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Trident production (production of a charged lepton pair by a charged lepton incident on a nuclear target)
is discussed in the approximation of vanishing lepton mass. A compact formula is given for the trident dif-
ferential cross section, valid for complex nuclear targets, taking into account nuclear recoil and inelasticities.

The elastic, no-recoil approximation is also discussed.

I. INTRODUCTION

RIDENT production (production of a charged
lepton pair by a charged lepton incident on a
nuclear target) has been discussed by several authors
as a test of quantum electrodynamics at small distances.!
Trident production is interesting for several reasons.
It offers the possibility of exploring the time-like region
of the photon propagator. Alternatively, in the pure-
muon case it may be regarded as a way of looking for
a hypothetical particle which might couple only to the
muon (“explaining” the electron-muon mass difference).
Again in the pure-muon case, trident production is
sensitive to the statistics of the muon.

In this paper a fairly compact formula is given for the
trident differential cross section, valid for complex
targets and taking into account nuclear recoil and in-
elasticities. The lepton mass is neglected throughout.
The result is stated in terms of the Drell-Walecka in-
elastic nuclear form factors,? which implies use of the
first Born approximation in the interaction at the
nucleus. Radiative corrections are not discussed.

In Sec. IIT the method of calculation is outlined, and
various systematics of the calculation are noted. In
Sec. IV the detailed formulas for the cross section are
given, and in Sec. V these formulas are specialized to
the no-recoil, elastic approximation. Concluding re-
marks are made in Sec. VI.

II. NOTATION

A typical diagram for trident production is shown in
Fig. 1. The four-momentum?® of the incident lepton is

denoted by 1, those of the outgoing leptons by pe and
3, while p4 denotes the out-going antilepton momentum- -

(ps is the experimentally observed momentum of the
ut or et). The four-momentum transfer to the nucleus is
g=pa+ps+ps—p1. The energies and chiralities of the
particles are Ey, Es, E3, Ey, and ky, ks, ks, k4, respectively.

* Research supported by U. S. Atomic Energy Commission
Contract No. AT(30-1)2752.

1 See, for example, J. D. Bjorken and S. D. Drell, Phys. Rev.
114, 1368 (1959); T. Yamamoto, Progr. Theoret. Phys. (Kyoto)
27,223 (1963); M. C. Chen, Phys. Rev. 127, 1844 (1962); E.
Johnson, zbid. 140, B1005 (1965); S. J. Brodsky and S. C. C. Ting,
7bid. 145, 1018 (1966).

( 26S4)D. Drell and J. D. Walecka, Ann. Phys. (N. Y.) 28, 18
1964).

3We use a metric such that a,=(a,as)=(a,ia0);abu=0b

=a-b—aebe. We also define a,* = (a*,7a,*) and @,= (—a,aq).
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The chirality is either plus or minus one; right-handed
leptons and left-handed antileptons have positive
chirality. The symbol eag,, is the four-dimensional
totally antisymmetric tensor, with ejssa=-1.

Diagram 1 is explicity shown (Fig. 1); by attaching
the upper end of the nuclear photon to the points 2, 3,
4, the diagrams 2, 3, 4 are created, respectively. If the
leptons are all electrons or all muons, exchange diagrams
must be considered: Diagrams 5 through 8 are obtained
from diagrams 1 through 4, respectively, by inter-
changing p, and ps.

The notation for the inelastic nuclear form factors
follows Ref. 2; for spinors and gamma matrices, the
notation of K#llén* is adopted.

III. METHOD OF CALCULATION

Each amplitude corresponding to a given Feynman
diagram is explicitly calculated (using traces) for a given
set of leptonic chiralities®; the amplitudes are then added
together and squared. Summations over chiralities may
then be performed if desired.

The trident production cross section for definite
chiralities, in terms of the Drell-Walecka form factors,
is given by

Ex(Ze)W,, Q1
Opol=————
¢(—P-p1) (2m)*

where @ is the normalization volume. Equation (4) of
Ref. 2 defines W,,; because of current conservation,

Lu8H A pad’psd®ps, (1)

F1c. 1. Feynman
diagram for trident
production. Diagram
1 is shown; others are
generated by connec-
ting the nuclear pho-
ton to points 2, 3,
and 4 instead of 1.

Pr P3

(NUCLEUS) _

4 G. Killén, Handbuch der Physik, edited by S. Fliigge (Springer-
Verlag, Berlin, 1958), Vol. V/1.

8 The author is indebted to J. D. Bjorken for suggesting this
approach.

1534



154

terms. in W, proportional to g, and ¢, vanish and we
may write

W w=W1(g%q- P)bu+ 1/ M 1)Wi(g%q- P)PuP,, (2)

where Mr is the mass of the target nucleus. Finally,
£, is the matrix element of the leptonic electromagnetic
current, {ps,ps,p4| ju| p1); it may be written as the sum
of the contributions from the various Feynman
diagrams:

Ly Z (L )u+6Z (Lidu, )

=1

where 6=0 if both electrons and muons are present,
and in the all-muon or all-electron case, 6=—1 for
Fermi-Dirac statistics and é=-1 for Bose-Einstein
statistics.

If the incident lepton is unpolarized and the final
lepton polarizations are not observed, we are interested
in the cross section averaged over the initial spin and
summed over final spins:

1
do’unpol= - Z d‘rpol . (4)
ki,ko,k3,ke=£1

all combinations

Now we wish to evaluate the amplitudes (L;),. It
turns out to be sufficient to evaluate explicitly only
L, from which the others are easily derived. We have
(see Fig. 1):

(L1) = (i/4) 2m)*Q~2(p1— p2) "2 (pat ps— p1)~20k,R, 051,
@(pe)ya(1—Frys)u(p:)a(ps)
X¥ai(potps— pr)vu(1—keys)u(—ps). (5)

The 8§ symbols in Eq. (5) occur because, in the zero-
mass limit, the amplitude of a diagram vanishes if
particles on the same lepton line have different chirali-
ties; it is therefore sufficient to use two projection
operators instead of four. In order to evaluate L; by
trace techniques, we multiply by a phase factor 4/| 4],
where

A=1a(p1)ya(p2)@(—ps)y(ps) . (6)

It is convenient to define (M), corresponding to (Ly),:
(L1),A/ | A| =52m) e} (ELERE E) ™ 202 (M), (7)

Now we have

(M 1) w=L(p1-52) (pa- P8) TV2(p1— p2) =2 (pat-ps— p1) 2

XETr{va(1—Fyys)prysps} (—1)Tr
X {Ya(potDs— 1) V(1 —kays) Duyaps} Sr,esdsk,.  (8)

These traces are evaluated in the following section.

An exactly analogous procedure may be used to
evaluate the other amplitudes, except that the ex-
change diagrams must be multiplied by the phase
B/| B, where

B=1(py1)ysu(ps)i(—ps)yau(ps) . ©

TRIDENT PRODUCTION WITH NUCLEAR TARGETS

1535

It is easily shown that B/|B|=¢"4/| 4|, where 0 is
given in Eqgs. (14). Note that ¢ is defined only when
k1= ko= k3= k4, since in all other cases either the normal,
the exchange, or all diagrams give no contribution.

Defining the seven other M; as in Eq. (7) [M; with
i>4 being defined in terms of (L;).B/|B|], it is easy
to show that they may be expressed in terms of (M),
[Egs. (11)].

IV. DETAILED RESULTS

Using the results of the last section, Eq. (1) may be
rewritten:

2% W gy d3p2 d%ps d%p, a )
_—, 0

da'pol= » "
dmiqt(—P- p1) B, E; E4

where

M= 3 (Ut b0 S (M), (11)

with

(M 1) w=[(p1D2) (P B3) T2(p1— p2)~(Ps)20nsrsB5k,
X{EspratErpoati(pi- p2)bastikieasp o 1o poar}
X{psal Espaut Eapauti(ps- pa)dust-ikaeussppaspss]

F 5[ Esprat Espsati(ps: pa)dast tRs€asg D8P30 ]
—8ual Es(ps ps)+Es(ps- ps)— Es(ps- ps)
— iRa€sppoPsspsoPso - i€oapubss
XLkl Espap+ Espa,+i(ps- p4)8ps} — €pto rPiopsr ]} ;

(12a)
where
. Ps=patps—pi. (12b)
(Ml)uE FM(PI,P%P3:P4,k1;k2>k3:k4) )
then
(M2)#=Fﬂ*(P21 P1, —pa, — P, kl’ k2: k37 k4) ) (13)
(M3)u=FF(_P47 b3, b2, — k47 k3: k2: kl):
and

(M‘l)ll:Fﬂ*(p% — P4, ?l: —PQ’ k4; k37 k2) kl)

From M, through M, one obtains M; through Ms
respectively, by the exchanges p.<«> p; and k2<—>k3
Finally, the angle 0 is determined by

=1 (pa P3) (1 P2)+(p1 'Ps)(ﬁ‘;ﬁz)“ (b1 pa) B2+ Ps)
2 L(pr52)(pa Bs) (P Bs) (pa Bo) 12

1 tR1€agpoPraD26PspP 10

sinf=-

2 [(pr$2) (paBs) (1 Ba) (pa- Ba) ]2

In Eq. (12a), summation over the repeated index « is
implied. This dot product has been carried out, and the
substitution (12b) made, but the resulting expression is
rather long. In any computer program written to
evaluate Eq. (12a), it would probably be easier to
include the sum on « in the program. If polarizations are

and (14)
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not observed, Eq. (12a) should be substituted in Eq. (4).
Of the sixteen different combinations of chiralities, only
six are nonzero, and only two of these involve both the
normal and exchange graphs.

V. SPECIALIZATION TO THE
NO-RECOIL CASE

Although Eqgs. (10) through (14) will probably be
required in making detailed comparisons between theory
and experiment, very great simplifications occur if the
nucleus may be regarded as the source of a static
Coulomb field, and such an approximation may be
useful in estimating counting rates, etc. In this case,
Eqgs. (10) through (14) become

Z2et | F(g)]* BpsBpadipe
Tpor=————|M4| %(g0)———, (10)
wigiEy E;, E3 E,
where g
4 8
M2, (Mi)at-0e73 (M:)s (11)
i=1 =5
with

(M 1) a=i{[(p1- Do) Bs- p3) TV 2(p1— o) (D) BnsnaPrste
X[Esprat Erprati(ps pa)dastikieaspo prapos ]
X [— (Ps p3) psa— (Ps P5)P3a
+ (p3- ps)Paa—Ka€aparpsiPaocps 1}, (122))

where, as before,

ps=patps—p1. (12b%)

If
(M 1) =G(pr,po,pspaks ko,ks,kd)

then

(M 2)s=G(ps, p1, — sy — b3, — k1, —kz, —ks, —ks), (13')
(M3)s=G(—pa, p3, b2, — D1 ks ks, ko, k1),
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and
(M) =G (ps, — ps, p1, — P2, —ka, —ks, —ka, —ky).

From M, through M4, M5 through M; are obtained,
respectively, by the exchanges py<> p3 and ks« k;.
The angle 6 is still given by Eqs. (14).

In the no-recoil case, the implied dot product in Eq.
(122”) and the substitution (12b') are fairly easily
carried out (see Appendix). Bjorken and Chen have
also obtained the cross section in this approximation.$

VI. CONCLUSIONS

Equations (10) through (14) [and (10’) through (13")]
give the trident production cross section in terms of the
various amplitudes involved. It should therefore be
possible to use these equations to find experimental
conditions maximizing the effect of the diagrams of
interest. For example, to study time-like photon
propagators, diagrams 3 and 4 (and 7 and 8) are
relevant, while the others are not.

It should be emphasized that the Sec. IV equations
do still apply when a complex nuclear target (eg.,
carbon) is used; inelastic effects, such as nuclear breakup
and strong particle creation, are included by virtue of
the form factors used. The formulas are no longer
valid if the nucleus is initially polarized or if a selection
of events is made on the basis of strong particles
detected in the final state.?
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APPENDIX

Equations (12a’) and (12b") may be combined to give

(M) s=i{ Es[(p2: p2){ (1 D) —2(p3 D)} — (b1- p3) (P2 Ba) ]+ EoL — (p1- pa){ (P2 5&)+2(p3 D)} + (p1- Be) (b2 p3) ]
4 (p1- p2)[Es{2(ps- Do)+ (D2 Pa)— (b1 Do)} +Eo{ (p1- ps)— (p2- p3)} ]
—ika[{2(p3 )+ (P2 P)— (P1- P &) }ps+{ (P2 p)— (p1- p3)} pa]- [p:1 X p2]
— k[ (ExtEo) | prpapaps| + (B1- p2) (01— p2) - (08X po) 4 krko[ (Ea— E){(p1-Ba) (p2- ps) — (pa- Bs) (p1-p3)} .
+ (Pl ’ Pz) {E3(P2 '54)+E3(P1 ’54) - E4(P2 . Pa) —‘E4(P1 . Pa)}]} Ok 1keOksks
XL (1 D2) Bar p3) T 2(p1— p2) 2 (ps)

where | PQRS]| is the determinant _

Py 01 Ry S
P, Q2 Ry, S
Pz Q3 Rz Ss
Py Qo Ry So

2= "iemﬁpcpaQﬁRpSw

¢ J. D. Bjorken and M. C. Chen (private communication) and Phys. Rev., this issue, 154, 1335 (1966).



