20), on large-angle
scattering, perhaps for Serber’s potential, is indicated.
Following the implications of Ref. 10, this may require
a partial-wave analysis, and because of the complexity
either of the B-T Green’s function g, ~o and g or of the
B-T kernels K and «, such a computation would require
significantly more analysis than the procedure given,
for example, in Ref. 10.

The arbitrariness of the potential in B-T theory allows
models which involve momentum-dependent potentials.
As noted in Appendix I, this might be used to represent
Lorentz contraction of the protons. This picture in-
troduces a new distinction between longitudinal and
transverse directions, which might conceivably have
some relation with the empirical formula

do/dw=AePilPe,

where p,;= p sind,'® mentioned in Sec. II of Ref. 10.

Finally it is suggested with great reservation that the
consequences of replacing the usual Green’s functions of
field theory with the B-T Green’s function might be of
interest.

10D, Avison, preceding paper, Phys. Rev., 155, 1570 (1967).

UL. Kirillova, L. Khristov, V. Nikitin, M. Shafronova, L.
Strunov, V. Sviridov, Z. Korbel, L. Rob, P. Markov, Kh. Tchernev,
T. Todorov, and A. Zlateva, Phys. Letters 13, 93 (1964).

12 G. Belletini, G. Cocconi, A. N. Diddens, E. Lillethun, J.
Pahl, J. P. Scanlon, J. Walters, A. M. Wetherell, and P. Zanella,
Phys. Letters 14, 164 (1965).

13 J. Orear, Phys. Rev. Letters 12, B1263 (1964).
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APPENDIX I: THE FORM OF THE POTENTIAL

In Serber’s model, the very-high-energy scattering
of two protons is reduced to a discussion of the center-of-
mass scattering of a single particle by a complex
spherically symmetric potential. However, in the
center-of-mass system the two particles may be pictured
as severely Lorentz-contracted spheres. The overlap
of such spheroids would still be squashed. The spatial
extent of the potential is expected to represent this
overlap function. Thus the potential is not necessarily
expected to possess spherical symmetry, but only
cylindrical symmetry.

Serber’s optical integral calculation in fact injects a
kind of total squashing: The phase function X(p), cal-
culated from an integral through the potential, is used
as a source distribution on a plane (‘“phase plate”)
perpendicular to the scattering axis. From this two-
dimensional distribution the differential cross section
is computed. The partial-wave calculation of course
introduces no squashing, and to the extent that the
optical-model and the partial-wave calculations agree,
the effect of squashing would be judged unimportant.

The potential which occurs in the B-T theory is re-
quired to be a rotationally invariant function of x
and k, the coordinate and momentum variables for
the relative motion. It is noted that this requirement
does not exclude powers of cosf=k-x/|k|x|, which
could be used to represent asphericity. (This should
really be replaced by an appropriate Hermitian opera-
tor.) The cylindricity about k is easy to picture as
literal squashing of the potential if k is nearly constant
(small-angle, peripheral collisions); the rotation of the
axis of cylindrical symmetry as k changes is in fact an
extra refinement in representing a Lorentz contrac-
tion. In spite of this motivation to introduce cosf
dependence, this has not been done in order to keep
things simple, and also to keep the Serber potential
intact so as to consider in isolation the effect of replac-
ing Serber’s K-G formula by the B-T formula.

It should be noted that the v of the B-T model is
Hermitian whereas Serber’s potential is not. This
reflects the fact that the B-T model deals with scatter-
ing without change in particle number, whereas
Serber’s model represents the effect in the elastic
channel of many inelastic channels. Nevertheless, given
that the inelasticity is to be represented by an imaginary
potential, the B-T formula is taken to indicate where a
potential function is to be inserted.
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Note also that the non-Hermitian character of the
potential introduces no difficulty in setting up the B-T
scattering equations. (See also Sec. IV A.)

APPENDIX II: TWO OPERATOR EQUATIONS

Equations (7) and (9) of the text are formally
derived here. They are applied for g=gi=R; for
g=gi=VR;, and for g=g={1/[(m*+k2)V2—E]}VR,.

F (k2>[lz v 1’"(0,¢>)gz]=lZ Yim(0.)F(k2)gd, (7)

where
1dys d\ (+1)7v2
[T
r2dr\ d 72
Derivation. Expand
F(k?)= 2 a,(k?)?;
g=0

then,
F (k2)[§. v lm(0,¢)gz:|=§q: Eﬂ a (k%) LY m(0,9)g].
But
K2V m(0,0)gi(r) = — V2V 1" (0,6)gur) = Y im(0,9) ki*gi(r)

and

(k22 m(6,6)g1(r) = (— V(= V) Y™ (6,6) gu(r)

=— V2V (0,0)k:i2gu(r)
' =Y m(0,6)(k%)?q(r),
since
— V22V (0,0) gi(r) = — k2V2Y (0,0) gu(r)
=Y m(0,¢) (k) 2q(r).

By induction it follows that
(&3)2Y (0,9)8u(r) = — (V?) ¥ 7(0,0) 1(r)
=Ym(0,6) (k:*) 2gu(r)

from which Eq. (7) follows by multiplying e, and
summing.

Pl = f

0

0

dr' g(r')

T

x[ifz / " FEi)ie) | ©)

Derivation. The action of F(k;?) may be replaced by an
integral operator: Expand

o= / dva0) )

then

0

e / Ay (DF ) (k)

0

where % is the eigenvalue of %;. To find v;(7), the self-
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reciprocal property of the Bessel transform® is used;

g(r>=(72~r)m / " ey

0 (k)11
(-

vu(k)

. /0 ) dﬂ[(i)” 2 r'g(f’)]f Les(r”) (k)12
L")

><[(E>”2(kr’)”21'1(767'):](}6?')”2,

¥

©  yilk)
0 dk(—v—;—)fu,;(kr)(kr)w,

Finally,
2 k2 0

Yi=—
T Jo

dr’ r"%g(r") ju(kr").
From this,

° o =
F®) ]l = [ di— / dr' rg(r) jihr YER) jullr)

which, upon interchanging the order of integration
becomes Eq. (9).

APPENDIX III: THE S-WAVE PHASE SHIFT

On specializing Eqgs. (15) and (16), to the s wave
and letting m — 0O, these equations become

2 r* sinkr sinkr’
g(r,r’; 0)=— / de————
0

(23)
T kE—F

and
uor)=— / dr' g(r,r"; O) V(" uo(r')+ £ 1sink’r. (24)
0

To evaluate Eq. (23):

1 p* coskr— 1 [* coskrs
2’3 0) == f i / ",
0 0

wto  E—E w)o  E—F
where

’

r_=r—7" and ro=r+7¢.

Leaving, for the moment, the question of contour open,
we have

®  coskr. @ coskr.
/ dh——=PV. f T
0 k—Fk 0 E—F
coskr

1
+(%,0) 5 dk ,
1 coskry
- f dk =4 cosk'ry.
2 k—Fk

k—Fk'
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For r,.>0,

P.V. / i dkC:Sk]:f — —{cosk'rs Ci(k'rs)+ (sink'ry)
0 X[3m+Si(k're) 1},

see Ref. 5; so that
g(r,7";0)| r>r=—(1/m)[cosk’r_. Ci(k'r-)

+ (sink'7_) Gr+Si(k'7_)) 1+ (1/7) [cosk’ry. Ci(k'ry)

+(sink/r) Gr+Si(E 7)) ]+ (=, 0)

Xi[ cosk’ry—cosk’r_].
Because of the symmetry between  and 7' in Eq. (23),
grr";0) [ rcr=g('r; 0) | r>r-

The asymptotic expressions for g(r,’; 0) are

g(r,’;0) o~ 2 sink'r'[ cosk'r+ (=, 0)(—1) sink’r] ,
and

g(r:r,; 0) ’:'0 0,

independent of the choice of (&, 0).
Inserting Eq. (23) into Eq. (24) yields the radial
wave equation valid for large 7:

uo(r) ~ —2[ cosk'r+ (=, O)v(——i) sink’r]
X f dr' (sink/y" )V (r"Yuo(r' )+ k'~ sink’r.
(]

The boundary condition on #u(r) is

uo(r) . 0.

The normalization of w#,(r) is implicitly fixed by the
k'~1sink’r term. With this normalization and using
the “0” alternative from (&,0), the phase shift &,
is defined by

1
uo(r) ~ ;[sink’r-l—tan&o cosk’r].

This alternative corresponds to the contour $(C4+C_)
and not to the C, contour (see Fig. 1) appropriate to
a scattering problem; nevertheless, the phase shift 8,
defined as half the relative phase of the asymptotic
outgoing and incoming spherical waves is insensitive
to this issue. The s-wave phase shift is therefore given
in terms of the radial wave function by

00

tando= — 2k’2 / dr' v jo(k'r )V (r Yuo(r’).
0
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It is noted that this is the same as the corresponding
expression for the Schrodinger equation except for the
factor of® 2k and of course the presence of the B-T
radial wave function #, instead of the Schrédinger
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wave function. The first Born approximation is of
course

00

tand,= -—2k’2/ ar' v'[[jok'r) 2V ().
0
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Decay Modes n — =tz—=’y and n — ='yy*

PAUL SINGERT
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We calculate rates and photon-energy spectra for the decay modes y — =7 ~z% and » — 7%y, with the
aid of a new model. The relevance of the decay mode » — #*tz~#% to the possibility of C violation in electro-

magnetic interactions is discussed.

I. INTRODUCTION

N this article, we propose a mechanism which can
account for a partial decay rate n — #%y compa-
rable in magnitude to the other major » decays. We
also make a detailed analysis of the decay mode
7 — w7, which has not been treated previously
and for which no experimental data are yet available.
The ratio of these two decays is predicted by the model.
The y-ray energy spectra, whose knowledge is helpful
in the experimental detection of these decays, are also
presented.

A recent experiment of DiGiugno ef al.! indicates that
(37.543.6) percent of the neutral decay products of 7
consist of the decay mode n— 7%y. They also obtain for
the ratio to the n — vy decay, R[ (n — 7%yv)/(n — 2v)]
=0.940.1. In apparent disagreement, Wahlig et al.2
report R[ (n— 7%yy)/(n — ¥v)]<0.5. Nevertheless,
two other experiments seem to confirm the abundant
occurrence of the n— 7%y decay. Strugalski et al.3
obtain  R[ (y — 7%v)/(n— vy)]=0.8620.40, while
Grunhaus® gives (2729) percent for the percentage of
7%yy among the neutral decay products of eta.

A copious rate for n — 7%y causes some theoretical
embarrassment. The ratio of the other two detected
radiative decays of eta, namely n — wry and n — vy has

* Research sponsored by the Air Force Office of Scientific Re-
search, Office of Aerospace Research, U. S. Air Force, under Con-
tract No. AF 49(638)-1389.

T Permanent address: Department of Physics, Israel Institute
of Technology, Haifa, Israel.
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been successfully accounted for®:® by using a basic tri-
linear vector-vector-pseudoscalar-meson interaction,
followed by transitions p — 27 and (vector meson) — v.
This rho-dominance model also fits very well” the
photon-energy spectrum in the decay n— wFr~y. If
this is assumed to be the mechanism for all » radiative
decays, then n— %~ is expected to be very small.
Roughly, we estimate

(n— 7'vy)/ (n — wrry)~(p" — 7%)/ (0" — wt=7)

by using an effective npy vertex, which gives <19 for
this ratio. Alles, Baracca, and Ramos® have calculated
(n — 7%yy)/(n— vy) with this model including all
possible vector-meson intermediate states and obtain
(9 — m%yy)/(n — yv)=1.06X10"3. When considering
also 7-X mixing they show that this number cannot be
significantly improved without badly damaging the
(n— wtry)/(n — vv) ratio.

II. FORMULATION OF MODEL
AND CALCULATIONS

As the trilinear meson interactions VVP and VPP
(V is the vector-meson nonet, P the pseudoscalar-meson
octet) fail to account for n — 7yy by a factor of 103 it
is reasonable to expect that improvements like form
factors, etc. will not change this factor significantly.
We suggest therefore that the large rate for n— a%yy
is related to quadrilinear meson interactions. A well-
known example of this kind is the A(=-=x)? term of the
interaction Lagrangian. It is natural to enlarge this
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