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Quantum-Statistical Distribution Functions of a Hard-Sphere System f
C. J. NIsTERUK$ AND A. IsIHARA

Department of Physics, State University of Rem Fork, Bugulo, ¹mYork

(Received 1 August 1966)

The singlet and pair distribution functions of a hard. -sphere Quid are evaluated. Diagrams in various
orders in the hard-sphere diameter a are analyzed. The pseudopotential and the binary-kernel methods are
compared. At low temperatures the contribution from chain diagrams is evaluated explicitly in terms of the
modi6ed Bessel and Struve functions. These chain diagrams are important at large distances or at low energy.
At short distances, Grst-order diagrams have to be examined, and classical and quantum-mechanical cases
are treated.

I. INTRODUCTION

~
'HE similarity of a hard. -sphere Bose gas to liquid

He' at lowest temperatures has made it the ob-

ject of intensive study for nearly a decade. Apart from
this, however, the quantum statistical many-body
theory of a hard-sphere gas is of interest in its own

right because of the wide range of problems charac-
terized by very strong repulsive interactions.

The aim of this paper is to investigate the spatial
correlation of a hard-sphere gas by evaluating the singlet
and pair-distribution functions. For this purpose an
extension of the recent work by Yee and Isihara' will

be made. These authors evaluated the pair-distribu-
tion function (p.d.f. hereafter) of a hard-sphere Bose
gas by the binary-kernel method. Following Lee and
Yang' they avoided the complications arising from
condensation by considering the gas at the lowest
temperature obeying Boltzmann statistics, and dis-

cussed two types of diagrams, namely, the chain and
tick-tack-toe.

In this paper we approach the problem from a more
general point of view in the following sense: First, we

compare the binary kernel method with the approach
previously developed by Fujita, Isihara, and MontrolP
for Fourier transformable potentials. Second, we intro-
duce a more general set of chain diagrams to be called
hybrid and examine the role of the simple chain and
tick-tack-toe diagrams as special cases. Third, we evalu-
ate not only the p.d.f. but also the singlet-distribution
function. Fourth, we investigate the hard-sphere gas at
a finite temperature. For this purpose, in the Boltzmann
case, we evaluate the eigenvalues of a certain integral
equation; these are used to arrive at a low-temperature
expression for the p.d.f. For the Bose gas, we consider
the exchange of particles characteristic of Bose statistics
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and show that the results reported by Colin and Peretti'
require some correction.

Summarizing, in this paper we attempt to generalize
the treatment of Ref. 1 and present various new results
which improve upon those previously reported. In
addition, we examine the short-distance behavior of the
p.d.f. in view of the recent criticism of Lee, Huang, and
Yang's' work by Luban. '

II. THE PSEUDOPOTENTIAL AND
BINARY-KERNEL METHODS

U e PII2 ~ PK20 (2.3)

where H2 is the two particle Hamiltonian, H~' is that
for free particles, and P=1/kT. The binary kernel is
then defined by

&= (c)&s/r)P)+&s'f/s (2.4)
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To gain an understanding of the strange behavior of
liquid helium, Lee and. Yang and many other investiga-
tors made attempts at evaluation of the ground-state
and excited-state energies of a hard-sphere gas. Theo-
retically it is essential here to find suitable methods of
treating the hard-sphere potential. It was Lee, Huang,
and Yang'~ 8 who developed the pseudopotential and
the binary-kernel methods.

In the 5-wave approximation the pseudopotential is
given by

8~~6(rl rs) (r)/r)r12)r12 (2.1)

where a is the hard-sphere diameter. The diGerential
operator (8/Br)r in this expression is important but
Lee and Yang showed that with a certain amount of
caution one could use the next approximate expression:

y'= Sm-a8(rt —rs) . (2.2)

This approximate expression is very convenient
because the 5 function allows one to take the Fourier
transform of the potential.

The binary kernel B(P) is derived from the two-
particle cluster operator:
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The advantage of introducing 8 is in its explicit
dependence on U2 rather than on the potential function.
Thus its matrix elements exist even for the case of hard
spheres.

The hard-sphere binary kernel is rather complicated,
but for small u Lee and Yang showed that one can
approximate 8 as follows:

&=&t+&s+

(kt', k,' ) Bt ) kt, ks)

=—(a/gr') g (kt'+ks' —kt—ks) e—& &'&'+/s'~

(kt', ks'
~

Bs ( kt, ks)

= (a'/s'/') g (kt'y ks' —kg —ks) e
—/t &/ "+/' s'&

FIG. 1. Diagrams for
the binary kernel and
pseudopotential.
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where p is the number density, s the absolute activity,
and A, the eigenvalues, are

/2vrm '/'

A(z, t) =
I

e (e'/&—~//)~(e ~)e /s~~(—~/e)do/ (2 13)
0

Montroll the p.d.f. corresponding to such a chain is

s'
p '(r) —p'= E Z L

—t'(V)l' '
l) s A(th

XA'(q, t)e&'/"'&'dq, (2.12)

where

0

k=gkt —ks]. (2.6)

expt'dt —(2P) '/ exp(2Pk'), (2.5) We adopt units such that 2m= A=1 and change the
variable of integration from q to 2g to correspond with
Eq. (3.1) in the next section. Then with

y&sre(p' —e") (vy +vs ) (2.7)

It turns out that Pts' here is precisely the approximate
pseudopotential of Eq. (2.2). Thus 8& is equivalent to
free propagation of two particles over the interval
(P' —P") terminated by an isothermal interaction corre-
sponding to @ts'. Alternately, in momentum space the
two particle propagator of Fig. 1(b) is

E(k„ks,p'; kt, ks,p")= 8(k,—kt+q)e &~' ~"&'"

Ke shall now show that to 6rst order in u use of the
approximate pseudopotential of Eq. (2.2) is equivalent
to the binary-k. ernel method in the evaluation of the
p.d.f. For this purpose, one may consider the coordinate-
space representation of B~ acting over the reciprocal
temperature interval (8'—P"):

),(q X)=—(P'/'/7r'/')A. (2q t) = e '~"'" 'e "' "dx
0

and e(q) of Eq. (2.10), we have

32~a " 1 ( 2as )~
p"'(r) —p'= —— Z Z

As /'&sj ~ (2m)' 'E X )

(2.14)

yes~a'rdq (2.15)

where X is the de Broglie thermal wavelength.
Equation (2.15) is exactly that obtained in Ref. 1

by the binary-kernel method. We have therefore shown
the equivalence of the two methods insofar as the first-
order pseudopotential and binary kernel are concerned.

The ground-state energy of a hard-sphere system may
be expressed in terms of the pair distribution function.
As Fujita and Hirota' showed, one has

&& $—t/(q)$8(ks —ks—q)e
—&~' ~"&""dq, (2.8)

where e(II) is the Fourier transform of the potential its.
E=8;g,.t(0)+-', V dz dr y(r) pi'&(r; ~a),-=- (2.16)

0

t (q) = ytse
—'&'dr.

(2~)'

For @'(r) of Eq. (2.2) we have

e(q) =a/s'.
Thus we find

(2.10)
E=4rrpaX 'Q/, (ks'+k' —k—(k—'+2ks')'"} (2.17)

where

where z represents a coupling parameter and p&'&(r; za)

(2.9) is obtained from p&'~(r; a) by replacing a by aa. If one
then uses the pseudopotential and assumes 8;q„t(0)=0,
one obtains

kp' ——8m up. (2.18)
E(k.,kg, p'; kg, ksp") =—(a/7rs) 5(k.+kg —kt —ks)

„)(&,+&,)j (2 11)
Equation (2.17) is exactly what Lee and Yang

obtained. The divergent term is to be subtracted as

This is simply the first-order binary kernel. Hence, the
diagrammatic equivalence in Fig. 1.

We can then proceed to consider chain diagrams such
as shown in Fig. 2. According to Fujita, Isihara, and

FIG. 2. Chain diagram.

' S. Fujita and R. Hirota, Phys. Rev. 118, 6 (1960).
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2 5 6 the general formula' for the p.d.f.

p(2) (r) Q(1)72+ Q(q)&2ip. rdq
(22r) p

(3 I)

FIG. 3. Hybrid-chain diagram.
where E(q) is related to the Uhlenbeck functions as
follows:

I 4 2 5 6 0

oo

E(q) = P ui(q);
1=2 (t—2) !

(3 2)

Lee and Yang pointed out. It is due to the approxima-
tion in the pseudopotential.

(ri
I U, I

r')dri-'=
(22r) p

ui (q)~2ip ..(rr-rr)dq (3 3)

III. HYBRID DIAGRAMS

As mentioned in the previous section, Eq. (2.15)
can be obtained by the binary-kernel method. In this
section we use this method to evaluate the p.d.f. from
a more general point of view than before. We start with

Let us use these formulas for diagrams such as shown
in Fig. 3. Here, the two particles 1 and 2 have a linear
chain of binary interactions inside and outside. For
simplicity s sake we may first write the integral asso-
ciated with the particular diagram of Fig. 3 and then
consider a more general case.

We have

(k"
l Up

l
k') = dpi dp2 dpp dp4 dpb ~ dk, dkbdk, dkq exp{—(p—pb)kp" —(8—pl) (kl"+k4")

—
(J3

—p2) (k2 2+kb") —(8—pp) kp"}(kl', k4'
l
B(pl —p2) l

k.,kb) exp{—
()82

—pb)k. 2}(kp', k.
l
B(pb) l kpkl)

)(exp{—(82—p4)kb2}(k2', kb'
l
B(82—pp) l

k.,kz) exp{—(82—p4)k, 2}(kbk, [ B(p4 pb) l
k4 k2)—

&&exp{—Pb(k42+k22)}(kz, kp'
l
B(82—P4) l kb, kp) exp{—P4(kb2+kp2)} . (3.4)

up (kl', k2', k,)k,)

g 5 P P4

dpb dkpdk4dkbdkp
7I p 0

&& exp{—P(k '+k '+k ') —P(k "+k ")
+Pl(kl kl )+P4(k2 k2 ) (J3 Pl)k4

—(P—Pi) (k4/k]' —kl)' —P4k42} . (3.5)

We introduce the relative and center-of-mass
momenta

k = -,' (k,—k,); k'= -,' (kl' —k2')

K=kl+k2, K'= kl'+k2'

Q =k+k' q = —,
' (k—k')

(3.6)

and integrate up over K, K', and Q to obtain

( g )tb lr 6(21r 8 1 sr $4

u, (q) =
l

—
l

—
l

—P' dx, F2 " deb
2rV P kP p p 0

XG(p I +4)G(rr l
2 4 +1 l )G(p 2'1) (3.7)

Sub stituting the first-order binary kernel 8&, integrat-
ing over k„,kq, and setting k =k; for i ~ 3 we
ob tain

t=s+t (3.9)

The consideration of the above special case gives the
following rules:

(1) To each binary kernel corresponds a factor
—8

(2) integration over each of the t outside particles
gives a factor (lr/P)pi2;

(3) integration over each of the s—2 momenta
between the particles 1 and 2 gives a factor (lr/J3)2";

(4) integrations on the center of mass momenta K
and Q giVe a faCtOr (22r/p)',

(5) there are (I—1)! similar diagrams arising from
permutations of the binary crosses;

where

G (o; l
2';—x; l ) = exp L

—o.
[ 2:,—x; l {1—[ x;—x; l }7;

(3.8)
o = 4Pq2 ~

The integral in up(q) is still time-ordered. However,
there are 5 . similar diagrams which diGer only in time
ordering. These arise from the vertical permutations of
the binary kernel. Their sum may effectively be
expressed by extending the limits of integration.

In general, we consider a chain which consists of l
particles such that s—2 particles are between 1 and 2
and t particles outside:



154 QUANTUM —STATISTICAL DISTRIBUTION FUNCTI ONS 153

p(1)—

(6) the total number of P/, integrations is f—1. The At this stage we note that the singlet-distribution
transformation from dP/, to dhi, introduces a factor P' '; function corresponding to the Boltzmann chain approx-

(7) the number of combinations of choosing s—2 imationisgivenby
particles out of l—2 particles is (g 2)c~, 2). To each
of these combinations there correspond diferent
diagrams resulting from the permutations (s—2)! and
tt of the particles "inside" and "outside" j. and 2.
A factor (l—2)! is the result.

1 1

XP (f&i (E&2'

0 0

(Eh, iG(1—xi)

XG((*,—*,()" G((*. ,—*. ,()

XG(x, ,). (3.10)

It is then appropriate to introduce the integral equation
1

x„y„(x)= (3.11)G(~; l~—xl)4-(x)4

Considering all these factors, we have for the general
case

( a ) i—1(~)3/2(l—2) (2~ 8

u. ,i-.(v) =l ——
I I

—
( l

—(~—2)'
E ~'i (p) (p

(3.17)

Therefore, Eq. (3.16) may be rewritten as follows:

A.

Z~(q) =—64 p P l
~.— . (3.18)

1+(2as/li) X„

Note here that the contribution from tick-tack-toe
diagrams does not appear except through p&'). Therefore,
if we replace p& ) by p, we shall be able to obtain only
the chain-diagram results.

The eigenvalues P may be evaluated easily. We
find at very low temperatures the following asymptotic
expression:

=A +A

(&) O2 a(n, a (3.12)

One may consider G to be periodic in the domain (0,1)
and take

fT 3M
gm=, g~l 402

o'+(o~ (o'+o)')'

(3.19)

where ) is the de Broglie thermal wavelength

X= (4irP)'/2. (3.15)

The simple-chain result (particles 1 and 2 terminal)
can be obtained from Eq. (3.14) if we set s= t. The tick-
tack-toe result corresponds to the cases s=2, l&3.
Therefore, we call the diagrams of the type of Fig. 3
hybrid and, correspondingly, express E(q) defined by
Eq. (3.2) as follows:

s ~ 2u2' '
N p((I) = —64m'—Q

X3 ~~ X

Then, we arrive at

32m' 2a)
u„i,(II)= — ——

( (l—2)! g I( '. (3.13)
al~'

To obtain u&(q) appearing in Eq. (3.2) it is necessary
to sum over all diagrams corresponding to the various
partitions of /= s+t. Thus

l

u&((t)= P u„i,
8=2

32K' 28 l oo——(t—2)! P P )„(3.14)
aX2 8=2 m

where
(3.20)

28
(ri, r2( U2( ri, r2) = ———e-"'/'~.

r X'
The exact expression is

(1'i, l'2( U2( ri, r2)

(3.21)

o ~i/2// o (ta) &/2//. (r)—a)-
(3.22)

(r(a)2~$4~2 ~
—r&/2P

The contribution to the p.d.f. from Sii((t) of Eq.
(3.18) starts with the two-particle U2 function as can
be seen from Eq. (3.2). Since U2 is most important at
short distances it may be appropriate to examine its
contribution separately.

If U2 is "expanded" in the first-order binary kernel
and the resulting integral contracted in terms of

=A, one obtains —2ap'/r for p(') —p'. An attempt
to extend the result to finite temperatures using Kq.
(3.19) leads to a divergent integral. However, one may
circumvent this difliculty by appeal to the exact quan-
tum mechanical expression for the diagonal matrix
elements of U2 or by evaluating the integral alluded to
without recourse to the eigenvalue technique. The latter
procedure is straightforward for the two-particle case.
One 6nds

X
XQ X„— (3 16) Comparison of Eq. (3.22) taken to first order in a with

1+(2as/P)X~ Eq. (3.21) obtained from the first-order binary kernel
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shows agreement for r& a. For r(a, Bj fails to repro-
duce U2 correctly.

In the low density limit (s~ pX3) and for small r) a
we thus obtain to first order in u

D(r)=—p 'p&'&(r) =I+'A'(ri, rol U2lri, r2)+
= 1—(2a/r) e '~"'/"'+ . (3.23)

Upon integration we find

Sm 1 q'
P f 1—

y2 2~ (q2+~)3/2

q// q 3 q+-
2 k (q2+p)1/2 8 (q2+p)3/

(3.32)

To evaluate the correlation function D(r) to the
second order in a it is necessary to augment Eq. (3.21)
including terms of O(a') and to consider the three-
particle diagrams with first-order binary-kernel interac-
tions. Unfortunately, the latter contribution to pI2&(r)

diverges even for P =A . The failure of A ' to yield a
finite contribution to p&2/(r) for the two-particle case is
on a par with the failure of A at T=0 to give individ-
ually convergent results for l&3. However, as shown in
Ref. 1, the sum over A in Eq. (3.18) gives a finite
reasonable result. Thus, we shall use a perturbation
method in evaluating the sum of Eq. (3.18).

We write

The right-hand side contains terms which do not
decrease with q. However such terms cancel with each
other and the right-hand side decreases as a whole as

g . Thus, its Fourier transformation is possible.
In the low-density approximation we may use

s ~ pX3, y ~ go=4m. ap, Na(q) —+ Xc(q).

Corresponding to the split of X in Eq. (3.19), we write

X,(q) =X,o(q)+E,'(q)

64 'pLE—- f-'+Z- f-'j (3 33)

Correspondingly, we have

where

Then

fP..)=I.—
I+(2as/X)I „

f„'=f(A )

f '={1—
l I+(2as/X)A„] 2}A '.

(3.24)

(3.25)

D( )=D'(r)+D'(r). (3.34)

The function D'(r) represents the correlation function
at the lowest temperature. D'(r) is its correction at a
finite temperature. Both functions are evaluated for
Boltzmann statistics. We shall later consider the
exchange effects due to Bose statistics. The evaluation
of D'(r) or D'(r) is now straightforward. We shall
discuss these separately in the following sections.

2 1 1
0— (3.26)

o 1+$ ' 1+$„2+(2as/X)(2/ )

where

4=O//0' (3.27)

Thus, Eq. (3.26) becomes

where

Similarly

1 "/ 1 1

„&1+@ 1+/+7/qoj

=1—L1+(v/q')?"',

7=42raS/X3.

(3.29)

(3.3O)

(I+V)' (I+8)'

dP. (3.31)
(1+8+V/q')'

At low temperatures we may replace the summation
by integration:

(3.28)

IV. THE CORRELATION FUNCTION D'(r)

—1/2

= —64~op 1—
l
1+—

q' 2g
(4.1)

Consequently, we arrive at

D (r) = I+X'(ri, rol Uo l ri, r2)

1 Vo)
"' Vo

1—
l 1+—

l

— e"2'd3I. (4.2)
p&3 & q2) 2q'

Using this expression and the exact Eq. (3.22) taken in
the low T limit,

1 2a/r+ a2/r2 (r) a—)
(ri r21 Uol '1 '2) =— (4 3)

(r(a)
we evaluate D'(r) as follows:

In the previous section we noted the importance of
the two-particle cluster function in the short-range be-
havior of the p.d.f. It was further observed that B~ fails
to reproduce it within the hard-sphere boundary. We
therefore treat its contribution to the p.d.f. separately
and delete it from E,o(q) by summing on chains starting
with l=3

322r3 ~ ( 2as
&.'(q) =-

aX2 &=3
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2+0
D'(r) —1=-

m2p~ 0

where

'9
1— g singd4/, (4.4)

(1+v')'"

1. Exterior of Hard Sphere

For r) a, the first-order form of U2 cancels the con-
tribution 2u/r from the term yp/2q'. As a result, we
obtain

Thus, we arrive at

D (r) =16u/3mr, =O-(u p)~

which is negligible in the low-density limit.
Summarizing, we find

(4.13)

D (r) = 1—16m'"(uPp)" C'(f) . (r))u)
=0; (r&u). (4.14)

70——4xap,

~
—1//2q

f'=r r„
r, =2/p = (167rup)

(4 5)

Since considerations have been confined to lowest-
order diagrams, this result cannot be expected to apply
in the immediate vicinity of the hard-sphere boundary.
In a higher order calculation, using U2 correct to second
order in a, one expects

D'()-1=-(4 /)t-C(f)
6~1/2 (uap) 1/2@&(f )

Here C(f) is defined by

(4.6)

The integral of Eq. (4.4) is evaluated in Appendix A.
We arrive at

u~' u (j+1)(j+2)f r )'
D'(r)=l 1——

I

—-2 (—)'
rj r/'-~ [I'(xpj+2)]' I 2r,j

+contributions of next-to-lowest-order

diagrams of 3 particles or more. (4.15)

f C(t.) =Go(f)—(1/f)G. (f).
If one discards the last undetermined term, we have

(4.7)

The function G„ is the difference of the modified Bessel
and Struve functions:

u~' 16 u
D'() =I 1—I+——, ( & «")

ri 3~ r,
'

(4.16)

G(f) =I.(l )—L.(f-), 0(usp) I/2 (O&r&u).

Thus,

(—)'(!f)'""
/~ I'[(j/2)+ 1]I'[(j/2)+ v+ 1]

(j+1)(j+2) ~ifc(f)=-: 2 (—)'
[I(!j+2)l' 2j

(4.8)

(4 9)

This coincides with the recent results of Luban
(including the significant constant term related to the
ground-state energy), who devised an accurate pseudo-
potential which accounts for the impenetrability of the
spheres. Luban contrasts his findings with the LHV
result which gives D(r) for all r«r, including r &u.

In particular, at large distances

00

4 (f')-—P 2/ "+'&(2k+ I) (2k+ 2)I"(k+-', )f-/ "+')
~2 k=o

V. THE CORRELATION FUNCTION D'(r)

Using Eqs. (3.2), (3.3), (3.32), (3.33), and (3.34)
we find

4 4)r ~4

~l4 ~I r j (4 10) D'(r) = — (P f„')q sin2qrdq
X2rp 0

This gives the asymptotic r dependence of the correla-
tion function at large distances.

16 " 1 q' q'// q

prppPr p 2y (q2+~)8/2 ~P ( (q2+~)1/2j

2. Interior of Hard Syhere

For 0(r(a we observe that the first and the second
terms of Eq. (4.2) cancel by virtue of Eq. (4.3). Thus,

, fo(f),
p) 2r

g23+-
8 (q'+v)"'

sin2qrdq

D'(r) =— (1—q(q +pp) —2 rpq j8 'p' d41 where
px

(4/)fc—(i)+(2 /)
// 8 8 8)

l o(t )= I4 ——3—l(~'t'C'(uf))
(411) & af pan an) —a=1

For small f' Eq. (4.9) gives

fc'(f) = l (4f/3 )+O(—t') (4.12)

82

fc(t). (5.2)82
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are of two kinds: type II and type III. The former are
characterized by two disjoint cycles of X& and X2 par-
ticles coupled by a binary interaction; the latter con-
sist of single cycles separated by the interacting pair
into two parts consisting of E~ and X2 particles. Dia-
grams of the second and third kind are further sub-
classed as A and B according as the reference particles
1 and 2 appear on the same or opposite sides of the
interacting pair.

I

i j. '
h

h rr '\

rl 'I

I"io. 4. Type-II, class A
diagram.

The function $0'(t') may be expressed in terms of I,
and L,.Or, one can use the Hankel E function for t 0~ (t')
In any case, because of the recurrence formulas obeyed
by these functions the right-hand side of Eq. (5.2) can
be expressed in several di8erent forms. However, since
we have given f4 (t ) and its limiting forms in Eqs. (4.7),
(4.9), (4.10), and (4.12), Eq. (5.2) is sufficient fo
purposes. For small and large distances we 6nd

1. Class A

Thus, Eq. (5.1) gives

We consider first diagrams of the second kind.
Figure 4 shows the representative form and Fig. 5 is
the "box diagram" which may be used to consider
necessary combinatorial factors. Here the broad line

(5 3) between the particles p and v represents the interaction.

D'(r) =— (a&r«r, )
pX2 Sm

, ~n~

~C
~n&

1 3 1
(r»r, ) .

p~22~&, 3/2 r4

Combining DP(r) and D'(r) we end up with

(5.4)
Fro. 6. (a) Type

III A graph and its
II A equivalent. (b)
Type-III 8 graph
and its II B equiva-
lent.

where t'=r/r, and r, = (16m'up)
—'" as defined by Eq.

(4.5).
From these results we conclude that D(r) decreases

at short distances and increases at large distances as
the temperature decreases. This means a larger long-
distance correlation at lower temperature than has been
discovered by recent x-ray and neutron experiments.
Moreover, the dependence of D(r) on temperature is
not large and varies as X ' kT.

VI. FIRST-ORDER BOSE DIAGRAMS

In this section we shall further investigate the p.d.f.
for a finite temperature considering particle exchange
in accordance with Bose statistics. Since our considera-
tions are confined to first-order interactions, we are con-
cerned with diagrams of the same type as treated by
Colin and Peretti. 4 Our purpose in treating the same
diagrams is mainly to correct the errors in their results.
We therefore retain as much of the notation and ap-
proach of Colin and Peretti as suits our purpose best.

Free boson diagrams are called type I. Since their
contribution to the p.d.f. is common knowledge, we
begin with diagrams including the binary kernel. These

I I I
~ I I I I I kl I I I I I Ftp. 5, Ilpx tljagpa~ fpr type-ii A

~n3-I n, ':,= n~~ ~n4~ diagrams.

(b)

Nt et+N2+me+ ——I; 1&N, ~&N, —1

N2 ——e4+1; 0&F2&Xg—2

2&x,&l—1; 0&~3&@,—2

1&@,&t—2; 0&~,&t—3

1Vt+N2 ——I.

(6.1)

As the m; vary subject to these conditions, particles
1 and 2 march through the cells in Fig. 5 generating
—,Nt(Nt —1)(l—2)! diagrams. The (I—2)! corresponds
to the permutations of the unnamed particles (including

Pq V)'

The total number of diagrams of this type is given by

1Vt (1Vt—1)(I—2)!, (6 2)

because a factor 2 should be introduced corresponding
to the interchange of 1 and 2.

The momentum-space U function for these diagrams
ls

—3/2

U,.""(kt' k2' kt k2) = ——p— 6 (kg' —k2)
7r' (It+1)p

X5(k2' —kq) expt' —etPkt' —(ne+eq+1)P4'j (6.3).

For an /-particle diagram the integers e; may take
on values subject to
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)I 26 ~2

Fxo. 7. Type-II 3 diagram.
r| ) 1 '!f1

I 2

In coordinate space this gives

24n.zz" (r) =—(2a/Il') I nz(n2+ n3+1) (n4+1)j 3/2

r2

Xexp (6 4)
4Pnz 4P(n2+n3+1)

The total contribution of type-II A /-particle diagrams
is obtained by summing over all integers n, subject to
Eq. (6.1):

242"(r) =2(I—2)!2 2 2 N.;""(r) (6 3)
Nj. N2 ns

Since type-III A diagrams, of which a representative
form appears in Fig. 6(a), give the same contribution to
the p.d.f. as do type-II A, the contribution of class A
diagrams of both kinds is

S~

Eg(r) = 2 P 34/zz" (r)
1=3 (l—2)!

Sg @~4 o0 2» ~ @+1

e—(sn/ss) Q e
—(sn/ml)

) 7 ~4~l ~ 3/2 2I, l gl/2 nl=l g, &8/2

(6.6)

where

The evaluation of Nz (r) is somewhat involved. In the
initial stages the calculation proceeds in a manner
identical with class A graphs. One finds

U~," (kl', k2', kl, k2)

8= ——b(kz'+k2' —kl —k2)

Xexp{—/2L(n2+1)kl"+ (n4+1)k2"+nzkz'+n3k2'$

+Pzgz" +k2"—kz' —k2')} (6.1o)

Unlike the case of class A graphs the coef!icient of Pz
does not vanish. The Pz integration itself is trivial but
the resulting expression contains the factor (k"—k2) 1

which Colin and Peretti replaced by the principal part.
We shall avoid this replacement by postponing the Pz
integration and I'"ourier inversion, and use the double
momentum variable transformations of Eq. (3.6) to
obtain I„,.(/!). Summation on the n; subject to Eq. (6.8)
generates I/(q) from which EzzB(/I) follows via Eq.
(3.2). Fourier inversion then gives 1Vzzzz(r). Details of
the calculation are given in Appendix B.We 6nd

Xzzs(r) =— Z (S(nl+1, n2, n3+1, n4, r)
$6y n 'M

—S(nl, n2+1, n3, n4+1; r)}
2g o0 oo oo o0

Q S(nl, n2, nl, n4, r) (6.11).
ref nl=l n2=0 n3=1 n4=0

Here
Sn

g (ss)—= P —e /"" S(nz, n2, n3, n4, r)

2 ~I+np+na+n4

s2= r'/4P= ~r2/~&— (6.7)

g.(s)=—2 (s"/n')
n=l

The total number of type-II B graphs is

Xz¹(I—2)!. (6 9)

2. Class 8
Diagrams wherein particles 1 and 2 are in separate

cycles belong to type II 8 (Fig. 7). Correspondingly
we have the box representation in Fig. 8. The n; are
restricted by

Xz——nl+n2+1, 0&&nl ~& Xz—1

iV2=n3+n4+1, 0&n2&%—1

0&N3&F2—i
1&x,&l—1, 0&&4&%2—1¹+¹=t.

(nl+n2) (n3+n4) (n2+n3)"'(nz+n4)"'

nl+n2+n3+n4 r2

erf( (n,n, —n2n4) r
(n2+n3) (nl+n4) 4P

X (4P)-1/2((n, +n,) (n,+n,)
X(, ,(,+ )+ ~ ( + )}3-'/'}. (6.»)

Xexp

Ezl(r) =

00 00 00 gl+m+n,

+2ZZ Z
1 sn=l n 1 (I+m)nial/2(m+n)1/2

I+m+n r2

Xexp—
I(m+n) 4P

XerfLnr(4P(m+n)mn) '/'j (6.13)

Class B diagrams of the third kind contribute the same
amount. LSee Fig. 6(b).$ Thus altogether

Snl+nn — 1 1 ) y2-

Z Z — exp ——+—~—
$6/ ssl 1 ns=l (nzn3) / nz n3~4P

FIG. 8. Box representation
for type-II 8 diagrams.

l I I ~ I I I I I+t" I I I2l I I I

n, =,'= n, =! gn ~ n ~ Here the fzrst term corresponds to the case n2=n4=0
for which the error function is unity. The second term



158 C. J. NISTERUK AND A. ISIHARA

arises from

P S(ni,O,ns, n4, r)
n1=1 n3 1 n4=1

P S(n„n„n„O;r). (6.14)
ny=l n2=1 n3=1

The remaining sum

P P g P S(n„ns,ns, n4, r)
nI, n2, n3, n4=1

vanishes as a consequence of the antisymmetry of 5
upon exchange of the pair (ni, ns) with (ns, n4)

We are now in a position to summarize the first-order
results. From Eqs. (6.6) and (6.13), one obtains

8a

This is exactly what one can obtain from Lee and
Yang's grand partition function.

VII. CONCLUDING REMARKS

The p.d.f. obtained in the previous section differs
from that reported by Colin and Peretti. 4 (In comparing
results we note that our "a"represents the hard-sphere
diameter, whereas the "a" appearing in their Eq. (47)
is the radius. ) First, in summing class A diagrams, it
appears they have overlooked a factor of 2 associated
with an interchange of particles 1 and 2. Second, the
contribution of class B diagrams is different. In this
respect, their result corresponds to neglect of the last
term in Eq. (6.15).

The correctness of our result may be demonstrated
by checking the normalization. We easily find

gs/2(s)$) gs/2(s)gl/2(s! $)gs/2(s! $)
pA3 p2V

4a 1 Sa X
g8/2 (S $)

r pals p'A, ' r
00 gl+m+n l+m+n

x Z exp S
&, m ~ 1(l+=m)nl'/2(m+n)'/ l(m+n)

Xerf (ns((m+n)mn) '/') —(6.15)

D(r) =1+
[y("(r) —psgdridrs

= (I'/)~')(gi/2(s) —g»2(s) —(«/~)gs/2(s)

X (g 1/2(s) —gi/2(s)) —(418/&)gi/2'(s) ),
= (r!(N)/8 logs) —(N), (7.1)

where the last equality is obtained by using the singlet
distribution function given by Eq. (6.19).

At this point we may call attention to a result ob-
tained by Bogoliubov's formalism in Colin's second
pap el.

where the second term represents the noninteracting
case.

In the remainder of this section we shall evaluate the
singlet distribution function because it is necessary to
find s as a function of p and X.

Three kinds of diagrams occur as in the case of the
p.d.f. Diagrams of the first kind, corresponding to free
particles, are easy to treat. One finds

8 1
uir(ri) =—gs/2(s).

'

(6.16)
1=1 (l—1)! X8

D()—1=L(1/p)')g/. (', )7—(g /") ')
Xgs/2(s)gi/2(s; s)gs/2(s; s) . (7.2)

Here we have used a for the hard-sphere diameter.
This coincides with the erst three terms of Eq. (6.15).
Colin' noticed the discrepancy between this expression
and the corresponding one in Colin and Peretti s binary-
kernel approach but argued that the difference was
inherent in the methods.

Returning to our results based on Boltzmann chain
diagrams we comment that Lieb" obtained results
similar to ours. In the process of evaluating the ground-
state energy he defined certain distribution functions
g&"&(ri, ~ ~ ~,r„) in terms of the wave function itself
rather than its square. His results are therefore funda-
mentally different from ours but the similarity is inter-
esting. He obtained

Diagrams of the second kind contribute

2a l—1 l—1
ui" (ri) = (l 1)!—Q—Q—Ni(N1N2)

X4 Ng, N2=1 (6.17)

Ni+Ns= l.
The factor Xl is due to the El positions available to
the reference particle, and (l—1)!corresponds to the
permutations of the remaining particles. Thus, adding
the equal contributions from diagrams of the third kind
and summing on l we have g(r) = 1—32vr'/ (48'p)'/'U(R) ' (r) a)

=0; (r(a), (7.3)
00 g 4a oo l—1 l—1

2 p urr(ri) = ——p S'p p Ni '/'N2
1=1 (l—1)! )I,4 1 2N1, /rs 1=

where
R 4(7rap) 1/2r,

(7.4)
= (—418/) ')gi/2 (S)gs/2 (S) ~

Combining Eqs. (6.16) and (6.18) we end up with

(6 1g) U(R) = (1/R8)(R)I1(R)—I.i(R)j
-392(R)—I (R)j).

p = (1/X )gs/2(s) (4u/X )gi/2(s)gs/2(s) ~ (6.19)
L. Colin, I. Math. Phys. 1, 87 (1960)."E. H. Lieb, Phys. Rev. 130, 2518 (1963).
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Using our notation
Z=r/r, =f. .

Equation (7.3) resembles Eq. (4.14).
The limiting forms of U(R) give

APPENDIX B: INTEGRALS ASSOCIATED
WITH TYPE-3 DIAGRAMS

We are concerned with the integral appearing in

a 128 app)'/'
a(r)=1—-+

15 )
(a&r«r, )

+IIB
(q)

where

e- 2' dPIe3'", (81)
P3/2 n,.~ $3/2D3

(appq I/2/r ~4
(r»r.).(wi (r) (7.5)

For large distances Lieb's g(r) —1 is greater than our
D'(r) —1 by a factor of 2. At short distances one may
compare the expression in Eq. (7.5) with Eq. (4.16)
which is expected from a higher order calculation.

Lowest order diagrams do not give a physically ac-
ceptable p.d.f. in the vicinity of r=u. This is because
the short-range behavior of the p.d.f. is essentially
determined by the two-particle cluster function of
Eq. (4.3) which is discontinuous at r=a when taken
to 6rst order in u. Continuity is recovered with the
second-order term and p/2& (r) 1 0 as r 1 a. This clearly
points to the desirability of a higher order calculation.

eP (el) 22dpl

// 4P '/' (nl+1)(e3+1)—n2e4
erfi! —

q
Sq 5 I (ni+n2+1)'/'(np+n311)'/2j

/r 4P)'/ nlnp (e2+—1)(n +1)—erfi! —
! q

I J (nl+n2+1)'/2(np+n3+1)'/2)

lr'l2D

(83)

n= (4P/l) (e2+np+1) (nl+n4+1);
Dg= (4p/l)L(n2+1) (n4+1) —nln37 —4pi,

(82)D'= (4P/t) (ni+e2+1) (n3+n4+1);
I=nl+n2+n3+n4+2

We note

APPENDIX A: EVALUATION OF THE
FOURIER TRANSFORM

We write

(1—n(n'+I) "')v=(n'+1) '"

where

We define

Q(ni, n2, np, n4, q)

erfi(x) = e"dt
~1/2

and note

(n'+1)"'
&p(t)e

—3'dt

"JI(t)
e ~'d$.

(A2)

((2/'+ 1)"+—I/} "', (A1)

1
X—exp

g

(n2+np) (ei+n4)
4pq2

e1+n2+ n3+ n4

2 ny+ng+ns+n4

(ei+n2+np+n4)"'(ni+e2) (np+n4)

Thus

0

(n'+ I)"'+n

1— 1/ sinr/f'dl/
(2/2+ 1)1/2

(elnp —n,e4) (4p) '/'q
Xerfi

(ni+ e2) '"(n3+ n4) "'(ni+ n2+ n3+ n4) '"
(85)

and note
Q(,P,~,s; q) = —Q(P,~,s,~; q). (86)Jp (t) JI(t)

dt. (A3) Thus
t2+f 2 t(t2+f 2)

Ke can mak. e use of the formula for Hank. el—Nicholson-
type integrals:

+IIB(q)— p Q(ni, e2,ep, n4, q).
P/ nl In2Mnr 1n4M

" J,(at)

tr (t2+ S2)

Thus we arrive at

LI„(as)—1.„(as)j
2gv+1

= (2r/2S"+I)G (aS)

The Fourier inversion of Q(e;; q) is

%312

Q(e;; q)e"2'dII= S(n;; r),
(4p)""

where S(e;;r) is defined in Eq. (6.12). Then Eq. (6.11)
follows from

1
»2/t' nr/=dr—/&p(f) ~I(i) (A5)

(r/2+ 1)1/2 2

1
(r) — +IIB(q)e2ip rdq

(22r) 3
(89)


