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An expansion of the off-shell two-body T matrix is introduced in the form of a sum of terms separable in
the initial- and the 6nal-momentum variables. The convergence of this expansion is tested against exact
solutions of several local potential problems. The substitution of the expansion into the I'addeev equations
yields a set of coupled integral equations in one variable. As an example, the binding energy of three identical
bosons is calculated using an S-wave Yukawa potential for the two-body interaction. It is found that a
stationary state exists for the potential strength G&1.4, whereas a two-body bound state requires G&1.8.
An off-shell effective-range formula is introduced for problems in which tlie shape of the two-body potential
is not well known. It is shown that the difference between the solutions of the Yukawa potential and the
exponential potential with the same scattering length and effective range is comparable to the deviation of
the off-shell effective-range formula from either solution.

I. INTRODUCTION

ECENTI Y, a number of authors" have presented
various methods for the calculation of the oB-

shell two-body T matrix and have suggested possibilities
of applying them to the three-body problem. In the
present paper we show that the direct inversion of the
I.ippmann-Schwinger equation is a practical way of
solving the two-body T matrix. After examining the
analytic structure of the solution, we propose an ex-
pansion of the oQ-shell T matrix in the form of a sum of
terms, each being separable in the initial- and final-
momentum variables. The substitution of this expansion
into the three-body Faddeev equation' ' yields an inte-

gral equation in only one variable and is soluble by
ordinary numerical methods. This method allows us to
solve the Faddeev equation without recourse to the
usual assumption Of separable potentials. 4'

The study of the I ippmann-Schwinger equation also
leads to a two-parameter effective-range-type formula
for the off-shell two-body T matrix. This formula may
be useful for problems where information on the two-

body interaction is limited to a few phenomenological
parameters, such as those of the low-energy nuclear
reactions.

In Sec. II we review the derivation of the I.ippmann-
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Schwinger equation starting with the Schrodinger equa-
tion. Then we replace the momentum variables by
discrete indices and convert the integral equation into a
matrix equation. The off-shell T matrix is then evalu-
ated by a matrix-inversion operation. In Sec. III we
propose an expansion of the off-shell T matrix and
compare the exact solution of the Yukawa-potential
problem with the expansion. In Sec. IV we introduce a
two-parameter oB-shell effective-range formula. This
formula is compared to the exact solutions of the
Yukawa and the exponential potentials, all with the
same scattering length and eHective range. Finally, in
Sec. V, we reduce the Faddeev equation using the
expansion of the two-body T matrix given in Sec. III
and solve for the three-body ground state energy with
s-wave two-body Yukawa interactions. The convergence
of the expansion is tested by the stability of the nu-
nmerical solutions. The extension to include higher orbi-
tal interactions is straightforward, but no calculation
is done in this paper.

(The l index is suppressed. ) The corresponding free
particle equation can be written as

Beak')p=k'))s')p
where

Hp=H —V.

Prom these equations one obtains

1540
( k') p+=

~
l's')p —(Hp —k' —ie)—'V) l'es). (4)

Q. THE TWO-BODY I-MATRIX

We start with the two-body Schrodinger equation for
a given energy k' and a 6xed angular momentum l:

Hik')=l't'(ks).
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I I2 I II2
k 'k

Xp(k""
i
V ik'). (5)

This is easily verified by applying (Hp —k' —ip) to
both sides of (4). The —ip gives the outgoing wave
boundary condition.

Now we multiply (4) on the left by —p(k') V and
insert a complete set of free-particle state vectors on
both sides of (Hp —k' —ip) ';
—o(k" I

Vlk')= —o&k"
I VIk')p

+ P p(k"
( V( k'")p p(k'") (Bp k—' i—p) '[—k"")p

evaluate the integral in (13) analytically because of the
singularity from the denominator.

As it stands, the integral in (13) for the highest
value of i formally diverges if the range in k' is in6nite.
However, Eq. (12) shows that the corresponding value
of R;; is always multiplied by V; with the same i.
Therefore, there is no divergence as long as V vanishes
sufliciently rapidly at high momentum. This is indeed
the case for ordinary local potentials.

Since V and R(s) are known matrices, Eq. (12) is
readily solved:

Since the T matrix is defined by T(s) = [I+VR—(s)j iV. (14)

p(k'2) T )k2)p—=—p(k") V)k2),

Eq. (5) can also be written as

.(k'
(
T

(
k )p= —,(k'

) V[k2)p —P p(k' [ V(k" )p
II2

Xp(k'"
(
T

(
k')p/(k'" —k' —ip). (7)

For ordinary potentials such as the Yukawa or the
exponential, Eq. (14) gives the off-shell T matrix quite
accurately by using only 10 to 20 points for the mo-
mentum spectrum.

III. EXPANSION OF THE OFF-SHELL
T MATRIX

T(k",k' s) =F(k" k' s)/D(s), (15)

This is the Lippmann-Schwinger equation. Changing back to the momentum variables we can
As we shall see later, the Faddeev equation requires a write the solution of Eq. (14) as

simple generalization of (7), namely,

T(k",k', s) = —V(k",k')

1 " k"V(k" k'")T(k'" k' s)
~k"2 . (8)

2i 0 k'"—s—ie

Clearly, Eq. (8) can be reduced to (7) if we set

(k" ( T
~
k') = T(k" k' k') (9)

In writing Eq. (8) we have chosen the. normalization

T(k2 k2 k2) —(~'&i sinb&)/k ~ (10)

where b~ is the conventional phase shift. It can be shown

(for example, by iteration) that T(k",k', s) is sym-
metric in k" and k' for a Gxed value of s provided that
V(k",k2) is symmetric.

Now were replace the momentum variables k", k',
and k'" by a discrete spectrum and introduce the
matrices T(s) and V with elements

where D(s) is the determinant of the matrix P+ VR(s)j.
Clearly, it does not depend on the momentum variables
k'2 or k2 On the other hand, all the poles of T(k" k', s)
in the s variable for positive values of k" and jP must
appear as zeros of D(s). This is because F(k",k', s) has
no singularity in s (positive k",k') except for a branch
point at s=0 with a branch cut extending to + ap.

As a function of k" and O', F also has no singularity
in the region k', k" positive and s negative because the
potential is analytic in k" and O'. In view of this simple
analytic structure, we make an expansion in the form

k~2 n). k2 m

F(k",k2;s)= P C„(s)~
. -o kk"+y' (k'+y')

X (16)
(k"+~')(k'+~2)

(11) For a given s and a fixed number of terms in (16), the
parameters C„and pP can be chosen to optimize the
fit to F(k"&k', s) for all positive values of k" and k'.
The value of p is roughly the inverse of the force range,
and the extra factor L(k"+y2)(k2+p2)j —' provjdes a
convergent behavior for k" or k'much greater than pP.

As long as the potential V(k",k') is symmetric under
the interchange of k" and k', the T matrix is also a
symmetric function of k'2 and O'. Therefore,

T,;(s) = T(k 2,kI', s),
V;;= V(k 2,kJ2) .

In matrix notation, Eq. (8) becomes

T(s) = —V—VR(s) T(s),

where R(s) is a diagonal~matrix whose elements are

(42)+ Qg
R;;(s)=8;; — ds'

(p;&) s —s—z6
(13)

C (s) =C .(s). (17)

Here (k;2) and (k;2)+ are lower and upper boundaries of In practice it is convenient to divide the expansion
that segment of the momentum variable which is re- into terms with m=n and terms with m&g. For the
placed by the discrete value k;. It is important to examples of the Yukawa potential and the exponential
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TAsx.E I. Comparison of the expansion of the oB-shell T matrix with the exact solution for a
unit-range Yukawa potential with G= 1.4.

No. of terms
(m, e)

s = —O. i i i s= —3.45
k'=0. 111 k'=0. 111 k'=3 45 k'=0. 111 k'=0.111
k'2=P. 111 k'2=3.45 k'2=3.45 k'2=P. 111 k'2=3.45

s= —32.11
k'=3.45 k'=0. 111. k'=0.111 k'=3.45
k"=3.45 k"=o.111 k"=3 45

1 term
(0,0)

2 terms
(0,0), (1,1)

5 terms
(0,0), (1,1), (2 2)

(0,1), (1,0)

Exact solution

2.34

2.35

2.34

2.32

0.846

0.895

0.856

0.878

0.306

0.505

0.562

0.578

1.37

1.20

1.32

1.31

0.495

0.462

0.400

0.411

0.179

0.273

0.340

0.346

1.10

1.10

1.19

1.18

0.397

0.413

0.328

0.333

0.144

0.206

0.280

0.289

potential, it is found that terms with m=n are more
important than those with m/n. A typical example is
shown in Table I for a unit-range Yukawa potential
with coupling strength 6=1.4. As one can see, a 6ve-
term fit with (m,e) equal to (0,0), (1,1), (2,2), (0,1),
(1,0) is very close to the exact solution for a wide range
of PI2, P, ands.

IV. OFF-SHELL EFFECTIVE-RANGE
FORMULA

For physical problems in which the two-body inter-
action is not known very well, it is desirable to find a
direct parametrization of the T matrix. For the on-shell
T matrix, the ordinary effective-range formula is known
to be a useful representation in the low-energy region.
A simple derivation of this formula can be obtained
through the examination of analytic structures. ' In this
section we propose an analogous formula for the oG-

shell T matrix, also based on analytic structure.
As was shown in Sec. III, the function F(k",k'; s) has

no singularity in the region k", k2 positive, and s nega-
tive. On the other hand, Ii will, in general, have singu-
larities for negative k" or O2. Since the determinant
D(s) already contains all the zeros corresponding to
bound-state poles of the T matrix and has a branch cut
for positive s, the simplest approximation for F is an
s-independent function with a pole in k" and k'. We
consider the two-parameter formula:

effective-range formula when one takes the on-shell
limit k"=k2=s. That is,

I' ) - iiQs+p/v2) ——'
&(,s; s) =

2s+p') i 2s+p,
'

(20)
f~'=

I

——i+i —is—its
& r u2) &I')

The scattering length and the effective range are
identified as

—1/~ = (p'/I' —p/V2), -', r =2/I'. (21)

F(k" k' s) = I'/(k"+k'+p, ')

Another property of our representation for Il is that
the on-shell limit is pure real for positive s. This is also
required by the exact solution of the Lippmann-
Schwinger equation. From Eqs. (13) and (14), it is
easily seen that the matrix (I+VX(s)7 is pure real
except for the ith column with s lying between (k;2)+
and (k,2) . Therefore, aside from the factor D '(s), the
inverse matrix (I+VR(s)7 ', given by the co-factors,
is pure real along the ith row. Hence the on-shell Ii
function F(s,s; s) is also reaL

Finally, F(k",k'; s) can be expanded in the form (16)
as follows:

and
F(k" k' s) = I'/(k" +k'+p')

I' s
D(s) =1—— ds'

(2s'+p') (s'—s—ie)

its+ @/v2-
=i—r

(18)

(19)

(k'2+ p~) (k2+ p2) L1—(k12/(+2+ p') )(km/(k2+ p') )7

k2 1= Z I'~'I, (22)
kk"+p') ik'+p') (k '+p')(k'+p )

Clearly, only equal-power terms enter into this expan-
sion. Since we have found that equal-power terms are
more important than terms with m/e in the expansion
of the exact T matrix, this can be considered as a
further support for our off-shell effective-range formula
given by (18) and (19).

2s+p'

Aside from the analytic properties stated above, the
T matrix obtained by F/D reduces to the ordinary

'H. P, Noyes @nd D, P. Wong, Phys. Rev. Letters 3, 191
(1959),
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~2

where
M c (s q2)

E„,(q,q2., s) =
v3s.q ~=o D(s q')—

f Pi' "t' P2'
x dphil

kp '+ ' (p '+ ')

1.8
G

(pp+p') (p2'+ p') (p2'+ q2' s)—
2 M C„(s—q«)

y. (q) = P dq2' dp2'
V3wq~=o D(s—q') p

e(p, q.)
xl —

I
. (34)

&p'+I'& (p'+I")(p"+q" s)-
FIG. 2. Three-body bound-state energy and two-body bound-state

energy versus the Yukawa coupling strength G.

where
~=3(2q+qm)', &=«(2q —q2)'

and pp is now given by

pp= p«+qu —
q ~

Now, (32) is a set of coupled single-variable equa-
tions and is readily solved by numerical methods pro-
vided (N+1) is not too large. As we have seen in
Table I, an excellent 6t of the two-body T matrix can
be obtained with (N+1) equal to three. If we divide
the q' variable into I discrete points, then Eq. (32)
becomes a matrix equation where the kernel is a

(29) (NI+I) X (NI+I) matrix:

As it stands, (27) is a Fredholm equation in two
variables. If one divides the q' and p' variables into I
and I discrete points, respectively, then the kernel of
the equation becomes a square matrix of rankIX J. A
direct inversion of the matrix equation is impractical,
not only because of the size of the matrix but also be-
cause the range of p22 depends on q and qm. On the other
hand, if we make use of the expansion (16) for
T(p', pp; s—qm), then we can reduce the integral equa-
tion to a single-variable equation as shown below.

With the expansion (16), Eq. (27) can be written as

00 B
dqm' dp2'+.(p, q) =4 (p,q)+

s'q 0

x K I II I I I
(3o)

c,(. q)i/ p —I-t' p, i-
~,~ E D(s q') i EP'+p2j —EPP+p'j

X„(q,s) =P (q)+ dqm'P E~.(q, q2; s)X„(q,s), (32)
0 f'=0

2 2 2 2 2(p'+S') (pp+I ') (pm'+qm' —s)

Since the p dependence of the integral is given entirely

by functions of the form P"2(ip' +p )2" '+, we can write

p2 in
+.(P,q) =4 (P,q)+Z X-(q,s) I I

— . (31)
n 0(P-2+p2 (P2+p~)

Substituting (31) into (30), we obtain

g;(s)=$;+ Q «;;(s)g;(s),
j=l

(35)

where

~.r+ (s)=X.(q-), g.r+ =y.(q ),
and

«er+m, trim'(s) = (~q2 )m'Enr(qmiqm'p) ~

(36)

In matrix notation the solution of (35) is simply the
vector given by

g(s) =[I—«(s)j- P.

Since the bound states of the three-body system corre-
sponds to zeros of the determinant of [I—«(s)], it is
not necessary to evaluate the inhomogeneous term $ if
only the energy level is desired. In practice, it is suK-
cient to take I between 10 and 20. Therefore, the
dimension of I~: is under 60 by 60. Whether we are calcu-
lating g or simply evaluating the determinant of (I—«),
the operation takes just a few seconds on a computer.

As an illustration of the application of the expansion
method, we take the two-body interaction to be a
Vukawa potential of unit range. For an attractive
potential strength G&1.4, we find that the three-body
system has a bound state. The value G=1.4 is con-
siderably lower than the minimum-coupling strength
for the formation of a two-body bound state (G=1.8).~
In Fig. 2 we plot the binding energy of the three-body
system versus G. As a reference we also plot the two-
body binding energy for G& 1.8.

& M:. Luming, Phys. Rev. 136, B1120 (19).
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Aside from testing the accuracy of the expansion
against the exact two-body T matrix as shown in
Table I, we also test the sensitivity of the three-body
solution to the expansion. This is done in two ways.
First, we compare the required coupling strength G
with the three-term expansion against that with the
Ave-term expansion for a fixed binding energy. The
difference is within a few percent. For the second test
we take a simple function for the inhomogeneous term
g(p, q) and solve for 4'(p, q) using a 6ve-term expansion
for the two-body T matrix. Having obtained %(P,q),
we substitute it into the right-hand side of the original
Faddeev equation (27) with the kernel given now by
the exact T matrix. This gives a function 4(P,q) which

is generally within 2% of the solution obtained by the
five-term expansion.

The above results indicate that the Faddeev equa-
tion, along with the expansion method, is a practical
tool for calculating the three-body wave function as
well as the energy levels. For the two-body interaction
in the higher orbital states, the expansion of Ref. 5
can be applied along with our treatment of the oG-shell
T matrix. Finally, we remark that the scattering of a
two-body bound state by a third particle can also be
handled in essentially the same way as above except
that the kernel of the integral equation will be complex
and the numerical solution will involve the inversion of
a complex matrix.
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An example is given of a bound state which occurs in a channel with a repulsive Born approximation. The
bound state occurs because of the attraction provided at low energy by three-particle intermediate states.

I. INTRODUCTION

~'OR some time, physicists have speculated that in-
elastic channels in particle collisions might give

rise to resonances or bound states. Such a mechanism is
well known in nuclear physics, ' and it has been applied
to particle physics by several authors, including, for
instance, Cook and Lee. ' These authors performed a
matrix E/D calculation to see if the higher nucleon
resonances might be driven by the opening of the pS
channel. The interest in such a mechanism stems from
the fact that particle exchange on the left is not always
attractive in the channels where resonances are known
to occur. Put in modern terminology, there is some-
times a breakdown in naive bootstrap philosophy, which
assumes that elastic unitarity and the crossing matrix
are sufhcient principles for the prediction of resonances.
The inelasticity mechanism is invoked as a cure for
the breakdown of bootstrap theory.

Unfortunately, all past attempts to assess the effects
of inelasticity have been marred by an enormous num-
ber of approximations and simpli6cations. It has never
been clear whether it was the inelasticity or the ap-
proximations which produced the resonances. In the

~ Work supported by the U. S. Atomic Energy Commission.
t Permanent address: Department of Physics and Laboratory

for Nuclear Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts.' J. M. Blatt and V. F. Weisskopf, Theoreticar, Nuclear Physics
Uohn Wiley 8z Sons, Inc., New York, 1952), Chaps. VIII—X.

~ L. F. Cook, .Jr., and B. W. I ee, Phys. Rev. 127, 283 (19|II2);
127, 297 (1962).

present paper, we wish to correct this situation by
presenting a model calculation in which the dynamics
are carefully evaluated, without important approxima-
tions other than the exclusion of states involving more
than three particles. Speci6cally, our scattering ampli-
tudes will have the hallowed properties of analyticity,
crossing symmetry, and unitarity

We study a reaction in which the single-particle ex-
change poles provide a repulsive force. Corresponding to
this, when we construct a scattering amplitude satisfy-
ing crossing and elastic unitarity (one-meson approxi-
mation), n.o bound state appears. This is in agreement
with naive bootstrap theory. However, when we
construct a scattering amplitude satisfying crossing
and two- and three-particle unitarity (two-meson
approximation), a bound state appears when the
coupling is suIIiciently strong. The bound state can
only be a result of inelasticity because we have the
elastic calculation for comparison. In addition, the
development of a bound state indicates that inelasticity
can affect the low energy properties of scattering ampli-
tudes. Contrary to popular belief, inelastic effects are
not limited to energies where three-particle phase space
is large.

II. THE MODEL

The model we study is the charged scalar static
model. This model has a spin-zero source which can
ezistin either positive (p) or neutral (rt) charge states,


