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A bootstrap calculation for the width of the p resonance is performed using a simplified version of a
Reggeized bootstrap theory proposed recently by the authors. A phenomenological Pomeranchuk input
trajectory has been assumed. The I=2 channel is eliminated from the appropriate crossing relation and
no statements about this channel are necessary. The 2-m continuum states are assumed to be dominated by
the p for the I= 1 and by the f' for the I=O. The input p trajectory is parametrized to produce the p reso-
nance at the observed mass. The p width is then determined by the maximum satisfaction of the crossing
relations. The calculation yields a "best" width of 125 MeV for the p. The problem concerning the simul-
taneous bootstrap of the p mass and width is briefly discussed, and a systematic procedure for obtaining the
"generalized potential" of the modified Cheng representation is given.

I. INTRODUCTION

'QST calculations performed so far to bootstrap
the p (=750 MeV) resonance have assumed

that the force needed to produce the p in the direct
channel is furnished mainly by the exchange of the
(elementary) p in the crossed channels. ' ' These cal-
culations have mostly been performed in the N/D for-
malism where one solves for the I=1, J=1 m-m. ampli-
plitude using an 1.=1 partial-wave projection of the
input force. Since the asymptotic behavior (in energy)
of the elementary p (1=1) exchange force blows up as
s~=', a cutoff on the integrals in N/D equations is neces-
sary which is adjusted to force the resonance at the
experimental mass. Such calculations have invariably
obtained a width of the p which is much too large. For
example, a single-channel calculation using elastic uni-

tarity gives a width of =600 MeV as compared with an
input width of =100 MeV. ' It has been generally be-
lieved that this discrepency between the input and the
output widths was presumably due to the neglect of
other channels; in particular, the sr' and EE are

* Part of this work was completed at the University of Cali-
fornia, Riverside, California, wnere it was supported in part by
the U. S. Atomic Energy Commission.

f Address until September, 1967.
f. Permanent address.' F. Zachariasen, Phys. Rev. Letters 7, E268 (1961). Also see

lectures given at the Pacific International Summer School in
Physics, 1965, Honolulu, Hawaii (unpublished).' D. Wong, Phys. Rev. 126, 1220 (1962).' M. Bander and G. Shaw, Phys. Rev. 135, B267 (1964); also
in this connection see J. D. Amand and G. C. Joshi, Nuovo Ci-
mento 38, 1588 (1965).

strongly coupled to the m-x channel. However, while it is
generally true that the closed inelastic channels do in
fact work to reduce the width of a resonance, 4 ' it is im-
probable that such an effect would reduce the width by
a numerical factor of 5 or 6. In fact, multichannel4 as
well as single-channel calculations using inelastic uni-
tarity show that the reduction in width is about a fac-
tor of 2 or less.

I.et us now take the point of view that the failure of
the previous dynamical calculations to obtain the p
self-consistently is perhaps due to the lack of urliformity
in the way the p is treated in the direct channel (as
dynamic) versus the crossed channel (as elementary).
In the true spirit of the bootstrap hypothesis, one must
treat the p as dynamic not only in the direct but in the
crossed channel as well. This is tantamount to saying
that one must determine self-consistently not only the
p, but the entire Regge trajectory on which the p hap-
pens to lie. The force to produce the p in the direct
channel comes, therefore, not only from the exchange
of the p, but the exchange of the p-trajectory itself. As
is well known, the Regge input force has a nice asymp-
totic behavior and no subtractions or cutoffs are neces-
sary to obtain convergence. Until recently, the most
serious attempt to develop a theory for bootstrapping
entire Regge trajectories has been the strip approxima-
tion. ' This theory has some serious drawbacks, however,

4 J. Fulco, G. Shaw, and D. Wong, Phys. Rev. 137, B1242
(1965).' P. Nath and Y. N. Srivastava, Phys. Rev. 138, 3404 (1965).

P. W. Coulter and G. Shaw, Phys. Rev. 138, B1273 (1965).' G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. Chew and
C. E. Jones, ibid. 135, B208 (1965).
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one of them being that it introduces an arbitrary pa-
rameter called the strip width.

Recently, the authors proposed a theory of Reggeized
bootstraps which is completely free of any undeter-
mined arbitrary parameters. The theory was based on
a representation of scattering amplitudes expressed in
terms of Regge trajectories alone, ' in contrast to the
earlier proposals which explicitly involved both the
Regge parameters: namely, the trajectories as well as
the residues. " Furthermore, the representation used
in I had the remarkable property that the individual
contribution from each Regge pole to the scattering
amplitude explicitly reflected the correct analytic be-
havior expected of the exact amplitude. Partial as well

as total scattering amplitudes calculated through this
representation in successive approximations when one,
two, or more high-level trajectories were retained gave
such a fast convergence in potential theory that ampli-
tudes computed retaining only the trajectories which
reach the physical l-plane almost reproduced the exact
known results. ' ' This is an encouraging feature of the
theory proposed in I, since the critical test of any boot-
strap program based on Regge trajectories must of
necessity be determined by how fast the theory con-
verges in terms of the number of trajectories.

In the present paper we use a simplified version of the
program developed in I to bootstrap the p. Since our
Regge pole representation for the total scattering am-

plitude f(s, t) constructed in I is valid for s)4p ' and all

t, we can impose crossing only at the unphysical (s,t)
values s&4p, 'and t&4p, '. Now the partial-wave expan-
sion for f(s, t) converges only for t&(2p, )', since 2p is
the lowest mass that can be exchanged in the crossed
channel and satisfaction of crossing requires, therefore,
that we calculate f(s,t), etc., by Regge continuation. To
simplify the numerical problem as much as possible, we
would like to impose crossing at real values of (s,t). On
the other hand, the background integral in f(s, t), for
example, converges on the cut in t (i.e., t) 41J, ') only in
the limiting sense as we approach the real t axis from
above in the complex t plane, being completely oscil-
latory on the cut itself. ' This way of calculating the
background integral on the cut (i.e., in the limiting
sense) is computationally a somewhat difiicult problem,
and we explore, as a erst attempt, an approximate cal-
culation which is computationally more manageable.
In the present calculation we have achieved this by
artificially pushing the cut in 3 starting at the 2x con-
tinuum to the mass of the p (=5.43@ ) for I=1 and to

the mass of the f (=8.95@ ) for the I=O. Partial-wave
expansions can now be used for t&p, '=30p, '. We
found that this choice allows a reasonable rate of con-
vergence of the series for /+16@ '.

Instead of actually attempting to simultaneously
self-consistently calculate both the I=O and the I= 1
channels of the x-m system, as would be done in a com-
plete calculation, we here rather addressed ourselves to
the question: Can. one assume an I=0 (Pomeranchuk)
trajectory, obtained from experiment, and see a "best"
satisfaction of the crossing relations in the region of the
actual experimental p parameters?

Our input consists of the I=o (Pomeranchuk) tra-
jectory in a form used by Ahmadzadeh and Sakmar. "
The p trajectory is assumed to be real analytic with only
a right-hand cut in the v, plane. No statements (or ap-
proximations) regarding the I=2 channel are necessary,
since it can be eliminated from the appropriate crossing
relations. ' In this paper, we have attempted a partial
answer to the bootstrap problem; namely, we adjust the
p-trajectory parameters to obtain a resonance at the
experimental mass of the p and then determine the width
of the p resonance by adjusting the other parameters
until a maximum satisfaction of crossing occurs. Our
result in brief is that we obtain a "best" width of the
p by this procedure which is = j.25 MeV.

Section II is devoted to a review of the basic equa-
tions of our formalism and a general formulation of the
problem. In Sec. III we discuss the details of the cal-
culation and the results. In an Appendix, an iterative
procedure for determining the "generalized potential"
for the modified Cheng representation is presented.

II. FORMULATION OF THE PROBLEM

The x-x elastic partial-wave S matrix can be repre-
sented" in terms of Regge trajectories n„(v,) as follows
for v,&0:

1nSr(l, v,)=Q

expt' —(l—cr+~)$r(v.)]
X

l—cr+ tI

t' p" ihr'
X ~r(1')I' tl 1+ du' +-

sr k 2v v

. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 141, 1513 (1966), hereafter referred to as I. Preliminary re-
sults of the work described in the text were presented at the April,
1966 meeting of the American Physical Society, Washington,
D. C. $BulL Am. Phys. Soc. 11, 381 (1966)j.

9 Ql. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, Phys.
Rev. 140, B1595 (1965); W. J. Abbe and G. A. Gary, Bull. Am.
Phys. Soc. 11, 901 (1966).

~o S. C. Frautschi, P. Kaus, and F. Zachariasen, Phys. Rev.
133, B1607 (1964).

"A. Ahmadzadeh and I. A. Sakmar, Phys. Letters 5, 145
(1963).It now appears quite likely that the f does not lie on the
P trajectory: B.R. Desai and P. G. O. Freund, Phys. Rev. Letters
16, 622 (1966); B. R. Desai (to be published). In this case the
parameters of the I' would be somewhat different, but this should
not affect this calculation too much.
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(2t )'
cosh$r(v, ) = 1+

2pg
(2.3)

where pi is the lowest mass exchanged in the crossed
channel, and the parameters hr, pr, cr, and the "gen-
eralized potential" p.r(p') (see Appendix) are to be de-
termined self-consistently from the crossing relations.
The partial-wave amplitude is dered by

where

S'(t,v,)—1
r(v )—

2ip(v, )
(2.4)

where I is the isotopic spin index and v, and g are deined
by

&a= 4s pm p (2.2)

us to use the partial-wave expansions for t& p,,'=30@ 2.

In practice, a reasonable rate of convergence of the
series is obtained for t&16p '.

This is then the essential procedure in our calcula-
tion: We set the "generalized potential" (see Appendix)
o'r(p')=8(p' —pr) and we have set p=yv=5. 83p, for
I= 1 and p, =@f0=8.95@ for I=O and calculated both
sides of the crossing relation:

f'(.,t) —f'( )=—2Lf'(. t)—f'(, )1 (21o)

It should be noted that (2.10) is exact; the I= 2 channel
has simply been algebraically eliminated from the cros-
sing relations.

III. DISCUSSION OF THE CALCULATION
AND RESULTS

) 1/p

p(v.)= I

&v,+p.'i

and has the behavior for large l as

(2.5) For the I=0 (Pomeranchuk) trajectory we have used
the one determined phenomenologically by Ahmad-
zadeh and Sakmar":

f~'(v*) ~ ~
—$)I(„)

Rel& --', , (2.6)

3.79v 1'583

Imn' '(v )=
259.7+ (v,—55.24)'

(3.1)

Pl
cosh'(v, )=1+

2pg

v,+1 " Imn' '(v')
Ren =

(v,)=1+ & dv', (32)
p (v'-v)(v'+1)

Let us now consider the partial-wave expansion for the and we have set p =1.This trajectory was determined
total invariant amplitude f(v„t), where t is the invariant so that the following three experimental facts are Gtted:
momentum transfer in the c.m. system.

CO

f'(",t) =Z (2t+1)f~'(")~~ 1+ IL1+(—)'+'l.
l~0 2v.)

n' '(v, =—1)=1.

Renr '(s=tlyo') =2; ttgo=1250 MeV. (3.3)

Since
(2.7)

(2.8)
Pfo=

Imn(s)
=200 MeV.

s'~'d Re ( n)/sd ,s„t"

where

cosh'=z=1+
2ptt

(2.9)

the series (2.7) will converge for t(pz'. In pr-z. scatter-
ing pq=2IM, and the representation (2.7) is then valid
only for s&4p, ' and t&4p, '. Similarly, we can obtain
f(v, ,s) valid for t) 4p ' and s(4p P so that we have to
perform a Watson-Sommerfeld transformation in (2.7)
to obtain a common region of the (s,t) plane where cross-
ing can be imposed. This is, however, a time-consum-
ing operation computationally as explained in Sec. I,
and we shall instead perform an approximate calcula-
tion which simplifies the problem considerably. Our
approximation consists in. pushing the cuts of f(v„t) in
t which start at the 2-x continuum states to the mass of
the p for the I=1 channel and to the mass of the f
for the I=O channel (assuming of course that the
Pomeranchuk particle is indeed the f ) This enables.

In addition, the trajectory was assumed to go to —1 at
large v, . Since the above trajectory given by (3.1) and
(3.2) was 6t for values of v, near threshold, one natu-
rally' expects it to be valid only in such a region, and it
should be noted that in the calculation described below
we use it in the small region near threshold (0(v,(3)
where it is expected to hold.

For the I= j.channel, we have used the trajectory:

E '- 8
n'='(E) =np+ (n„—np)

~

1—
~K+Kp (K+Kp)'v

A i K ' '+' t' K ' 1

', i E+E, &E+K, K+K—,i '

where k=iK= (v,)'~' and A)0, B)0—, 0(p~&~~, and
ReKp) 0. The trajectory (3.4) has the following
properties:
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3Eo'(n'o+ 1)+2A Eo
+ (3 5)

we may identify k' ass

since
br=re=4(up+1)Eo)0,

Ep&0, ap& —1.

(3.6)

If we de~ote the left-hand side of (2.10) by A'(s, t)
and the right-hand side by A'(s, t), then the deviation
from exact satisfaction of crossing symmetry can con-
veniently be expressed by sine(s, t),"where

l
A'(s, t) —A'(s, t) l

sine(s)t) = (3 7)
v (I: '(,t)3'+L '(, )l')"'

The procedure is to calculate A'(s, t) and A'(s, t) for
various s-t pairs, compute sine(s, t) from (3.7) for each
pair, and then average. Since both sides of (2.10) are
complex, we do this for both the real and imaginary
parts and calculate ((sine)) where

((sine)) =—', L(sine')+ (siner) j. (3 g)

The procedure of the calculation is now as follows:
First, we vary the parameters of the I=1 trajectory
until a resonance at the experimental mass of the p
is obtained. This trajectory, along with the I=O tra-
jectory is then used in (2.1) to calculate the partial-
wave S matrix for I= 1 and I=0.The total amplitudes
are computed through the partial-wave expansion (2.7)
and finally ((sine(s, t))) is calculated for a set of (s,t)
pairs. With a fixed input (experimental) mass of the p,
the input widths are systematically changed to search
for the point where crossing relation (2.10) is best satis-

"See, for example, R. E. Kreps, L. F. Cook, J.J.Brehm, and R.
Blanirenbecler, Phys. Rev. 133, B1526 (1964).

(i) Real analytic with only a right-hand cut in the
p, plane.

(ii) Imn(v, )&0 for v, &0 and =0 for v, (0.
(iii) dRen(v, )/dv, )0 as v, ~0 and approaches rr„

from above.
(iv) The threshold behavior is correct up to order

r, 0+' ' or v', whichever is appropriate, and all —2&0.p
&1. It also has the correct logarithmic behavior for
0!p= ~.1

(v) For ReEp)0, there are no singularities in the
upper half k plane or physical v, plane.

(vi) Imn(v, ) -+ 1/v v for 0(p ~&-', .

Since the most important parameters in (3.4) are A,
Ep, and rrp, we assume p= o, 8=0, and n„=—1, so that
for a given o.p we have a two-parameter trajectory with
Ep and A which determine the width and position of
the p resonance. Also since

TAnLE I. Values of the Ggure of merit ((sine)) as a
function of the p width F in MeV.

P (MeV)
((sine))

i50
0.82

i25
0.67

i00
0.72

75
0.74

50
0.74

fied on the average: namely, when a minimum is found
in ((sine(s, t))).

For each value of the input p width, we evaluate
sine(s, t) by calculating the crossing relation at the fol-
lowing eleven points of the s-t plane: s=15, t=5, 5-,',
6, 6~, , 9~, 10. The choice of points was dictated by
a desire to stay away from the line s=t where (2.10)
is an identity, and by the rate of convergence of the
partial-wave series (2.7).

The results are shown in Table I where the input con-
sists of the experimental p mass (=750 MeV) and
rrpr=' ———,'. We see from the table that ((sine)) has its
minimum value of 0.67 when the width 7=125 MeV
(the width was varied in 25-MeV steps) and may be
compared to the experimental value of 106 MeV; this
is certainly an improvement over the results of N/D
calculations which, when the mass is fixed at the experi-
mental value, find a width too large by as much as a
factor of about 6."'

The resulting p trajectory corresponding to the best
values of its parameters, namely,

is then

I =125 MeV,

Mv=750 MeV,

—i', )'
Q P

Ep—i', J

3 In(—i', /(Ep —i~ v,))-——+2A
2 Ep igv, —

orA (Qv, ) '
Imar='(v ) —+

Eok Ep i

If the crossing relations were exactly satisfied, then
((sine)) would have to be zero, so the question arises
that although we see the crossing relations best satisfied

'~'Under the approximations of the present calculation, it
would not be meaningful to vary the width I' too far from the
experimental value, and hence the rather narrow range indicated
in the table. More detailed calculations with wider variations in
I' are presently under way.

with the values of A and Ep given by

A =0.409, Ep= 4.455,

and —i=exp( —iver/2). In the low-energy limit, which
was actually used in the calculation, this trajectory
reduces to

1 (Qv, )'-3 2A -(Qv, )-—
Renr '(v, ) ~ —+l l

— ln
"' '2 (Ep j 2 Eo Ep'
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(at least in the narrow region in which we looked) for
I', = 125 MeV, why is ((sine))(=0.67) so large in this
caseP A glance at Figs. 1 and 2 immediately shows where
the trouble lies, and as one might have guessed, the
source of trouble is in approximating the 2-x continuum
states by a pole at the p for I=1 and at the f for the
I=0.

In Figs. 1 and 2 we have plotted the real and imagi-
nary parts of the invariant amplitudes fr(s, t) in the
unphysical region. For example, the curve labeled (1)
in Fig. 1 is Refr='(t, s=15) plotted as a function of t

for s fixed at 15; the curve labeled (2) is Refr='(t= 15, s)
plotted as a function of s for t fixed at 15, and similarly
for (3) and (4), while the curves for Imfr(s, t) are shown
in Fig. 2. If crossing were exactly satis6ed, then for a
particular (s,t) pair we should have

Symmetry: 1: 2( 1 )-2(2) 3+ l(3)-(4)1 =0

2.0-
RefI

(SIN 4&) =.440l5—

1.0—
o-Ref (t ) s=l5.

-Ref (s ) t = 155—

0 I l i I l 'I

4 5 6 7 8 9 IO

s (With t =15)
g (With s= 15)

1 2(1)—2(2)j+L(3)—(4)3=0.

FIG. 1. The real part of the invariant amplitude as a function
of t for s axed and s for t Axed, as discussed in the text, for both

(3 9) 1=0 and I=1.

Now from Fig. 1 we see that (3—9) is quite well satis-
6ed; indeed, the average value of sin~ for this case is

(sine B)=0.440

as indicated on the 6gure. However, when we look at
Fig. 2, we see the crossing relations for Imf'(s, t) are
poor]y satisfied in this case since

(siner) =0.896.

As discussed in the Appendix, the representation of the
total invariant amplitude (2.7) may be written, when
the modi6cation is made with a "superposition of
Yukawas" with weight function Ir(ii'):

Born pole, and now the results of Fig. 2 for Imfr(s, &)

are understandable.
For example, we see that Imf9(t) with s fixed at 15

goes to a constant at t=4, hwere aIsmf'(s) as a function
of s with t fixed at 15 is forced to zero at threshold by
the representation, since the Born. term does not con-
tribute to the imaginary part. Since a similar behavior
prevails for the imaginary part of the I= 1 amplitudes,
the crossing relations are poorly satis6ed in this case.

Let us now suppose that the weight function o (ii') is
not given simply by the delta function (3.12); then we
can see qualitatively that the above situation must im-

prove. Specifically, suppose the weight function has the
form (see Appendix):

00 (
J (",~)=Z(2~+1)u (")—S (")j~i 1+

l-0 2v,
o,(gt) -Im, f'(t), s fixed,

and from unitarity in channel t it follows that"

(3.13)

" or(gt') dt'

&& L1+(-)"j+-:h"( .+1) )

is gt'—
" ~r(V'&') «'

(3.10)
„, t'+t+4v, gt'

where we have abbreviated

(v +1)1/ 2

fIB(v) h2

3.0—

2.0—
Lmf

1.5—

(V'~)&0.

Symmetry: 1:2(l )-2(2)j+ C(3)-(4)'I =0

(SIN 4) = .896

Imf ( t ) s = 15

(3)

(3.14)

with p~ the lowest mass exchanged in the crossed chan-
nel, and cr has been set to 0 and Pr to 2iso certain
partial-wave sums are more easily performed. Now in
the above calculation the weight function was set equal
to a delta function:

1.0—

5—

0
4 5

Imf (s) t=l5

Imf& (s) t=l5~
7 8 9

s (With t = l5)
t (With s= 15)

)

IO

o.(~') = ~(~'—W') (3.12) FIG. 2. The imaginary part of the amplitudes
as in Fig. 1.

and this is tantamount to rePlacing the t cut by a Pole &3 Here we have tacitly assumed that h)p of course if this ls
since then the first integral of (3.10) simply gives the not true, we cannot hope to bind anything.
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(v.+1)"' (rr
XL1+(—)r+'j+ l)', (3.15)

where (rr(gt) satisfies (3.14) and from (3.13) goes to
zero as t goes to its threshold value.

We can now see that (3.15) will qualitatively solve
the difhculty in Fig. 2, since now, as t~4, s 6xed
or(gl) —+ 0 and the curve (3) still goes to a constant,
but now increasing as l increases because of or(gt).
However, when we switch the variables we have s —+ 4
and t fixed, and while Imfr(v, ) —+ 0, or(gl) is now con-
stant, so it goes to a constant rather than to zero as
before. Furthermore, as s increases (t still fixed) the
curve will increase because of both frr(v, ) and (v,+1)'i',
and so we see that qualitatively the above results will
be improved by replacing (r(tu') by more than a simple
delta function.

A systematic iterative procedure for determining
o(y') is presented in the Appendix, and calculations
along these lines are presently in progress.

In this case, the imaginary part of (3.10), when s and
t are both above 4, is

Im, , ,)~(s I) =X (21+1)Imf ~(,)P(I+
2v.i
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APPENDIX

The purpose of this appendix is to dehne the "gen-
eralized potential" of the modiled Cheng representa-
tion, and present a systematic iterative procedure for
deterrning it, at any stage of approximate satisfaction
of the crossing relations.

The modish. ed Cheng representation, "in its most
general form, "is derived from a generalization of the
asymptotic behavior of potential theory trajectories in
the v, =k' plane; that is,

e„p, ~ —S C„

a(y')E„r~ 1+ dp', (A1)
IQ

2vs

where m= 1, 2, 3,and the potential is of the form

e I'"

IV. CONCLUSIONS
I'(&) = o (tu') (A2)

In the present paper we have attempted a very crude
answer to a complicated question: Can one assume the
existence of a phenomenological Pomeranchuk trajec-
tory (obtained from experiment) and predict a maxi-
mum satisfaction of the crossing relations in physical
regions of the p parameters, without making any state-
ments or approximations regarding the I=2 channel?
In view of the somewhat encouraging results obtained
for the p width, we may now feel a little less hesitant to
attempt the more dificult calculation wherein both the
position and width of the resonance are determined self-
consistently, or, in other words, a many-parameter boot-
strap calculation. For the complete p bootstrap it is
perhaps essential to revert to the full formalism of the
theory as developed in I and the Appendix of this paper,
and attempt to satisfy crossing in the s-I, plane by cal-
culating total invariant amplitudes via the Regge term
and the background integral. This is so because the
two-way self-consistency problem for the mass Mp of
the p and its width Fp demands a very sensitive condi-
tion, namely, that the 6gure of merit curves close in the
Fp 3fp plane, and preliminary calculations show" that
this is unlikely to happen in a calculation under the
present approximations. Finally, a generalized potential
for the modified Cheng representation has been dined,
and a systematic iterative procedure for obtaining it has
been given.

' W. J. Abbe, Ph.D. thesis, University of California, Riverside,
California, Chap. 8 (unpublished).

In what follows, we shall take c„=0,p„=-', , and q=1,
since this choice makes certain sums easy to perform
analytically, but the procedure may be generalized.
Equations (A1) and (A2) then lead to the following
representation for the single channel S-matrix element"

lnS(l, v, )=P
.*(" ) expL(l' —l)g(v, )g

dl'
an(vs)

ih2

p
(u')P i(1+ dy'.

2pg

-(.)al 1+ Id. , (A»
(

2v,i
where v, =k'=4's —p ', cosh'(v, )=1+(2)u)'/2v, . It is
therefore natural to define the (r(tu') in (A3) as the
"generalized potential" for the modified Cheng repre-
sentation; in general, of course, it will depend on the
energy v, .

In potential theory there is no procedure for deter-
mining o (p ), except of course the trivial one of adjusting
it to Gt the experimental data, and as is well known,
there will in general be many different o(p') that will

predict the same experimental results. The nice thing

~5 See Chap. 6 of Ref. 14."A procedure for extending the modish. ed Cheng representation
to multichannel processes has been developed: W. J. Abbe, P.
Nath, and Y. N. Srivastava, Nuovo Cimento (to be published).
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about the relativistic strong-interaction problem is that
the crossing relations, when coupled with unitarity and
assumptions about analyticity, may actually determine
the 0(p, ') uniquely. One iterative procedure for deter-
mining it follows:

Suppressing the isospin index, the total amplitude
for the x-m case is

can achieve this directly, the number of parameters will
be greatly reduced, since then no more will appear than
appear in the representation (A3) via the trajectories.
The following procedure then suggests itself (super-
scripts in parentheses correspond to stages of iteration):

We start the zeroth iterate by setting

~"'(t ') =~(t '-t )
00 f

f(v„t) =P (2t+1)f&(v, )P&~ 1+-
l=o 2v.i '

where, as usual,

(A4) This choice then corresponds roughly to selecting a
simple Yukawa potential in channel t. The total
amplitude from (A7) is then

S(t,v,) 1—
f~(")= —

. ("+1)"'.
2z pg

00 t )
(A5) f&'&(v„t)=P (2l+1)Lf(&'&(v,)—fP&o&(v,)$P( 1+

l=p 2v, i
h'In the large v, limit, the first two terms of (A3) cancel

and we have +(v,+1)'~'- . (A9)
Jtlh' " p")

f~'(")—= ("+1)"' (t ')Q~ 1+ IC/
' (A6)

2v, „2v,i This is the level of iteration at which the calculation
described in the text was performed, with the further
approximation that p=p, , for I=i and @fan for I=o.
After determining the approximate value of f~ &(v„t),
the next stage of iteration is then found by simply
taking the discontinuity of f&'

(v&,s) across the t axis:

If we add and subtract (A6) in (A4), we obtain

f(",t) =2 (2/+1)(f~(")—fP(")jP~ 1+
l=o 2v,i

" 0(+t') ct'h' 2
+ (v,+1)'~' P—, (A7) a&'& (Qt) =

2 „2 t' —t—ill' ~h'g(v, +1)
and now the sum in (A7) converges for t( (2p) 2, since

f«")—f'(.), pL.—tn")j.
XQ (2l+1) Imf& (v~)P~~ 1+

l=o 2.,
(A10)

From (A7) we obtain the well known fact that ~$o (Qt)/
gtj(h'/2)(v, +1)' ' is just the discontinuity of f(v„t)
across the t axis, which can be obtained from (A/) in the
region p'(s, t((2p)' or, for p=2p, 4tI, '(s, t(16tl, '.
)This is also a good region because our representation
(A3) is a candidate for being exact there, as far as in-
elastic channels are concerned. j However, in general
for all s, t&4p ', one must use the full Regge analytically
continued amplitude.

One could, of course, simply put a parametrized form
for 0(p') and attempt to determine the parameters by
forcing (A7) to satisfy the crossing relations (if indeed
this is possible). However, this seems to us like a cum-
bersome and ineKcient procedure, since one would like
to take full advantage of any stage of approximate satis-
faction of crossing relations as a guide toward proceed-
ing to a more accurate stage, and simply parametrizing
a (g') anew each time is of little avail in this connection.

Secondly, since 0(p') is always required to be posi-
tive" at least up to the first inelastic threshold, as de-
manded by unitarity in channel t, we would like to have
this incorporated automatically, rather than having to
check it each time.

Third, we require that 0(y') have something to do
with the amplitude in channel t, and moreover, if we

2+t
~'"&(4t)=

s-h'Q(v, +1)
QQ I'

XQ (2t+1) 1m''" "(v~)P,
~
1+

l=o 2v,i

and so on. This iteration procedure then satis6es our
general requirements for the ith iterate:

(a) a&'&(gt))0 (unitarity in channel t since the
modiied Cheng representation is automatically
unitary).

(b) 0 &'&(gt) is directly determined by cross-channel
amplitudes, only at a previous stage of iteration, and is
of course energy dependent.

(c) It is assumed that p=2p, so that the only pa-
rametrization necessary is that of the trajectories n„(v,).
Full use is then made of any stage of approximate satis-
faction of the crossing relations.

(d) When only one trajectory is retained (v=1), it
is not difficult to show that for P„)~~, both integrals in
(A3) involving 0.(p') converge at early stages of itera-
tion. We have not been able to prove it rigorously for
higher trajectories and higher stages of iteration, but
since 0&~&(tI,') is obviously still a delta-type function,



|522 A 8 BE, KAUS, NATH, AN D SR I VASTA VA 154

peaked around the physical particles in channel t, this
presumably will cause no difficulty. Furthermore, since
the main reason for making the modification was to
achieve rapid convergence with only the top trajectory,
it suffices to show that the integrals converge with n= 1
only.

Questions of convergence of this iteration procedure
can only be settled numerically, and are presently under

investigation, the preliminary results of a "first stage"
having been discussed in the text. Finally, it should be
stressed that the above procedure, using the partial-
wave expansion, is valid only for s&4p ' and t&16p, '
(a nice region as far as inelastic channels are concerned),
and must be replaced by the full %atson-Sommerfeld
continuation (background integral plus Regge term)
in larger regions of the s-t plane.
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Optical-Model Parameters and Cross Sections for the 9-Meson-Nucleon
Interaction According to a Modification of the Coherent Droplet Model

C. IDDINGS AND L. MARSHALL

Urteoerst'ty of Colorado, Boulder, Colorado*
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A modified droplet optical-model method is developed for evaluating cross sections for short-lived (~10 se

sec) particles produced in two-body reactions. Using elastic-scattering and p-production differential cross
sections for 1.7-BeV/c 7r p interactions in this model, we estimate the total p-nucleon cross section as 12 mb.

ECENT experimental results on two-body cross
sections at high energies are almost universally

characterized by sharp forward peaking and high
inelasticity. ' Motivated by such results, theoretical
interpretations in terms of optical models have been
proposed by several authors. ' These models are

*Research supported by the U. S. Atomic Energy Commission
Under Contract No. AT-(11-1) 1537.

' See, e.g., S. J. Lindenbaum, in nucleon Structlre Covfererlce,
edited by R. Hofstadter and L. I. Schiff (Stanford University
Press, Stanford, California, 1964) and Aachen-Berlin-CERN
Collaboration, CERN Report No. 65-23, 1965 (unpublished);
Phys. Letters 19, 608 (1965); D. R. 0. Morrison, CERN Report
No. 66-14, 1966 (unpublished).' R. Serber, Phys. Rev. Letters 10, 357 (1963).' (a) J. D. Jackson, Rev. Mod. Phys. 37, 484 (1965); K.
Gottfried and J. D. Jackson, Nuovo Cimento 34, 735 (1965).
(b) J. D. Jackson, J. T. Donohue, K. Gottfried, R. Keyser, and
B.E. Svensson, Phys. Rev. 139, B428 (1965);for values 0.90 ~& Cp

00 4glr ~& 7p &&P =0.12 quoted in this ref erence, the corre-
sponding total p-nucleon cross section at 1.6 BeV/c is 74 &~o (p p)i, i
«107 mb. For a production reaction mp —+ Xp, the absorption
model uses the parameters C;, y;, C, t, and y, t corresponding
to our parameters Ar, (xr/k„'), A„and (x/k, '), so that the
total cross sections corresponding to our expression (8) become

«,i(out) =2ir&,«'(COUi/vg„i)
&

oiot, (in) =2s 7 jrP (Cin/pin).

The Jackson prescription allowing no free parameters requires
C,„&=1 and p,„f,= 4p; . It follows that a consequence of this pre-
scription in the abserption model is

oi.i

(harp)

3 li,' 3
«.t(xp) 4~x' 4'

since C; ~& 1 and X~'~& K~2, corresponding to 3'~~ &~ iV~. This result
seems nonphysical. However, Jackson et al. note that their model's
predictions are not very sensitive to precise values of Cp t and y,„t.
Thus within the framework of the absorption model a broad range
of values of o.t,t(Xp) seems possible, in particular values which do
not fulfill the relationship noted above. We quote their comment
on the one-pion-exchange absorption model: "It is not permissible
to treat C and y as independently variable parameters in reactions
mediated by pion exchange. . . . Nevertheless we shall treat C
and y as in.dependent parameters throughout, since this provides

proving useful in correlating data from various reactions
and in giving a rough interpretation of the dynamics of
the interaction.

We notice that sharp forward peaking occurs even at
relatively low energies; for example in 1.7-BeV/c s. p
interactions both the elastic scattering~ and p-produc-
tion' reactions display marked diffraction patterns and
therefore analysis using an optical model seems
justifiable.

In this article, we shall analyze some results on p
production in 1.7-BeV/c s. p interactions' ' according to
a simple extension of a model due to Byers and Yang. '
Our conclusion is that the elastic p p interaction has an
effective cross section of the form

(da/dt}, i.„;, See-r"—,—

5,= (8.0+2) mb/(BeV/c)s,

7p= (2.~~04) (BeV/c) '

where t&~0 is the square of the momentum transfer
between incoming and outgoing nucleons. This cross
section is to be compared with that for s. p elastic

us with the only simple way of incorporating final-state interac-
tions which may be stronger and more long-range than initial-state
interactions. "

4 L. Durand, III, and Y. T. Chiu, Phys. Rev. 139, B646 (1965).
5 N. Byers and C. N. Yang, Phys. Rev. 142, 976 (1965).
e (a) S. Drell and I. Tre61, Phys. Rev. Letters 16, 552 (1966);

16, 832 (1966); (b) M. Ross and L. Stodolsky, Phys. Rev. 150,
1172 (1966).' D. Allen, G. Fisher, G. Godden, J.Kopelman, L. Marshall, and
R. Sears, Phys. Letters 21, 468 (1966).

8 D. Allen, G. Fisher, G. Godden, J. Kopelman, L. Marshall,
and R. Sears, Phys. Rev. Letters 17, 53 (1966).


