
SEPARABLE EXPANSIONS OF TWO —BOD Y T MATRIX

Aside from testing the accuracy of the expansion
against the exact two-body T matrix as shown in
Table I, we also test the sensitivity of the three-body
solution to the expansion. This is done in two ways.
First, we compare the required coupling strength G
with the three-term expansion against that with the
Ave-term expansion for a fixed binding energy. The
difference is within a few percent. For the second test
we take a simple function for the inhomogeneous term
g(p, q) and solve for 4'(p, q) using a 6ve-term expansion
for the two-body T matrix. Having obtained %(P,q),
we substitute it into the right-hand side of the original
Faddeev equation (27) with the kernel given now by
the exact T matrix. This gives a function 4(P,q) which

is generally within 2% of the solution obtained by the
five-term expansion.

The above results indicate that the Faddeev equa-
tion, along with the expansion method, is a practical
tool for calculating the three-body wave function as
well as the energy levels. For the two-body interaction
in the higher orbital states, the expansion of Ref. 5
can be applied along with our treatment of the oG-shell
T matrix. Finally, we remark that the scattering of a
two-body bound state by a third particle can also be
handled in essentially the same way as above except
that the kernel of the integral equation will be complex
and the numerical solution will involve the inversion of
a complex matrix.
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An example is given of a bound state which occurs in a channel with a repulsive Born approximation. The
bound state occurs because of the attraction provided at low energy by three-particle intermediate states.

I. INTRODUCTION

~'OR some time, physicists have speculated that in-
elastic channels in particle collisions might give

rise to resonances or bound states. Such a mechanism is
well known in nuclear physics, ' and it has been applied
to particle physics by several authors, including, for
instance, Cook and Lee. ' These authors performed a
matrix E/D calculation to see if the higher nucleon
resonances might be driven by the opening of the pS
channel. The interest in such a mechanism stems from
the fact that particle exchange on the left is not always
attractive in the channels where resonances are known
to occur. Put in modern terminology, there is some-
times a breakdown in naive bootstrap philosophy, which
assumes that elastic unitarity and the crossing matrix
are sufhcient principles for the prediction of resonances.
The inelasticity mechanism is invoked as a cure for
the breakdown of bootstrap theory.

Unfortunately, all past attempts to assess the effects
of inelasticity have been marred by an enormous num-
ber of approximations and simpli6cations. It has never
been clear whether it was the inelasticity or the ap-
proximations which produced the resonances. In the
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present paper, we wish to correct this situation by
presenting a model calculation in which the dynamics
are carefully evaluated, without important approxima-
tions other than the exclusion of states involving more
than three particles. Speci6cally, our scattering ampli-
tudes will have the hallowed properties of analyticity,
crossing symmetry, and unitarity

We study a reaction in which the single-particle ex-
change poles provide a repulsive force. Corresponding to
this, when we construct a scattering amplitude satisfy-
ing crossing and elastic unitarity (one-meson approxi-
mation), n.o bound state appears. This is in agreement
with naive bootstrap theory. However, when we
construct a scattering amplitude satisfying crossing
and two- and three-particle unitarity (two-meson
approximation), a bound state appears when the
coupling is suIIiciently strong. The bound state can
only be a result of inelasticity because we have the
elastic calculation for comparison. In addition, the
development of a bound state indicates that inelasticity
can affect the low energy properties of scattering ampli-
tudes. Contrary to popular belief, inelastic effects are
not limited to energies where three-particle phase space
is large.

II. THE MODEL

The model we study is the charged scalar static
model. This model has a spin-zero source which can
ezistin either positive (p) or neutral (rt) charge states,
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and which emits charged. mesons (7r+ and 7r ) in S waves
with conservation of charge. There are two elastic
scattering amplitudes: A+(ld), which refers to ~+p and
7r 77 scattering, and A (ld), which refers to 7r P and
x"escattering. ~ is the meson energy. We are principally
interested in the amplitude A .

We denote the one-meson solutions for A~ by 3II~.
They satisfy crossing and elastic unitarity, and were
originally given by Castillejo, Dalitz, and Dyson
(CDD).' In the present paper, we choose the one
meson solutions which have no CDD poles:

n(ld) =—

7

1—n(o7)

2olg' " dolik tN'(oli)
)

47I Oli(ldt ld 7S)

My(ld) =M ( ol —M) .—

We can then define the Omnes functions A~(z):

z lfo7 8y(ld)
dg(z) =exp-

4d(ld —Z)

It is possible to represent M in terms of these func-
tions. ' When the bound state 8 is present, the repre-
sentation is

g'~e(~+ p)
M (4d)= — A (o7+is)A4. ( 4d)—,

Pld (07+O777)

(4)

where or& is the energy of the bound state. By examin-
ing the residue of M at co= —or~, we can determine the
meson —source —bound-state coupling constant g~.

P—Mg

g77 =g A+(ld77) ~—(—4d77) ~

Here g is the meson-source coupling constant, p is the
meson mass, k= Llds —p2)'72 is the meson momentum,
and N2(ld) is the cutoff function. For sufficiently large

g, 42(p)( —1, so that M+ has a bound state B. This is
reasonable in view of the attractive character of m

exchange in 7r+p scattering. On the other hand, M
never has a bound state, which is the conventional con-
clusion from the repulsive character of the direct m

pole in 7r p scattering. (The contribution of B++ ex-
change to 7r p scattering is attractive, but never
suQiciently so to overcome the repulsive direct e pole
and produce a bound state in M .)

At this point, we introduce the relation between
3f+ and the one-meson phase shifts b~.

k742(o7)

Mg(ol) = e"+&"7 sinb~(o7) .

Two-meson solutions for A+ have been given by the
author. There are two versions of the solutions: First,
for the case that the bound state 8 is absent in 3E+,4

and, second, for the case when 8 is present. ' These
solutions do not have free parameters analogous to
CDD parameters in them, and therefore they are the
two-meson companions to 3f+. We denote the two-
meson approximations to A+ by T+. The T~ satisfy the
same crossing relations as M+ LEq. (1)), and they
satisfy two- and three-particle unitarity. By this we
mean that production and six point amplitudes are
calculated which satisfy appropriate dispersion rela-
tions, and the amplitudes fit together with T~ to form
an unitary two- and three-particle scattering matrix.
The distinction between the two versions of T+ lies
in the fact that M~ are used to describe final state in-
teractions in three-particle states. Consequently, in
the state 7r+7r 77, which is connected to p7r by a produc-
tion amplitude, the ~ e system can coalesce into a
bound state 8 . Therefore, the version of T for the
case that 8 is present in M+ includes an inelastic two
particle cut coming from the ~+8 state. The new cut
appears automatically when the weak coupling forms
of T~ are analytically continued in g, and the enlarged
scattering matrix remains unitary when the new channel
appears. In the following calculation we shall need the
form of T which holds when M+ has a bound state.

T has the form

lfld ip (ld i)00

C(—ol) =- +
7l' ld4-fdll ldl(Oli —ld —7S) 7l'

The weight functions are
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~

2

p- (~)=
27rldld A (—o777)

lfolip (ldi)
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~+(~i)4)-(~-7) (g)

g 4dldll (id+@)
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where
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where~=~ ~—~, ~,=~, ~—~, ~ i ~ ~„Ic=(~' p—']'"
and k i——[cu ts —p')'f'. Note that when we set C=O,
the one-meson solution is recovered. p gives the con-
tribution of x+B intermediate states to T, p

~ gives
the contribution of m.+m m intermediate states, and p+
gives the contribution of u.+a+is exchange. ~ p inter-
mediate states and vr+p exchange contribute to n, as
in the one meson solution.

A bound state of T occurs if the denominator of .o

Eq. (6),
1+(uC(—co)

D(oi) = —n(to),
1—tvC( —ro)

increases through zero between to=0 and co=@. (A
zero of D between co= —p, and ~=0 is a bound state in
the T+ channel. We know that such a bound state
exists, analogous to J3 in M+.) In the one meson ap-
proximation, C=O, D is always greater than 1 between
co=0 and co=p, so M has no bound state. However, if
C is large, D develops a pole, and it can then increase
through zero (see Fig. 1). The conditions for T to
have a bound state are

Fio. 1. The denominator function D(cu) when 2' has a bound
state. AC( —ca) is a monotonically increasing function of co, so D
has at most one pole.

that near to=0, n(co)= —g'toP, with P&0. Thus, for
large g )

PC(—p) &1,

1+PC(—~)—n(p)&o
1—PC(—p)

coii = 1/g'P.

From Eq. 5, we observe that for large g'(yO)

g~2 ~ g2 (12)

These inequalities can be satisfied only if n(fi)& —1,
which is the condition that 3f+ have a bound state B.
Therefore, the bound state in T cannot develop until
3E+ has developed a bound state. A sufIj.cient condition
for T to develop a bound state is that

C(—p) -+~
g2 ~op

In the next section we shall show that this behavior
occurs.

We point out that the pole of D (see Fig. 1) is a
CDD pole, since it corresponds to a zero of T . It is
induced by the coupling to the inelastic channels, and
is an example of a dynamically determined CDD pole
of the type noted by Bander, Coulter, and Shaw. '

III. THE BOUND STATE IÃ T

We have seen that T has a bound state if

C(—p) -. +~
g&-moo

In order to establish this, we first examine the
behavior of the p's for finite ~ as g' —+~. We observe
from Fig. 2 that 8~(co) remain finite as g' —+~.Although
8 (~) changes from 0 to —s as g'~ao, this affects
only the asymptotic form of 6 (cu), and at present we
are studying finite oi. We conclude that 6+(ru) approach
6nite limits as g' —+~ for 6nite co. Next, we observe

'M. Bander, P. 'Coulter, and G. Shaw, Phys. Rev. Letters 14,
270 (1965).

These remarks suKce to determine that for 6nite or

and large g', p
n decreases like g ', and p

~ and p+
are independent of g'. Therefore,

1 dG0]

C( fi) =C+
g)p GO]

P-'(~t)+P-'(») P»
X +

where coo is a large energy chosen so that we may use
high energy forms of the quantities. appearing in the
integrand. C is a positive constant which is independent
of g' for large g'. Evidently, if C(—fi) is to increase with
g', this increase is to be found in the high-energy
integral of Eq. (13).

For large positive or negative co,

gV
Ren(to) =+, y&0.

6 (o~)
g& ~to

(ogpu (cu)

~.(-)

We assume that tF(t0)=rite " for large &o, where N&1.
Examination of Fig. 2 verifies that 6+(~) is a finite
positive number when g'~~, so from Eq. (4) we have
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FIG. 2. The one meson phase shifts
for finite and infinite g2.

This form is valid for large g' and co, and demonstrates
that the asymptotic behavior of 6 (o&) changes as
g2~QQ

We are now able to evaluate the remaining integral
in Eq. (13). We first examine the p

~ term, replacing
all the terms in the deinition of p

~ by their values at
40= ~, except 6 (40), for which we use Eq. (15). We
let x=co1/g2 be the variable of integration.

1 "
da&1p (401)B-
Cd1(441—P)

(16a)

2~2g2ng 4(4c )

xn 2dx

X . (16b)
[+++]2[(+ +)2+2' 2+~2/1—6&2g4n 4]

Using x as variable again, we have

For large g, the dominant contribution to the integral
comes from the region around x=y, and C ~ vanishes
like g

—'. Thus, the contribution of the x+8 state
vanishes for large g', and if T is to have a bound state,
it is solely a three-particle eBect.

We next examine the contribution of p . In the
Appendix we show that the integral in Eq. (8) is
bounded from below by) g & ")co "+' when m&3g'y&coo.
X is independent of g' and co. Thus, for or&3g p&(op&

gg2(4
—~)

p-'(~))
82r2~2( ~ )[1+yg2/40]240"

The contribution of p+ is positive, so for large g we have

C(—y)) CP+C1g4&~"&; CP, C1)0. (19)

We conclude that for n&2, the two meson amplitude
T can have a bound state. (The condition 22(-2' is
sufIicient for a bound state, but probably not necessary. )
On the other hand, for 1(n, (as we have assumed), the
model is conventional in the sense that the one meson
phase shifts approach multiples of ~ at inhnity. Thus,
for 1(n(—,', the theory is conventional, and T can
have a bound state.

It is worth mentioning that for large g', the bound
state J3 moves to the origin and nearly cancels the
source pole there [see Eqs. (11) and (12)].This is the
@ray unitarity is maintained when g is large. However,
it would be erroneous to conclude that the net eBect
of the direct n pole and exchanged 8++ pole is no
longer repulsive when g' is large. This is evident from
the fact that M never can have a bound state. Even
in the limit g' —+, the bound state in T must be
interpreted as a three-particle eGect which occurs
despite repulsive Born terms.

APPENDIX

We wish to obtain a lower bound for the integral

dM1k1k 124 (C01)24 (6& 1)

CO y
—P

X A+(~,)~( 1), (A1)

which is vahd for large m and g. Ke assume that
co/2) g2y. Then

1 ~ d(alp T(M1) yg2
—4n

T=
„, a)1((a1—p) 82r4hp2(~ )

X ~ (18)
2, X"(X+y)2

I&Ig=
cy /2

d~l~l~ —1N (4L 1)24 (4d—1)

(~-1—P)
A+((o 1)a (441) . (A2)
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We further assume that g is so large that g'y&coo, where
oro is still the energy above which the asymptotic forms
of b, and I' may be used. This energy is independent
of g', so clearly g' can be chosen large enough to put
gsy)o)s. Then in Eq. (A2) we may use

g4~2P2

I ~-(~t) I'= (A3)
~ '(")L(1—g'v/ )'+g'n'/16+ "j

We further assume that g is sufBciently large that

and

(~-t) I'&~g't 'P'/~+s(")
~ (~t&~gsv) (A6)

Since Ih+(co) Is has a nonzero lower bound n which is
independent of g,

4ng4ttsP2sssts &e/2

I1~&
2(oo)o)n 1 s—(o a+1

ggs(2 —o)~—n+I ((o)3gs+) & ) (A7)

Then
s}2/16w2~2(g4(n —1) (A4)

(1—g'v/~t)'+gY/16+at'"&~1, (~i&~g'v) (A5)

where X is independent of g and co. The limit Bg'y is
chosen so that the integral in Eq. (A7) may be bounded
from below by an expression proportional to (g'y) ".
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Analyses of N-N experiments at 25 MeV have been hampered by a lack of complete scattering data,
especially for the scattering states with isotopic spin T=0. In particular, there is an ambiguity in the single-
energy T=0 solutions at 25 MeV. This ambiguity, which we discuss here in detail, is partly resolved by the
addition of new (n,p) data. Some new (P,P) data have also been added. The resulting phases more closely
resemble the values expected from potential models —with which they are compared. The new selection of
data permits a determination oi the pion-nucleon coupling constant (g =14.3+1.3), whereas the older
selections did not. An investigation of the parabolic approximation for each of the phases indicates the extent
to which one can believe the uncertainties as given by an error-matrix calculation. The energy-dependent
analyses in this energy region have been improved by having the 5 phases extrapolate to the scattering
length and effective-range expansions at low energies. The resulting phases give excellent Gts to the data at
10 MeV as well as at 25 MeV. Experiments that would further improve the analysis at 25 MeV are suggested.
The present results are in some disagreement with a recently released Dubna analysis at 23 MeV.

I. INTRODUCTION
' 'N previous papers in this series'~ we have published
- ~ the results of energy-dependent and energy-inde-
pendent phase-shift analyses in the energy range from
25 to about 350 MeV. Both (p,p) and (N,p) data were
analyzed, an.d the isotopic spin T=O and T=1 ampli-
tudes were determined. However, whereas the (p,p)
experiments are reasonably complete and give reliable
values for the T= 1 phase shifts, the (rt, p) experiments
are patently incomplete, and the T=0 scattering matrix
obtained from our analyses must be considered with this
fact in mind. For an incomplete data set, multiple

' M. H. MacGregor, R. A. .Amdt, and A. A. Dubow, Phys. Rev.
135, 8628 (1964).
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Phys. Rev. 139, 8380 (1965).

4R. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 8'l3
(1966).

phase solutions may exist. Even for a correct type of
solution, the phases may be somewhat inaccurate, and
the phase-shift uncertainties as given by an error matrix
calculation may be grossly inaccurate. In particular, the
least-squares sum (Xs) hypersurface in the neighborhood
of the solution minimum, that is for variations of a few
'standard deviations for each parameter, may not be
parabolic. These statements are well illustrated in the
.present analysis of nucleon-nucleon data near 25 MeV.

In our previous analyses at 25 MeV, ' ' we obtained
T=1 and T=O scattering matrices. However, we were
unable to obtain a value for the pion-nucleon coupling
constant g ~, and some of the T=O phases, eI in parti-
cular, had obviously misleading values and/or errors.
Even for an energy as low as 25 MeV, triple-scattering
parameters are needed for an accurate phase-shift analy-
sis. These were incomplete for the (p,p) system and non-
existent for the (st,p) system.

Recently, additional experiments have been com-
.pleted near 25 MeV that modify our previous results


