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A study of 7rX scattering in the P» state is presented within the framework oi the unitary f matrix, or
boundary-condition model. Inelastic channels treated are tTÃ and ~lV*, where 0- is a I=0, 1=0+ ~m- pair.
The mass spread of the inelastic channel is taken into account in a unitary manner. It is apparent from an
examination of the Qts to the data that the tTÃ channel is vastly preferred as an inelastic mode; the reasons
are fully discussed in the text. The crossover of the phase shift at 175 MeV is seen to be impossible with a
conventional force input. From a study of eigenphases we conclude that there is no Breit-Wigner resonance
in any eigenchannel. Also, by means of the eigenphase representation, we demonstrate a source of possible
discrepancies in recent phase-shift analyses. The value of m obtained for a best 6t, 550 MeV, is compared
with other values obtained by various authors. Finally, we examine the sects of the P» "object" on the
Gell-Mann —Okubo mass formula.

c.m. energy
Pion lab kinetic energy, T
Total width, I'
Elasticity, P,&/1'

Elastic cross section at peakJ

"Shoulder"
1400 MeV
430 MeV
240 MeV

0.65
15 mb

2

"Second"
resonance
1510 MeV
600 MeV
140 MeV

0.75
26 mb

(ii) Peaks in E*production cross sections. Studies of'
Zp —+ZtVe and pp —+ ElV* (Refs. 3 and 4) have indi-
cated enhancement at E*masses near 1400 MeV. The
Srookhaven data4 are particularly striking in that the
1400 peak dominates the inelastic spectrum at low t and
high s. The width quoted is 180&50 MeU, reasonably
consistent with the assignment of Bareyre et al.

(iii) Phase shift ttnalyses. -A number' of recent
phase-shift analyses of wp-scattering data concur about
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I. INTRODUCTION

'HERE now exists a significant body of data to
support the conclusion that "something" is

occurring in the xS, I=-,'scattering state in the
1400-1500 MeV barycentric energy region. This may
be summarized as follows:

(i) Direct n.P scatlenng Bare.yre et a/. , in plotting the
mX, I=

~~elastic ci.oss section, have found a shoulder in
the curve at about 200 MeV (lab K. E.) below the
well-known Ã*(1512). They then obtain a good fit to
the curve in the whole region by the use of two Sreit-
YVigner resonances: one with J=—'„ the other with
J=as, and a small ( 5 mb), slowly increasing back-
ground term. The parameters of the resonance curves
they obtained may be listed as follows.

an enhancement in the I'» amplitude in the presently
discussed energy region. Some of these di6er quite
markedly in the actual behavior of the real part of the
phase shift (hereafter called "the phase shift") but, as
emphasized by Dalitz and Moorhouse' and by the
author, "most of these are consistent with strong (but
nonresonant) scattering in some underlying eigenphase.
The enhancement is strong enough, though, to produce
a bump in cross sections plotted from the phase shifts.
In common to most of these analyses is a large in-
elasticity (g=0.1 to 0.3). The cross sections plotted
from these analyses are also more or less in agreement
with the cross section fits of Bareyre el ttl. ' /see para-
graph (i) above]. The comparison is shown in Fig. 3 of
Ref. 9.

(is) PhotoProduction of m.s. There are two pieces of
evidence from w' photoproduction data. " (1) a large
value of Ar in the cross-section expansion k'do/dQ
=g„cos"0in the vicinity of the second resonance. This
indicates a strong interference in this region between
two states of opposite parity. One of these is presumably
the —,

' (1512-MeV) resonance. The proposed other one
is, of course, our is+ object; (2) sizeable recoil Proton
polarization at 90', again near the second resonance.
This would not occur if a single parity were contributing
to the scattering, and again indicates an interference of
the type just described. The positive-. parity object
could be the 33 resonance, but because of the large
energy differences, the E» object is a much more
plausible candidate.

In view of these data, some attempt at determining a
plausible model for the scattering seems warranted. In
a recent 1V/D calculation, Coulter and Shaw" find that
the usual elastic forces (Xss* exchange, p exchange, tV

exchange, etc.,) can lift the Pii phase shift to perhaps
40' at 600 MeV (pion lab kinetic energy), but are quite

9R. H. Dalitz and R. G. Moorhouse, Phys. Letters 14, 159
(1965).

io H. Goldberg, Phys. Rev. 151, 1186 (1966).
"See, for instance, G. Kallen, Elementary Particle Physics

(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts), pp. 160, 165.

~ P. W. Coulter and G. L. Shaw, Phys. Rev. 141, 1419 (1966).
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insufficient to produce a resonance. However, these
authors find that an experimental inelasticity parameter
inserted into the Frye-Warnock" modification of the
N/D equations will boost the elastic phase shift to 70'
at 500 MeV before it drops oR. It will be the purpose of
this paper to test several possibilities for the inelastic
channel within the framework of a simple unitary
model. The results may be stated as follows: (1) Cou-
pling to a p-wave 1V33* channel can provide for a rise in
the phase shift, but the p-wave nature of the final state
does not allow the rapid drop in the phase shift after
600 MeV which is indicated in several analyses. In
addition, the requirement of a rapid onset of absorption,
as indicated by the data, forces the coupling to be very
high (again because of the p wave), and this in turn
requires the elastic mX attraction to stay very small in
order to 6t the lower-energy phase shifts. Qualitative
(i.e., Born) considerations of the forces involved support
a rather /arge elastic attraction. (2) Coupling to a
continuum distribution of Ão- s-wave channels can
satisfactorily explain most of the interesting aspects of
the data. By "0"we mean nothing more than an I=0,
J"=0+pair of pions. We find that the best fit has the
o. mass distribution centered at 550-MeV m~ c.m.
energy, with an eRective width of 100 MeV. With this
channel it is found that a moderately strong diagonal
~E force is required, combined with relatively weak
coupling. The results are insensitive to the average a-E
force, as long as it is attractive.

The plan of the paper is as follows: Sec. II pre-
sents some qualitative discussion on the pros and cons
for the various inelastic channels considered. Section
III discusses the unitary model used and its modifica-
tions for the applications which are the subject of the
paper. Section IV is a brief detailing of the data chosen
to be fitted. Section V consists of a detailed discussion
of the parameters giving best fits to the selected data,
and of the information they convey about the forces
involved. In Sec. VI we discuss the eigenscattering of
the system in a particle approximation to the mm- pair.
Section VII deals with possible roles of the P» bump
in SUB dynamics, and Sec. VIII presents a summary
and conclusions.

II. HEURISTIC DISCUSSION OF POSSIBLE
INELASTIC CHANNELS

It is by now well established' that in the region of
interest there is present a great deal of 1V*(1238)
production. But it has also become apparent" that the
x+m. eRective-mass distributions at these energies show

"G. Frye and R. Warnock, Phys. Rev. 130, 478 (1963).' R. A. Burnstein, G. R. Charleton, T. B. Day, G. Quareni,
A. Quareni-Vignudelli, G. B.Vodh, and I. Nadelhaft, Phys. Rev.
137, B1044 (1965); C. N. Vittitoe, B. R. Riley, W. J. Fickinger,
V. P. Kenney, J. G. Mowat, and W. D. Shephard, ibid. 135, B232
(1964).

'5 J. Kirz, J. Schwartz, and R. Tripp, Phys. Rev. 130, 2481
(1963).

peaking towards the high-energy end which cannot be
explained by recent modifications" of the Lindenbaum-
Sternheimer isobar model. This anomaly does not occur
in the m+m' mass distributions, which has led to specu-
lations that there is an important contribution from a
strong I=O interaction in the zx final state. If we
assume that this state also has J~=O+, we are led to
consider this as an important inelastic channel. As
stated above, we shall for brevity refer to the I=O,
J=0+ state as a "0-"pair of pions. We now present some
qualitative arguments in favor of the Eo- channel over
the 7t-E* channel as responsible for the P» enhancement.

(1) First, consider isotopics. If we assume that the
Ã* is produced via the ¹xchange process shown in
Fig. 1, standard recoupling procedures" show that the
I=—', channel is favored over the I=—,

' channel only by
a factor of 8/5 in the square of the amplitude. On the
other hand, production of an I=0 pair of pions is ority
possible in the total I=-,' state. The clue now lies in the
phase-shift analyses, where we find, in most cases, that
P» has very little absorption compared to P». This
strongly refutes the E~ production and supports the
0-production hypothesis.

(2) Secondly, there is an angular-momentum argu-
ment. From J~ considerations, the a- pair would be
produced in an S state with respect to the final nucleon,
the E* in a P state with respect to the final pion. This
would inhibit production of the E~ near its threshold
(say around 300-MeU pion lab K.E.). All. the phase-
shift analyses show p, the inelastic parameter for the
P» partial wave, falling fairly rapidly near 300 MeV.
So unless there is rather spectacular coupling, this
behavior would again seem to support the aE-type
inelasticity.

(3) Finally, we present a somewhat intuitive dis-
cussion of energetics. Suppose that we imagine that the
target nucleon consists of a nucleon core surrounded by
a pion cloud. The cloud pion is confined to a volume
which dictates a mean pion 3-momentum of about 1
(in units of m c) because of the uncertainty principle.
Thus we set Ap 1. Assume also (without any deep
justification) that we may neglect mass-shell correc-
tions, and give the cloud pion an average total energy
of (1'+1')'I'=v2 during the collision time. This we call
hE. Then for a coUision with an incoming pion of
momentum p and energy E= (p'+1)'~', the square of

FiG. 1. Diagram describing
proposed dominant N'* production
process.

N

"M. G. Olsson and G. B. Yodh, Phys. Rev. 145, 1309 (1966).
17 P. A. Carruthers and J. P. Krisch, Ann. Phys. (N. Y.) 33,

1 (1965).
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or
m'= 13.8&5.7 p',

m= 520+10'1 MeV.

At this point, the argument runs as follows: If the xx
interaction in the I=O state is strong in this energy
region, = then we expect that this cloud. interaction will

greatly enhance I=-,'x37 scattering in the region just
below the 1512 resonance. ' '

The threshold for prodlcirtg a pair of pions with an
effective mass of 520 MeV is at an energy of 1440 MeV
in the mE c.m. system. This is also in the region of
interest. Thus, if the ~m interaction is significant in the
0 state near 500 MeV in the zw c.m. system we not only
would get an enhancement of P~~ scattering, but we
would also produce these 0- pairs in an S state with
respect to the nucleon, leading to a Ball-Frazer" type
of enhancement. Hence there is some expectation of
success with this mechanism. In fact, we shall find that
producing 0-'s having a mean mass of 550 MeV and a
spread of 100 MeV will do the trick.

No such support can be given to E*(1238) produc-
tion. At 450 MeV in the lab we are 20 MeV beyond
threshold for producing Ã* at its peak. Since the
production can occur only in the p state relative to the
final pion, by the time we have escaped the region of
depression due to the angular-momentum barrier, we
are quite far from the E* threshold. region. This can be
overcome by the presence of extremely high coupling
which is inexplicable by standard Feynman-graph
intuition. We shall in fact find some such fit, but it is
quite unsatisfactory on several additi'onal counts. We
now turn to exarriine the model with which we test
these hypotheses.

IQ. THE UNITARY DYNAMICAL MODEL

A. General Considerations

Of necessity in any inelastic calculation are (1)
unitary coupling of channels, (2) correct threshold

"It is possibly significant that if one raises the kinetic energy
of the incoming pion to 600 MeV, then the previous equation
becomes @&=580~125 MeV. In this region one might begin to feel
the enhancement due to strong I=1, J=1 (tail of the p meson)
m.m scattering in the cloud, although the production threshold in
the lab is at 870 MeV. This may be some justification for the
virtual production mechanism used by some authors to explain
the D&3 resonance (Refs. 19, 23).

's P. Carruthers, Ann. Phys. (N. Y.) 14, 229 (1961);L. F. Cook,
Jr., and B.W. Lee, Phys. Rev. 127, 297 (1962); J. S. Ball, W. R.
Frazer, and M. Nauenberg, iMd. 128, 478 (1962).

~ J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1962).

the total energy in the mw c.m. is given by

~'= (E+ZE)'—(p+ ap)s

=2+2EAE —2p Ay.

The average value of the last term is zero, and its rms
derivation from 0 is 2p hp. For an incoming pion with
kinetic energy 450 MeV, (c.m. : 1410 MeV) E=0.59
GeV=4.2 p, p =4.1 p. Then the above equation becomes

dependences, and other kinematic eGects, and (3)
reasonable physical interpretation of parameters in-

volved. The coupled X/D equations have been used in
the past to fulfill these criteria. However, two channel
problems have usually been treated in pole approxi-
mations to the unphysical singularities. What is worse,
there has been no kinematically realistic attempt within
this framework at including the width of the particle
produced "

We shall settle here for a simpler model which
incorporates all the above desirable features, and
allows for simple inclusion of "woolly cusps. ""This is
the coupled-channel boundary-condition model (BCM),
which has been used previously" for an exploration of
the D~3 resonance.

More elaborate discussion of the theory underlying
the model and its applicability to strong-interaction
dynamics has been developed elsewhere. '~" SufBce it
to say that the model is based on the following assump-
tions.

(1) Relativistic, free, configuration-space wave func-
tions outside some interaction radius are a plausible
concept. The value (of the radius) should make a valid
connection with the range of the expected forces.
Relativity is introduced through the kinematical
definition of the momentum.

(2) In the energy region where the model is applied,
the diagonal forces in any one channel would not alone
create a resonant situation. The way in which this
statement is expressed in the model is through the
constancy of the Wigner-Eisenbud E matrix' over the
energy region of interest. Equivalently, it means the
constancy of all logarithmic derivatives of the wave
functions at the radius of interest. We shall deal with
the inverse of the Jt'. matrix, and call it the f matrix.

The plan of the rest of Sec. III is as follows: First we

present derivations of the eBective logarithmic deriva-
tive of the elastic-channel wave function at the radius
ro. This will be done for the 2-channel and many-
channel "woolly cusp" cases. Then we give the relation
between this quantity (to be denoted by f.«) and the
elastic S-matrix element qe"~.

B. 2-Channel Case

Suppose we have 2-channel scattering, described by
free radial wave functions Nr/r and Ns/r outside an

"See, however, J. S. Ball and P. Thurnauer t Phys. Rev. 136
B529 (1964)], for a discussion of the analyticity properties of a
simplified N/D production model including a resonant-mass spec-
trum for the produced particle.

"M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1961).
at H. Goldberg and E. L. Lomon, Phys. Rev. 134, B659 (1964).

The prescription presented in this reference for including the
width of the produced particle is incomplete. A better prescrip-
tion is presented in the present paper."H. Feshbach and E. L. Lomon, Ann. Phys. (N. Y.) 29, 19
(1964).

s~ H. Goldberg and E. L. Lomon, Phys. Rev. 131, 1290 (1963).
s' E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
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Fp

-dui/dr- fi f. ui

du2/«r r fa -f2 -u-2-r=r0

interaction radius rp. The boundary-condition-model
equations are

(ii) Above threshold"

«f.t2= fi f—.'fs/((ksr0)'+ f2'),

Imf. ff——f,'(ksr0)/((ksr0)'+ f2').

(10)

with the condition that r0 correspond meaningfully with
the distance at which the short-range forces become
important; also, corresponding to (2) above, all the f's
are constant. The f matrix is Hermitian and symmetric
as a consequence of unitarity and time-reversal
invariance. '6

If channel 2 is a channel which opens at some thresh-
old, then N2 has the form

u2(k2r) =A2rk(, (k2r),

where A2 does not depend on r and is proportional to
the S-matrix element S~2, k2 is the c.m. momentum in
channel 2; l2 is the orbital angular momentum quantum
number in channel 2; k~(s) is the outgoing spherical
Hankel function of order /. '~

From the properties of the Hankel function, we can
write

r0(du2/«). =.,=02(k2r0) u2(r0)

where 82 is some polynomial in ksr0 and (ksr0) ' Sub-.
stituting (3) into (1), we obtain

f
~p 1

dr i,=„g(k2r )2—0f,
ui(r0) =f.nut(r—s) (4).

At the end of the section we give the derivation of g and
5 from f.tr

Consider first the interesting case of S-wave produc-
tion, i.e., l2 ——0. Then from (2) and (3),

02= ik2rp.

In a region not too far below threshold we shall make
the analytic continuation

kg —+ ik2. (6)

Both above and below threshold we define k2 through

k 2 —(W2 (~+m)2)(W2 (~ m)2)/4W2 (7)

where W= total energy in the c.m. system; m=mass of
particle produced, and 3f=mass of nucleon. Then from
(4), (5), and (6) we have that

(i) Below threshold (W(3II+m)

Ref.ft fl f /((k2(r0+ f2),

Imfrf f —0

(g)

(9)

sr L. I. Schiff, Qgantscm Mechanics (Mcoraw-Hill Book Com-
pany, Inc. , New York, 1955), p. 79.

It is a consequence of the Wigner form of causality
that in the elastic-scattering region df, rr/dW&0. ' This
is seen to be satisfied by the expression (11) above. It
is also known that a Breit-Wigner resonance will result
from f.tr decreasing lircearly through 0 at the resonance
energy. "Differentiating (8), we obtain, for ks near zero

df.n f 2
t

2~my'"
= ——r0(M+m —W) '"~

~

. (12)
f2' &~+ mt

This is a much faster rate than that required for a
resonance, and will cause a steep rise in the phase shift
just below threshold. Of course, this extreme behavior
does not continue past threshold where the onset of
inelasticity depletes the elastic channel of its fast rise.
From (10),itis easy to see that d(Ref, ff)/dW const) 0
after threshold, thus violating Wigner s condition. This
does not matter since we are in an inelastic region. But
the upshot of this discussion is that we may expect a
large decrease in f,tr below threshold, leading to a
considerable rise in the elastic phase shift. If we are (i)
quite near threshold, and (ii) the production is S wave,
and (iii) f2 is 22of too large, then we can expect the Ball-
Frazer effect with only moderate couplir2g f,' It is to b.e
noted that we are slightly displaced from the Ball-
Frazer region in that the major rise in the phase shift
in the present analysis occurs just bet'om threshold
rather than just after threshold. In practice, this is a
negligible difference because the threshold is usually
"woolly. "" By this we shall mean that the three-
particle aspect of the final state makes itself felt in some
way.

"In the Appendix of a previous paper (Ref. 25) the negative-
ness of Im f,« is seen to be a consequence of unitarity.

+ J. M. Blatt and V. F. Weisskopf, Theoretical ENclear Physics
(John Wiley gr Sons, Inc., New York, 1952), p. 400.

C. Generalization to "Woolly Cusys"

We go back to the basic equation (1),
'

and look for the
eGects of producing 3-particle states. The position is
taken, that if in some manner two of the particles are
strongly correlated over the energy region in question,
we may consider the three-particle channel as consisting
of many two-particle channels with the correlated pair
in question having a continuous distribution of masses.
In this we shall follow quite closely the assumptions
made by Nauenberg and Pais."

Suppose for a moment that the variable mass of the
pair produced forms a closely spaced discrete set. Then
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we rewrite Eq. (1) in the form

du(r)-
fp fju(rp)+P f, (m)v (m, rp),

—r=rp i

Fp

dv-(m, r) = f,(m)u(ro)+P f2(m, m')V(m', rp). (13)
—r=rp tn'

Note that u(r) does not depend on the variable m, and
that the f's are still energy-independent, although
strongly m-dependent.

Now set
f, (m)= f,y( m), (14)

fP(m)u(rp) f &(2)mC(rp)
vmrp = +

8(m) 8(m)
(17)

where f, is a constant, and P(m) is a real, normalized
weighting function related to the mass distribution of
the pair of particles correlated in the final state. The
factorization (14) is done without loss in generality.

However, we now make the assumption that f2(m, m')

may be factored as

f2(m, m') = f2'(m)y(m') . (15)

This is a statement of the independence of mass distri-
butions in the scattering

channel 2 (m) ~ channel 2 (m') .

As before, the outgoing nature of the v channels
allows us to write

rp[dv(m, r)/dr) „„,= 8(m) v (m, rp), (16)

suppressing the energy and l dependence of 0. Sub-
stituting (14), (15), and (16) into (13), we solve for
v(m, r);

So far P(m) is arbitrary, and for any specific choice
the integral in (21) may be done numerically. There is,
however, one choice of the mass distribution which
makes it possible to evaluate the integral in (21)
analytically to a good approximation; that is, if $2(m)
is of the Breit-Wigner form

qP(m) =
(m —m*)2+212

c
eff 1

8(m*——,ir, W) —f,
' (22)

The effect of extending the domain of integration over
m from its actual lower limit to —~ is small. The
required criterion is that ~F be a few times less than
m*—2ti or m* —(M+ti), depending on whether we are
correlating the xw pair, or the lVm pair. In the cases
considered in this paper, the error entailed is estimated
as 10—

15%%uo.

Equation (22) is seen to adhere to the usual pre-
scription of giving the mass a negative imaginary part.
It can also be shown that this approximation retains
unitarity, in that Imf, «remains (0.

We now explore the function 0 for the two cases under
consideration.

Case I:S Wave P-roductio22 of a Pair of Pioivs

In this case, we have, from the definition (3) of 8, tha, t

8(m, W) =iE(m, W), (23)

This choice of p implies an enhancement of eRective
masses in the region of m=m*, with a spread Am F.
Mak. ing this choice and extending the lower limit of
integration in Eq. (21) to —~, we find, by contour
integration, that

with C(ro) =P @(m)v(m, ro). It is assumed that we are where
not at a point where 8=0. Multiplying (17) by g(m)
and summing, we obtain an equation for C(rp);

-[W'—(M+m)') [W'—(M—m)')-' "
(24)K(m, W) =

4W'

whence

qP (m)i-
[(f'u(r')+f'C("'))) (18) 8(m* 2iI', W, )—is obtained by making the indicated

8m i
substitution for m.

C(rp) = f,u
qP (m) )

——' f—
8(m) i

where
rp(du/dr), =„=f,ffu(r p), (20)

eff 1 c

qP (m)dm- —'
f2 (21)—

( )

After substitution into Eq. (13) and conversion to an
integration, we emerge with

In this case

8(m, W) =i(x 1/(x+i)), —
x=E(m, W)r p. (25)

—[W2 (m+u)2)[W2 (m u)2)-I/2
Z(m, W) = . (26)

Case Z: P Wave Producti-on, of X* Pion Final State

Here, from the definition of 8, [Eq. (3)) and the
definition of the 3= 1 Hankel function

The lower limit on the integration is 2p, if we correlate
the two pions, or M+ti if we correlate the nucleon and Again, 8(m~ ——,'iI', W) is obtained by making the
one of the pions. indicated substitution for ni.
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N(kr) =y*(kr)+S(k)y(kr), (27)

where the channel subscripts on S=qe"' and the orbital-
angular momentum subscript t on ~t will be henceforth
understood. The asterisk denotes complex conjugation.

is the outgoing irregular solution of the free-
reduced radial Schrodinger equation with c.m. momen-
tum k. We normalize P so that

y(s) =sk &'&(s)

where ki"'(s) is the outgoing spherical Hankel function
of order l'~

From the general relationship $Eq. (20) or (4)$

rp(dN/dr), =„,=f,«(W)N(krp)

and Eq. (27) we obtain the relation between S and f,«

D. Derivation of S-Matrix from an Effective
Logarithmic Derivative

Here we repeat for convenience the derivation given
in Ref. 23. The reduced radial wave function in the
elastic channel is given by

parameter describing the breadth of the distribution.
(These parameters are taken as "known" in the case of
E*production. ) We now proceed to show the best fits
to a subset of the data.

IV. DATA TO BE FITTED

Because there are many pieces of data, we must be
somewhat discriminatory in making a choice in the
sample to be fitted. The choice has been the preferred
solution in the phase-shift analysis of Auvil et al.7 We
have done this for essentially two reasons: (1) This
solution gives a reasonably good fit to all existing data
as well as to the Breit-Wigner curve proposed by
Bareyre et al. ' (see Sec. I) to account for the shoulder
in the I=—,

' elastic cross section. (2) It does not employ
an energy dependent' ' analysis in the highly absorptive
region. The phase shift may change quite rapidly in
such a region, ' "' and it is difficult to estimate how
well the energy dependences used by various authors
can reproduce this variation. The g and 6 from this
analysis may be seen on all the figures where the theo-
retical curves are plotted.

(29)

Thus, below threshold where f.« is real Le.g., Eq.
(9)), ~S~ =1, as required by unitarity. Also, given

f,« it is a trivial matter to obtain the elastic phase
shift and the inelastic parameter g from Eq. (29).

E. Resume

We have set up the equations which will yield a
unitary S matrix for the multichannel problem, where
the inelastic channel has a Breit-Wigner mass distri-
bution for one pair of particles. The final states to be
considered are (1) Epp +~ (2) 1V+p, where o'' is the
state of two pions with I=O, J~=O+. The channel
quantum numbers otherwise are, of course, J~=2+,
I—2.

In the case of an X33*inelastic channel, the model has
4 unknown parameters: rp, fi, f2, and f,'. We expect rp

to correlate well with the range of forces involved in the
problem (~i to piN '). Here fi will indicate the strength
of the diagonal xX force in the P~~ channel, which is
expected to be quite attractive in the 300—700 MeV
region'P; fp will give us the diagonal 7rX* force in this
channel, and fP is a measure of the coupling strength
between channels. The connection between the f's and
the forces will be made later.

In the case of 0- production, there are, in addition to
the parameters just discussed, a mass parameter giving
the center of the 0- mass distribution, and a width

V. FITS TO THE DATA

Before discussing the interesting fits to the data,
along with the model parameters associated with them,
we make the following comment about the range
parameter ro.

All fits required a radius ro in the near vicinity of
0.30@ . This is in good agreement with our pre-existing

prejudices about the range of the strongest forces
contributing. For instance, it is well known"" that the
/33* exchange force is very strong in the P&& partial
wave. Using an argument given by Singh, "the range of

this force in this energy region is found to be about
0.13' '. The range of p exchange is about 0.19p, '.
However, these are balanced by the probable longer-

range nature of the production process (1ti ' in the case
of o. production, if the process goes by one pion ex-

change) and of the final-state interaction. In any case,
it is a perfectly reasonable range.

We now turn to a detailed discussion of the best fits
to the data.

A. S-Wave o Production

With the use of Eqs. (22), (23), (24), and (29), we

have obtained a good fit to the data discussed in Sec.
IV. The Hankel function used in Eq. (29) was of course
hi&'&, to correspond to the p wave in the elastic channel.

In Figs. 2(a), 2(b) are plotted the 8 and q, respec-

tively given by the following parameters (given also

30 G. F. Chew, Phys. Rev. Letters 9, 233 (1962). The static
model presented in this reference gives an estimate of mN force
due to N* exchange.

»J. Hamilton, P. Menotti, G. C. Oades, .and. L. L. J. Vicl,
Phys. Rev. 128, 1881 (1962), Table III.

"V. Singh, Phys. Rev. 129, 1889 (1963), Appendix.
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(b)

Fro. 2(a). Solid
line: elastic phase
shift corresponding
to 0 production pro-
cess with"„parameters
given in .,"Table I;
experimental phase
sh)fts are those from
Ref. 7. Dashed line:
elastic phase shift
resulting from de-
coupling a. channel,
with other param-
eters as for solid line.
(b) Absorption pa-
rameter correspond-
ing to solid line
in (a).
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400 500
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in Table I):
rp= 0.30p,

—',
fs= 0.50,

m*= 550 MeV,

fr=0.28,

f,'=0.74, '

I'= 100 MeV.

~20-
E
Ca

lh

~ lO

0
300 400 500

T~ (MeV)

I

600

FIG. 3. Heavy
curves: total and
elastic cross. sections
from 5 and g of Fig.
2 (0 production).
Light curves: total
and elastic cross sec-
tions from 8 and q
of Fig. 6 (X*produc-
tion). Dashed curve:
result of retaining
coupling leading to
Fig. 2, but setting
the elastic diagonal
force =0.

The following points may be of interest:
(a) The average mass of the o mass (550 MeV) is

quite close to that expected from the heuristic argu-
ments presented in Sec. II.The width of the distribution
is somewhat smaller.

(b) The purely elastic scattering produced by letting

f,' —& 0 is shown as the dashed curve in Fig. 2(a). The
value of the phase shift attained at 600 MeV, 20', is not
as large as that attained by Coulter and Shaw" without
inelasticity, but is sizeable. Notice that the para-
metrization employed here could never reproduce the
well-known crossover in the Err phase shift at 175 MeV.
This point is very instructive When an at.tempt was made

(in the present model) to choose parameters which

would yield a negative purely elastic phase shift, it was

impossible to bring it positive in a reasonable way through

the inelastic mechanism. This supports the idea that
the forces are basically attractive, with some rapidly
diminishing repulsive term in the amplitude. This term
has been attributed to the direct nucleon pole inserted
without the bootstrap conditions. ""

(c) In a previous paper", we have shown that the
s-wave scattering length is related to the logarithmic
derivative f, and re (for elastic scattering) through

ap ——rp(1 —f)/f. (30)

Tmx.z I. Parameters for the various curves.

m*
Fig. No. Inelastic channel fr fm f,' (MeV)

2 (solid) Eo 0.28 0.50 0.74 550
2 (dashed) Decoupled 0.28 ~ ~ ~ 0
3 (heavy) Same as Fig. 2 (solid)
3 (light) Same as Fig. 5 or 6 (solid)
3 (dashed) ¹ 2.00 0.50 0.74 550
4 (Solid) Xo 0.31 0.50 0.78 550
4 (dashed) ¹ 0.28 0.50 0.74 550
5 (solid) N~m 1.40 0 1.80 1238
5 (dashed) Decoupled 1.40 0
6 $*7f- 3.10 1.00 7.00 1238
7(a) Same as Fig. 4 (dashed)
7(b) Same as Fig. 11 (either curve)
9(a) Same as Fig. 4 (dashed)
9(b) (curve A) Same as Fig. 11 (curve A)
9(b) (curve B) Same as Fig. 11 (curve B)

11 (curve A) Ecr 0.28 0.50 0.54 550
(curve B) $0 0.28 0.50 0.53 550

(MeV)

100

100
100
0

100
~ ~ ~

100

we have plotted as the lowest curve in Fig. 3 the total
cross section obtained by using the parameters of Fig.
2, but letting fr ——2. This value of ft Las will be seen
from Eq. (32)j produces a zero diagonal scattering
length, and due to the p-wave nature of the elastic
channel, virtually zero diagonal elastic forces. Thus the
dashed curve plotted in Fig. 3 shows the eGect of the
coupling alone. The cross section shown is almost 100'Po
inelastic, and is about 20% of the inelastic scattering
obtained with ft ——0.28. Thus it is largely the strong
elastic force which is pulling even the inelasticity through
Nnitarity.

(e) The elastic and total cross sections for the best
fit parameters have been plotted in Fig. 3 (solid curves).
Note that the bump in the cross section is quite a bit
below the position of maximum phase shift, which is a
well-known property of very broad resonances. The
general natures of the curves, such as position and

Thus we may estimate the strength of the 0.N force in
some average way. Taking f= fi=0 50 .and ro ——0.30,
Eq. (30) becomes

ap=0.30' '. (31)

For comparison, this is a little stronger than the S~~+N
scattering length. However, the resalts we have ob-
tained are rather insensitive to fs over a region around
fr=0.50. In particular, a value of fi=0.70 gave a
reasonable fit with minor adjustments in f, . This
corresponds to a o.X scattering length of 0.13 ti ' Prom
Eq. (30)g. Thus it is clear that one does not require a
strong 0.N force, or a bound oN state.

(d) Because of the strength of the elastic force, the
coupling (parametrized by f,') is small. To show this,
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Fro. 4. (a) Solid
line: result of slight
changes in param-
eters of Fig. 2 Lsee
Part (f) of Sec. Vj;
(b) broken line: re-
sult of allowing the o
width go to 0, with
other parameters as
in Fig. 2.
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Fio. 6. (a). Solid
line: elastic phase
shift corresponding
to E* production (deg)

process with param-
eters given in text
(Sec. V) and in so
Table I; experimen-
tal phase shifts are
those from Ref. 7.
Dashed line: elastic
phase shift resulting
from decoupling E*
channel, with other
parameters as for
solid line. (b) Ab-
sorption parameter
corresponding to
solid line in (a).

decoupled

„& .t)

(b)

width, are in good agreement with the results of Bareyre
et at'. ,' which were discussed in the Introduction.

(f) The solid curve in Fig. 4 shows the phase-shift
curve obtained by a slight change in the parameters
describing Fig. 2. The changes were

in fi. 0.28 (Fig. 2) —+ 0.31 (Fig. 4),
in f,' 0.74 .(Fig. 2) —0.78 (Fig. 4).

All other parameters remained the same. The phase
shift now goes rapidly through 90' and on past 180'.
This behavior is compatible with the Bareyre' analysis.
Of interest is the instability of qualitative behavior of
the phase shift, apparent in the contrast between Figs.
2(a) and 4. We shall explore this observation in detail
in Sec. VI. The absorption parameter g has not been
plotted because it looks essentially the same as the one
plotted in Fig. 2(b).

(g) The dashed curve in Fig. 4 is the result of keeping
all parameters the same as in Fig. 2(a), except for
letting the 0. mass-distribution width go to zero. The
cusp at threshold is now clearly visible. In Fig. 5(a) is
plotted the absorption parameter corresponding to this
dashed curve.

I.O

0
500 400 500

T (MeV),

I

600 700

B. P-Wave N33* Production

It turned out to be impossible to obtain a fit in which
8 would turn down soon after reaching 90'. This is due
to the slowness of variation of the f.ff in the P-wave
production case Lsee Eqs. (22) and (25)$. Two reason-
able 6ts to the lower energy phases are given in Figs. 6
and 7. These have the following parameters:

fo
fr
fm

f s

m~

r

Fig. 6

0.30' '
1.40
0.0
1.80

1238 MeV
100 MeV

Flg. 7

0.30' 1

3.10
1.00
7.00

1238 MeV
100 MeV

IOO-

An examination of the elastic force (given by fi) and
the coupling f s gives rise to further dissatisfaction with
these fits. In both cases, the values of fi and fs imply
mech less attraction in the mN channel than in the xN*
channel. This we can see as follows: From the properties

.8-

4-

80-

(a) 860-
(deg)

40-

Fin. 5(a). Absorp-
tion parameter q cor-
responding to Fig.
4(b). (b) Absorption
parameter g corre-
sponding to Fig. 11
(A and B).

~2

0
I.O

.8-

.6-
(b) ~

FzG. 7. See caption
for Fig. 6. The dif-
ferent set of param-
eters used is given
in Sec. V and in
Table I.

(b)

20 )

I.O

4-

~ 2

500
I

400 500
T~ (MeV)

700

~2

0
300

I

400
I

500
T (MeV)

I
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FIG. 8. Diagrams
used to calculate
ratio of xS* to m.E
force.

of the little Bessel functions, we And that the p-wave
scattering length is given in terms of the value ot f (the
logarithmic derivative) at threshold by

~1 ro(2 —f)/(1+f) (32)

)Compare with Eq. (30) and Eq. (4.27) of let. 20.j
Thus, the parameters of Fig. 6 imply a diagonal mS*
scattering length of 0.67 ro' compared to 0.02 ro' for the
~S scattering length. These scattering lengths are to be
interpreted as a gauge of the diagonal forces, much the
same as with usual Born estimates. The actual xS
elastic scattering obtained by letting f,'=0 with

fi 1.40 (a——s in Fig. 6) is shown by the dashed curve in
Fig. 6(a) LSee dashed line, Fig. 2(a)j. The parameters
of Fig. 7 yield a strongly repulsive m.S force, compared
to a moderately attractive ~S* force. Although we do
not really know any of these forces, we may attempt to
calculate the relative contributions from the E* ex-
change diagrams (Fig. 8). We pick these diagrams since
they give high attraction in the P» state of both the
mS and ~S* channels. In a static model by the use of
the standard recoupling techniques" one finds that the
ratio of mS* to mS force in the P~~ state due to this
diagram is

where the y's are the appropriate reduced widths. If we
suppose that these are of the same order of magnitude,
then one expects a strong mS* force, but not the great
disparity from the xS force which we need in order
to fit.

Thus, we recapitulate our arguments against the mS*
inelastic channel. (1) The p-wave nature of the final
state does riot allow the phase shift to drop quickly
after reaching a maximum. This behavior contradicts
several of the phase-shift analyses. ' ~ The cross sections,
plotted as the dashed lines in Fig. 3, are reasonable fits
to the Bareyre data. This illustrates the value of the
phase-shift analyses in deciding on a possible mechanism
for the inelasticity. (2) The strong interchannel coupling
needed to create the necessary inelasticity forces us to
retain a very weak elastic force, in order to keep down
the lower energy phases. This is in contradiction to pole
estimates of these forces.

Finally, we might say that for a correct treatment of
this "resonance, "one should probably couple the three
channels. Coupling in the xS* channel would have the
desirable effect of keeping up the high-energy end of the
elastic phase shift in Fig. 2(a).

C. The a Mass

A good fit to the data was found using a xm mass
distribution peaked at 550 MeV. This is in direct

agreement with the requirements of some authors, ""
and interpolates the results of others who support
enhancements around 400 MeV"" and around 700
MeV. ""Bryan and Scott,"in a consideration of SE
scattering, have found that, in addition to other one-
boson exchange forces, the iritroduction of a potential
due to a 0++ meson of mass 560 MeV provides a good
fit to standard phenomenological potentials and to the
phase shifts. Ball, Scotti, and Wong, '4 in a dispersion
approach to SS scattering, find that they require a
mass of 540 MeV for this intermediate range attraction.
We thus are in good agreement with these authors.

VI. EIGENSCATTERING

In this section we shall explore the eigenscattering
pertaining to our model. This is of twofold interest:
(1) The behavior ot the eigenphase shifts and mixing
parameter is perhaps a truer indication of the dynamics
of the problem, and (2) some of the strange variation
in the recent phase-shift analyses may perhaps be
explained by slight variations in these eigenparameters.
We have already seen some evidence of these variations
in Figs. 2 and 4. The section will consist of several parts,
not all of which pertain to the central dynamical
problem at hand (namely, the P» phenomenon), but
which are of dynamical interest. First, we derive the
equations giving the eigenscattering parameters from
the f matrix. We shall treat only the two-channel 0.

production case, i.e., take our a- pairs having a delta-
function mass distribution. Secondly, we shall display
some of the eigenphases of interest to the P~~ problem.
Thirdly, we shall show that a type of large variation in
the elastic phase shift )see in Fig. 4(a) as compared to
Fig. 2(a)j caused by a small change in the f matrix can
be traced to a certain subtle but physically inconse-
quential behavior of the eigenparameters.

A. Eigenstates of the 8 Matrix Derived from
the f Matrix

Again, we treat specifically the case of s-wave
production of 0-'s with well-defined mass. We consider
Eq. (1), with

u& ——xA, Lj&(x)—(tanb)e, (x)),
u2= 3'A2L jo(3') —(tan5)eo(X)],

where x=k&r; y=k2r; j&, jo are the spherical Bessel
functions for p and s waves, respectively; ei, No are the
spherical Neumann functions for p and s waves,
respectively; and 6 is an eigenphase shift.

"R.A. Bryan and B. L. Scott, Phys. Rev. 135, B440 (1964).
34 J. S. Ball, A. Scotti, and D. Y. Kong, Phys. Rev. 142, 1000

(1966)."L. M. Brown and P. Singer, Phys. Rev. 133, B812 (1964)."N. P. Samios et al. , Phys. Rev. Letters 9, 139 (1962).
3' M. M. Islam and R. Pinon, Phys. Rev. Letters 12, 310 (1964).

L. Durand and V. T. Chiu, Phys. Rev. Letters 14, 329 (1965).
"M. Feldman et at. , Phys. Rev. Letters 14, 869 (1965).
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The wave functions written above embody the
definition of eigenscattering. The normalization co-
efficients will be discussed presently. It is easily seen
that the result of inserting (34) into (1) and demanding
a nonzero solution for A ~, A2 is a determinantal equation
for tanb of the form

I IO-

, IOO-

80-

50

45

O

a(t anb)' ib(tanb)+c=0, (35)

where u, b, and c are functions of x, y, j&, jo, e&, eo, the
derivatives of the last four, and of the elements of the
f matrix. It is then apparent that there are two solu-
tions, corresponding to the two eigenphases. Let us call
these b, and bb From. Eqs. (34), and the basic Eq. (1),
we obtain for the ratio

70-

I IO-

IOO-

(b) eo

O
80-

70—

60

40
80

45 cs

As I
xjI'(x)—fIjI(x)]—(tanb)I xnr'(x) —frnI(x) g

f I jo(y) —(t b) (y))
(36)

'ling= COSe li/I+gS111 lpegqS

lPb= cosebbr+sinebll/s (3&)

If the states are properly orthonormal, and the Smatrix
is unitary, we should have the relation4'

tan& tan&~ ———1. (38)

What is then the proper normalization for our states
N~ and N2 above' From a consideration of the Lipp-
mann-Schwinger equation

lp 1+)—eis ~ r+ Jr'�(+)
E Hs+ie—

reduced to partial waves, one can show that the asyrnp-
totic form of the outgoing partial wave in a channel c' is

u, f'"b) const(independent of energy)

X Scc'X
(~s, I)

I /2

for a reaction initiated in channel c. Here e,' is the
relative velocity in channel c' and S„' is an element of
the unitary S-matrix. 4' For eigenscattering, it is then

40 H. Feshbach and E. L. Lomon, Phys, Rev. 102, 891 (1956).
4' J. M. Blatt and L. C. Iliedenharn, Phys. Rev. S6, 399 (1952)"M. L. Goldberger and K. M. Watson, Colttstorb Theory (John

Wiley fk Sons, Inc. , New York, 1964), p. 377.
~ See also Ref. 29, p. 522, for an intuitive argument supporting

this normalization.

where for typographical ease we have taken the liberty of
denoting by j(oo) the Product of the usuat sPherica/ Bessel
function with x, etc.

From this equation we should like to derive the
mixing parameters e, and e~ describing the eigenstates
of the S matrix which are scattered with eigenphases

and bb. These are defined by

560
l I I I I I 40600 640 680

T~ (Me V)

FIo. 9(a). Dominant eigenphase and corresponding mixing
angle for parameters of Fig. 4(b). (b) Curve A: S Sb for—param-
eters of Fig. 11, curve A. Curve 8: 8 —b't, for parameters of Fig.
11, curve B. Curve C: mixing angle for both cases.

easy to see that the ratio As/AI is, according to our
definitions of the wave functions, given by

As/A I= (eI/ss)'/' tane g.b (39)

Thus, armed with our expressions (35), (36), and
(39), we calculate the eigenphases corresponding to
Fig. 4(b). We have plotted one of these, b„ in Fig. 9(a),
along with the mixing angle e which goes with the
phase. The other eigenphase 8~ which is not plotted
varies from 0' to —1' in the energy interval 565 to /00
MeV. It is obvious that while 8, is near 90 in the inter-
val considered, it is quite slowly varying as it comes
down through 90' (in accordance with Wigner's
causality condition), and cannot pull a narrow reso-
nance. Near 600 MeV, the mixing angle goes up through
45', making the scattering become slightly more in-
elastic than elastic, as far as the xX channel is con-
cerned. It may be added that in all calculations the
relation (38) was satisfied, thus verifying our normaliza-
tion of the wave functions.

We now give the reason for the behavior of the elastic
phase shift in Fig. 4(b), namely, the rise toward 180':
The mixing angle goes through 45' before the difference
(iI,—bb) goes down through 90'. This has been demon-
strated in a recent publication' but we repeat the
argument here for completeness. The unitary syrn-
metric S matrix may be diagonalized by the real
orthogonal mixing matrix as follows:

(SII SIs f cose sine)

(SIC Sss k —s111e cose/

t
e g 0 ) /cose —slnel)

xl . II I. (40)
l 0 e' b )Esinbe cose/
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FIG. 10. Argand
plot showing rela-
tion between eigen-
phasors and qe'@ Lace

o Eq. (41) of text).

Letting S~~=ge"', we obtain the parametrization

rte a= (cos e)epic~+(sjnse)es@&=—s +s&. (41)

This leads to the graphical representation of Fig. 10.
Suppose we now start with some value of b,&90', so
that s lies in the third quadrant of the Argand plot.
Suppose also that 8~ is small so that s~ lies close to the
ray args=0. Now let 8 come down through 90', while

b~ does something nondescript about 0. The resultant
S~~ will lie in the third or fourth quadrant, i.e., the phase
shift 8 will be greater than 90'. Now let e go up through
45' before the phases 28„28p are 180' apart. Then as the
phasors z, and s~ get to anti-alignment, s~ will be longer
than s„and the resultant phase 28 will Qy over to 26~

through the third and fourth quadrants. That is, the
phase shift 8 will go from near 90' to 180' and perhaps
beyond. On the other hand, if e goes up through 45'
after b, 8p goe—s through 90', then the resultant phase
25 will swing over to 28~, with 8 going down through 90 .

Thus, we can see that the behavior of 8 in Fig. 4 is due
to a combined eigenphase-shift-mixing angle behavior
of the first type described above. This is explicitly
shown in the curves of Fig. 9(a). To make the issue
more dramatic, we have decreased the coupling f s

until there is a transition of behavior (Fig. 11) in b, the
elastic phase shift, of the type described above. In this
case, 5 still is near 90' and bb near O'. We have plotted
in Fig. 9(b) the difference 8, bb for the v—alues f,'=0.54
and 0.53, which are on either side of the transition
point. On the same graph is plotted e. Careful scrutiny
shows that e goes through 45' o'n diBerent sides of the

VII. THE PgI STATE AND THE OCTET
MASS FORMULA

It is valid to ask: Can the Gell-Mann —Okubo baryon
octet mass formula support the existence of a "reso-
nance" with the same quantum numbers as the nucleon P

The mass formula predicts the nucleon mass to be given
by

Mrr = ,'Mg+ ,'Mz—Ma.-— (42)

If the average masses~ of the isotopic multiplets are

inserted into Eq. (42), we obtain

M~= 952.2 MeV. (43)

The physical nucleon Inass is 13.3 MeV lower. We now
investigate the parameters needed to cause this de-
pression through mixing with the P~~ object.

Let us denote by ~N), the physical nucleon state;
~Np), the unmixed nucleon state; ~1P), the physical
1'» object; ~Np'), the unmixed P» object.
f':,We shall also let the letters themselves denote
masses. If we set

transition 5 —b~ ——90'. The near coincidence of the
point where 8,—b~ ——90' and ~=45' leads to a value of
rt which is virtually zero. This is seen in Fig. 5 (b), where
p for both these cases is plotted. There is only one
curve, since the values of g for the two cases are prac-
tically indistinguishable. (See Table I for a listing of the
parameters for these curves. )

It is obviously out of the question to Qnd eigenphases
for the coupling to a continuum distribution of 0's.
However, if out of the continuum of eigenchannels only
a small subset has reasonable activity, then the results
of the above analysis should not change markedly.
Support for the last statement is provided in a com-
parison of Figs. 4(a) and 2(a), which shows the dis-
cussed transition occurring in the many-channel case.

200-

I80-

I60-

140-

g7I

l 20-

y) IOO-

O

O
60-

( N) = cos8
( Np)+sin8

~
Np'),

) 1P)=—sin8(Np)+cos8(Np'),

and the mass matrix

M=/

then by demanding a diagonalization of 3f, we obtain
the relations

60

40
(Np —N)(Np' —N) =)'

(Np —N') (Np' —1P)=Xs. (46)
20

300
I

400 500
T- (MeV)

600 700

Let us now assume that Eo is equal to the value needed
to satisfy exactly the Gell-Mann —Okubo mass formula.

FIG. 11.Elastic phase shift at transition point discussed
in text. For parameters see Table I,

44 A. H. Rosenfeld et ul. , University of California Report No.
UCRL-8030, Part I, 1965 (unpublished).
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From Eq. (43)
Sp= 952.2 MeV.

Brehm and Kane4' have recently reported on some
dynamical calculations to support this view.

Because of its large width, the mass of the P» object is
difBcult to specify exactly, except to say that it lies
between the energy of the bump in the cross section
(1400 MeV c.m.) and the energy at which the real part
of the inverse partial-wave amplitude vanishes (about
1500 MeV c.m.). We compromise by taking

E'= 1450 MeV. (48)

Using (47) and (48) we can now solve (46) for X and
Sp', obtaining

(49)X=81.4 MeV,

Sp'= S'—13.3 MeV.

The mixing angle is given by

tan8= (Xp—X)/X,
which yields

0=9.3'.

(5o)

(51)

(52)

4' C. Love lace, CERN Report 65j1674/5-TH 628 (unpublished).

Thus, in this picture, the physical nucleon has a
2.7% admixture of a, the nonoctet Ptt.

We may comment briefly on the magnitude of the
mixing parameter ).It is well known that the ZA. mass
difference is quite a bit smaller than the other mass
differences. We may postulate that this is due to the
major part of the baryon mass breaking operator acting
like the Ps generator of SUB, thus connecting only
members of the same multiplet, and, in addition, not
splitting the Zh. masses. The residual mass breaking
term is then a tensor Tsts& (corresponding to the D
part), which will connect different multiplets and give
a Z —h. mass difference. Matrix elements of this tensor
will then be of order 3E~—M~=75 MeV. If the P» is
some mixture of SU3 representations, this tensor will

then connect it with the octet nucleon, and lead to a
mixing mass of order 75 MeV. This compares well with
the value we have obtained for X LEq. (49)j.

As for the role of the P» object in the SU3 scheme
itself, we refer the reader to a paper by Lovelace, 4'

where the proposed multiplet containing the P» is a
10, but so far there is no indication of the other members

thereof, except possibly for the I=O, V=2 member. "

VIII. DISCUSSION AND CONCLUSIONS

We have presented a unitary inelastic model, the
f matrix or boundary-condition model, within whose
framework we have discussed the recently reported
enhancements in I= ~ xE scattering at a c.m, energy of
1400—1480 MeV. We have attempted to fit the Auvil
et ul. ~ P» phase shift and inelasticity parameter by
introducing two types of inelastic channels: s-wave
production of I=O, J~=O+ (o) dipion pairs having a
wide mass distribution, and the p-wave production of
the 33 resonance. A good fit was obtained with the r
pairs having a mass distribution centered on 550 MeV,
with a width of 100 MeV. This 6t also necessitated an
attractive elastic force in the region of interest, an
interaction radius of 0.30 p, ', moderate coupling, and
a moderate attraction in the Xo- channel. It was also
shown that an upturning of the phase shift to go
through 90' is easily obtainable by a slight change in
parametrization. This was seen to result from a tech-
nicality in the dependence of the elastic phase shift on
the eigenphase (Sec. VI). The fits obtained with the
E*x production channel, although allowing a resonance,
suBered from various defects. One of these was the
impossibility, due to the long tail of p-wave production,
of getting the phase shift to turn down after reaching
near 90'. The latter behavior is indicated in Refs. 6 and
7. Other defects are the requirement of much more
attraction in the diagonal mE* channel compared to the
xE channel, and the need for very strong interchannel
coupling, both of which are not supported by our crude
estimates of the forces.

We have presented a calculation of eigenphases
within the stable 0 limit of the model, and have con-
cluded that the eigenphase responsible for the P»
scattering does not resonate in the region of interest.
However, it does stay near 90' much of the time. The
mixing angle is compatible with the experimental
elastic width of the bump and stays near 45'. Finally,
we have speculated that the P» object may be a cause
of at least some of the discrepancy in the Gell-Mann-
Okubo mass formula.

4' R. L. Cool, G. Giacomelli, T. F. Kycia, B. A. Leontic, K. K.
Li, A. Lundby, and J. Teiger, Phys. Rev. Letters 17, 102 (1966).

47 J. J. Brehm and G. L. Kane, Phys. Rev. Letters 17, 764
(1966).


