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Generalized Ward-Takahashi Identities and Current Algebras*
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Generalized Ward-Takahashi identities are written for current algebras generated by conserved and
partially conserved currents. The application to meson-baryon scattering is discussed and expressions for
the scattering lengths are derived. An approximation is obtained for the real part of the low-energy forward
meson-nucleon scattering amplitude; this gives sum rules for the low-energy phase shifts. Some questions
arising from off-mass-shell extrapolations are discussed.

I. INTRODUCTION

~

'HE relations between measurable physical quanti-
ties, following from postulated equal-time com-

mutation relations between vector and axial-vector
currents and local-field or source operators, have
attracted much interest during the past year. Fubini,
Furlan, and Rossetti' showed that equal-time com-
mutation relations of the kind suggested by Gell-
Mann' lead to a large class of sum rules; in recent
months several such relations have been obtained by
various authors for a variety of particle phenomena.

In this paper we write down the generalized Ward-
Takahashi identities for a current algebra generated by
conserved and partially conserved currents, and use
these for obtaining some results for two-body reactions. '

In addition to the simplest relations obtained by
generalizing the Ward-Takahashi identities of electro-
dynamics, 4 we also write down the relations obtained
from partially time-ordered operator products. These
two sets of relations give a class of exact consequences of
the current algebra (and of the conditions of conserva-
tion or partial conservation of the currents) for physical
amplitudes and their absorptive parts. '

These exact consequences of the current algebra,
which give information about amplitudes in certain un-
physical limits, may be combined with dynamical

assumptions like dispersion relations and unitarity to
give simple low-energy approximations for physical
amplitudes.

In Sec. II we write down the generalized Ward-
Takahashi identities for the algebra generated by the
time components of the vector and axial vector current
densities. In Sec. III we derive a few relations for meson-
baryon scattering; some questions arising in connection

*Work supported in part by the U. S. Atomic Energy
Commission.

' S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40, 1174
(1965), and various subsequent papers.

' M. Gell-Mann, Physics 1, 63 (1964); Phys. Rev. 125, 1067
(1962).

'A brief summary of the basic ideas has been given by K.
Raman and E. C. G. Sudarshan, Phys. Letters 21, 450 (1966).

4 J. C. Ward, Phys. Rev. 78, 182 (1950);Y. Takahashi, Nuovo
Cimento 6, 371 (1957);T. D. Lee, Phys. Rev. 95, 1329 (1954).

5 In electrodynamics the idea that the Ward-Takahashi
identities could be used for expressing the restrictions arising from
gauge invariance in a theory without a Lagrangian was suggested
by Nishijima; see K. Nishijima, Phys. Rev. 119, 485 (1960).

154

with oR-mass-shell extrapolations are discussed in an
Appendix. In Sec. IV we summarize our conclusions.

II. GENERALIZED WARD-TAKAHASHI IDENTI-
TIES FOR THE ALGEBRA OF VECTOR

AND AXIAL-VECTOR CURRENTS

In this section we shall write down the generalized
Ward-Takahashi identities (GWTI) for the algebra
generated by the time components 'U '(x) and 8 s(x)
of the vector and axial-vector current densities. Methods
similar to that used in obtaining the relations given here
have been used by other authors. ' However, we work
throughout with vacuum expectation values of products
of operators, and our relations differ in detail from those
of the other authors; we shall therefore write them down
here.

We first consider a conserved vector current. For
simplicity, we shall write the equations for a four-point
function; these may be immediately generalized to an
ri-point function. Let 'U &(x) denote a conserved vector
current, ys(y) a pseudoscalar field and P~(s) a spin-rs

baryon field. The Greek subscripts n, P, y, refer to
the SU3 component; for definiteness we consider SU3
octets here. Current conservation gives

Define
8„V.~(x) =0. (2.1)

Wv~ = d'xd4yd'sd'm

where
X[expi (pr s p,"w+rjs y qi —x)]rvt', (2.—2)

rv"=(0~ T('U."(x)s s(y)P, (s)4.(to)) IO). (2 3)

The function (2.2) may be related to the transition
matrix element for the process V +B,—+ Ps+B„,
where B~, 8, are spin--', baryons, V is a vector meson,
and I'p a pseudo. calar meson.

Using (2.1) a;id the commutation relations (CR's)

L'U '(x) x (y)33(xo—yo)=&f- x (y)3(x—y) (2 4)

where

e V. Alessandrini, M. A. B. Beg, and L. S. Brown, Phys. Rev.
144, 1137 (1966).

7 S. Fubini, Nuovo Cimento 43 475 (1966).
s W. Weisberger, Phys. Rev. 1/3, 1302 (1966}.
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@re obtain

8
rv" (~yz~) =~(* y)—if-zz «I T(~z b)4v(z)4. (~)) I 0)+~(* z—)if-~r (oI T(z zb)4'(z)4. (~)) I o)

Bx'" —~(*— ) f-"«IT(vzb)f. ()k-( ))Io) (25)

Here, if zr are the totally antisymmetric structure constants of SU8.
Equation (2.5) gives the GWTI for the function (2.3) in configuration space; it is a direct generalization of

the analogous result in electrodynamics. The Fourier transform of (2.5) gives the GWTI in momentum space

~.~."=f-zz ~ 9'v )+f-„~(ev'.)-f.- ~ (Ov"),

where V'r& is defined by (2.2) and the functions F; are defined as follows:

(2.6)

Vi(P'yo)= d yd zd'w{expif(q2 qi—) y+pg z p; w]—)ri(y, z,ro; P'yo), (2 &)

pm(ay'o) = d'yd'zd io{expiggm y+ (pf —gi) z—P,"rof}r2b,z,ro; Pp'o), (2.8)

F3(Ppo') = d'yd'zd'w{expifq2 y+pr z (p;+—qi) roj}r3(y z io Ppo'). (2.9)

The functions ri, r2, and rl are given by the vacuum expectation values on the right-hand side of (2.5) taken in
that order.

We next write down the GWTI for a partially conserved axial-vector current satisfying

B„e."(x)=C p.(x). (2.10)

Consider the functions 7 z& and 9 z& obtained by replacing "U & in (2.2) and (2.3) by 8,&. Proceeding as before,
we obtain instead of (2.6) the equation

qi„V'g = i (p,
' q1') '—C.v'p+—d.pz X1Qt'ya)+h. „.ysg2(Py'o. )—h ...bz(Pyo')ys.

In obtaining this, we have assumed the CR's
1

L~.'( ),~z(y) j~(*.-y.) =h-z, '~.~,b)~(*-y),

L@-'(~),v «(y) j&(» yo) =id-—z.t .(y) &(~ y), —

(2.11)

(2.12)

(2.13)

where t ~(y) is a scalar operator. The coeKcient h zr may be obtained either by assigning the baryon field operator
to a definite representation (or mixture of representations) of the algebra or by de6ning it in a composite-particle
model. The coeKcient d zr in (2.13) was suggested by a quark model.

In (2.11), 9'i and Ki are defined by

9"p= d'nPyd'zd'ioexp[i(Pr z P; w+—q2 y qi x)](—p„'+0,')(OI T(y (x)qz(y)f~(z)P. (w)) IO); (2.14)

Beirut'po)= d'yd4zd'ioexpfi(q2 qi) y+—Pz z . P, wj(0—IT('{'p (y)4, (z)4.(w))I0). (2.15)

Here fz. (y) is defined by (2.13), and b~ and g~ are
delned by equations analogous to (2.8) and (2.9)..

The equations (2.6) and (2.11) may be generalized
immediately to arbitrary n-point functions; these may
be used for obtaining relations for production ampli-
tudes. Such applications are under investigation.

We note that Eqs. (2.6) and (2.11) are exact relations
valid for all momenta, and follow directly from the

current algebra without any use of the analytic proper-
ties of the amplitudes. By combining these relations
with assumptions about the analytic properties and
other dynamical assumptions like unitarity, one may
derive various relations for physical amplitudes.

Further restrictions implied by the current algebra
are obtained by adding a second set of equations, ob-
tained by replacing the T product in Eq. (2.3), for
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qlpq A (pa ql ) q py (2.18)

where E'&& and E'I are defined by taking 0', & and p
outside the time-ordering in the definitions of
and ~p.

Here, all quantities defined by replacing the T
products by a partially ordered product as in (2.16) will
be denoted by a prime. When we write these equations
in terms of partially ordered R products, they give equa-
tions for the absorptive part of the amplitude.

Equations (2.6) and (2.17), and Eqs. (2.11) and
(2.18), are the generalized Ward-Takahashi identities
for the functions Wz& and V&&, respectively, and their
absorptive parts. When the baryons are on the mass
shell, Eqs. (2.6) and (2.11) reduce to equations derived
by Alessandrini, Beg, and Brown, ' and by Fubini, ' and
Eqs. (2.17) and (2.18) to equations derived by Fubini. '

The function T&I", defined by

i(2~) 5(p;+qi py q2)T—v"—
=n (pr) ( gpss+—mr) (gati' q')—

X q'i &(—y p;+m;)N(p;), (2.19)

and the corresponding function T~I' describes matrix
elements with all the external momenta off the mass
shell.

In the special case where the external momenta are
on the mass shell, Eqs. (2.6) and (2.17) give

instance, by a partially time-ordered product:

r'~"(ys~ *)=&0!T(v~(y)4 (s)4.(~))~. (*)lo&. (2.16)

We define E'yI' as the Fourier transform, defined as in
(2.2), of r'p&.

Going through the same procedure as above, we ob-
tain the following equations:

(2.17)

of Pi. Equation (2.22) gives the consequence of current
conservation for the "photoproduction" amplitude T~f'
when the meson &pp LSee Eq. (2.3)j is off the mass shell.

H p; or pr is kept off the mass shell, there is an
analogous contribution from the F2 or Fq term in (2.6).
Similar statements can be made for q»T&I'. Note that
for T'vl' and T'~l', (2.20) and (2.21) still hold

In using a relation such as (2.6) and (2.11) in the
limit q~

—+ 0, one should separate the proper and im-
proper parts on either side of the equation; the ambigui-
ties arising from the improper parts in the limit q~ ~ 0
are then seen to cancel each other, as observed by
Alessandrini, Beg, and Brown, 6 and by Weisberger. 8

III. APPLICATION TO TWO-BODY REACTIONS;
MESON-BARYON SCATTERING

We first write down the GATI involving the ampli-
tude for the scattering of a pseudoscalar meson on a
spin-~ baryon.

Define the function

rz&~" (xysw)

=(0I T(ai."(x)&2t "(y)A(s)0.(~)) lp) (3 1)

its Fourier transform

Vg~""(qipgqmpr)= d xd yd sd w

X[expi(pr s p,'u+q—2 y qi x)jr&—z&", (3.2)

and the amplitudes M~~&" and T~~&":

i (2~)'b(p;+qi pr qp)M—zz""—
= ( Vp~+m~) q —""( ~.p'+m~) '—

(2.20) »~""=I (px)~»""N(p') (3.4)

which are generalized Goldberger-Treiman relations.
The amplitude T~ is defined by replacing TyI" and V ~&

in (2.19) by T„and. Vz, respectively, and using (2.14)
for TI. T'yI" and T'~I" are defined in terms of 1"'y& and
q"'&& by equations similar to (2.19).

When one or more of the momenta q2, P;, or Pr are
kept oQ the mass shell, additional terms appear in the
expressions for q»T&& and q»T&I'. Thus when q2 is kept
off the mass she]1 and p;, pr on the mass shell, one
obtains

qlpTv = fapp'Fl y (2.22)

where Fi is defined by replacing Tzl' and q v& in (2.19)
by Fi and Pi, respectively, and using the definition (2.7)

which are the conditions imposed by current conserva-
tion, while (2.11) and (2.18) give

—iC —iC
qlpTA = Tp p qlyT A T p y (2 21)

We take all the operators here to be octet operators
under SU3.

When evaluating the divergence of (3.1), first with
respect to x~ and then with respect to y", we en-
counter terms involving the equal-time commutators
$8 '(x), 8p"(y)g and LCp'(x), qr, (y)g. For these we
assume the following CR's:

(&-'(x),~P"(y) 3~(x —
3 )= if-P.'U."(y)~(x—3)

(Here i is not summed over in the second term on the
right. )

L~s'(x), v' (y)j~(»—yo) =id' t- (y)~(x—y) (3 6)

In (3.6), f .(y) denotes a scalar operator; the coeK-
cient d p is suggested by a quark model. In (3.5), the



K. RAMAN AND E. C. G. SUDARSHAN

second term on the right-hand side is the simplest form
of the Schwinger term, s with p s(x) = ps (x).

When P;, Pf are kept on the mass shell and qi, qs off
the mass shell, we obtain the following relations:

qlpTAA = z(p(P qi ) C(gTpA

if-—ss ~s "(P'v~) D—~"'jqt"~-s; (3 7)

(3.4). Trr is defined by repla, cing Ct & and Css" by
pi~, qrss respectively in (3.1), operating with X,X„and
substituting this for r~~&" in (3.2)—(3.4). X„X„arethe
Klein-Gordon operators (p '++,') and (floss+ Q „'),
respectively. T» is the amplitude for the meson-baryon
scattering process

qs Tr~"= s(fop—' qs') —'CsTi'r
id-p .X (n'd'or); (3.8)

I' +8,-+ I's+8„,
qt pr qs pf

(3.10)

ql q2 TAA""= (fz.' qt ) '—(fzs' qs ) '—C.&sTPP
+d p ..(p,.'—qts)

—'C.X(a'7o)
—if-ss qs&s "(P'v~) —(e qs)5'-s (3 9)

Here Tr ft" is defined by replacing Gt~& in (3.1) by the
meson field operator y~, operating on the resulting
function by X„and substituting this for rzz&" in (3.2)-

with momenta as indicated; here, I' and I'p are
pseudoscalar mesons and 8, and B~ are spin-~ baryons;
n, P, y, o are octet indices.

The function 5 s in (3.7) and (3.9) arises from the
Schwinger term in (3.5), and is symmetric in tr and P;
in (3.7) there is no summation over p.

Fp." is defined by

Fp "(p'ya)= d'xd'sd tt expi[(qs qi)—x+pf s p, z—]tI("pf)( 7pf+—mf)

X(OI T('Us "(x)tP~(s)P, (to)) I0)( yP—;+m)u(P, ), (3.11)

and is related to the vector form factor of the baryon by

-m;mg-'I'
(Pfl&s "(o)IP.)=i'

P~ Pf- (3.12)

As is well known, when the CR (3.5) contains the Schwinger terms the time-ordered function (3.1), and hence
the amplitude (3.4), is not a Lorentz-covariant function. ' By adding suitable terms to the time-ordered product
one may obtain a covariant function and a covariant amplitude. "If Tzz&" in (3.7) and (3.9) is replaced by this
covariant amplitude, we can obtain relations in which each term is covariant. In these relations, the last terms in
(3.7) and (3.9) would be replaced by terms of the form q»R s&" and qt„qs„E s&", respectively, where R sI'" is a
covariant, nonsingular function, with R pl""=Ep "I"; it may be zero in special cases."A similar statement holds
when the Schwinger term in (3.5) is of the more general form

8
Lp ss'(x)8(x —y)j, k, i=1, 2, 3& with p "'=ps

'~
p s's=0= p ss

Bx~

(see Brown, Ref. 10). In the following we shall assume that we are dealing with Eqs. (3.7) and (3.9) written in
terms of the covariant amplitudes; the latter will be written in the same notation T~~I"", etc.

The function X(n'yo) is defined as

X(tr'yo) = d4xd'sd'w expil (qs ql) 'x+p f 's p''~ j(P ql )t2(pf)( 7'pf+mf)

X(0IT(t';(x)p, (sV"(tt'))Io)(—v p.+m)"(p~). (3 13)

0' '(x) (fs'(y) ~(xo—yo) (3.14)
~$0

which is seen, on using the PCAC (partially conserved
axial-vector current) hypothesis, to be closely related to
the left-hand side of (3.6), has been studied by
Kawarabayashi and Wada. "These authors show that in
certain models this matrix element is small.

' J. Schwinger, Phys. Rev. Letters 5, 296 (1959).
' K. Johnson, Nucl. Phys. 25, 431 (1961);J. D. Bjorken, Phys.

Rev. 148, 1467 (1966); L. S. Brown, ibid. 150, 1338 (1966);
D. G. Boulware (to be published). We are grateful to Dr. D. G.
3oulware and Dr. I.J. Muzinich for a discussion of the Schwinger
terms.

"That R p&" is a nonsingular function follows if one assumes
that the covariant amplitude and the time-ordered amplitude have
the same singularities in the 6nite part of the energy plane, and
dijI'er only in their asymptotic behavior.

~ K. Kawarabayashi and W. Wada, Phys. Rev. 146, 1209
(1966).

The occurrence of a term of this type was commutator
noted by Weisberger', the matrix element of the
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f-ss I'( '"(A ) 'L -, s7-~"(v ),
(Ep..x (n'yo) ~ b.px(yo),

(3.17)

on restricting the indices to the isospin subgroup.
Here we have written the relations for the covariant

amplitudes T~~I""'+) and have defined the amplitudes
TggI""&+ and T»'+ by the decomposition

T,.= S,.T(+)+ ', f~,,r.7T(-),-(3.18)

where T denotes T~~I""or TI p. A similar decomposition
defines RI""(+)

We also write

T(+&=u(pr)M(+&u(p;),
~(k) —g (6)+(y. Q)g (+)

and introduce the variables

(3.19)

v=q( (p;+pr)/2m&, v)) —— q) q&/2—mz,
(3.20)

s=(p;+q~)'=W'; t=(p,—pr)', u=(p, —q2)'.

The amplitudes T, 3f with definite isospin I are
given in a well-known way by

T""'=T'+'+2T( )
i

T""'=T'+' T' ', etc. (3.2—1)

To obtain relations for the 5-wave scattering lengths,
we consider forward xE scattering, and put g~= q2= q.
Multiplying Eqs. (3.15) and (3.16) by (y '—q')' and
taking the limit q —+0, qp

—+0 in the c.m. frame, we
obtain the following relations:

m'~
limoges' 1— =lim —v p, 4C'T( )

p 2j
(3.22a)

0=u 'C' limT(+)+u 'Ch(ya) (3.22b)

Since there is no evidence for the production of scalar
mesons in reactions involving baryons, we expect that
matrix elements like (3.13) are small.

For the absorptive parts T'~~I"", T'I ~", and T'~~ of the
amplitudes T~~I"", TI~", and TI I, we obtain relations
similar to (3.7)—(3.9), which have on their right-hand
sides only the terms corresponding to the first term on
the right-hand sides of (3.7)—(3.9).Together with (3.7)-
(3.9) these may be used for obtaining relations involving
integrals of the absorptive parts, similar to those
derived by Fubini. ~

We now derive relations for xE scattering, restricting
the SU() indices in Eqs. (3.7)—(3.9) to the isospin sub-

group. Separating Eq. (3.9) into equations for the
amplitudes symmetric and antisymmetric in the isospin
indices, we obtain

q).q2, T~~""( )=C.'(I-.' qP) '(I—.' q') 'T—»( '

yq, „F"(yo)+q(„q2.R&"( &, (3.15)

ql q2 TAA" =C ()M ql ) (9 q2 ) TPP

+ ()((
'—qP) 'C.BC(ya)

+q)„qg„R&"(+), (3.16)
where we have put

The limits involved are q —+ 0, qp
—+ 0. We note that

the last terms on the right-hand side of (3.15) and
(3.16), as well as their derivatives with respect to v,
vanish in this limit, as 8&"&+) are nonsingular, so that the
Schwinger term in the CR (3.5) will not contribute to
relations for T(+) and BT(+)/Bv following from (3.15)
and (3.16) in the limit q +0,-qo —+ 0. The same is true
when the Schwinger term is of the more general form
mentioned earlier. The function h(ya) in (3.22b) is
defined by

h(yo) = lim Se(y(r).
q~p, qg-+p

(3.23)

The left-hand sides of Eqs. (3.22) arise from the Born
terms; we have here treated the neutron and proton
masses as degenerate. "The zero on the left-hand side
of (3.22b) arises from the limit, as q( ——q, =q —+ 0, of a
term proportional to (q&

—q)) q(/p, pr . This term and
its derivative with respect to v both vanish in the limit
q ~ 0. We note that the term BC in Eq. (3.16) is inde-
pendent of v Lsince from (3.13), K can depend only on
pp, pp and (qq

—q2)'= t7. One then obtains the following
relations:

»mT( —) =0;
8

lim —T&—
&

Bv

G'I).'(0)
; (3.24a)

2gg m

limT&+) =
—Gl(."(0) - ()

h; lim —T&+~ =0,
mgg Bv

(3.24b)

where again the limit involved is q ~ 0, qp
—+ 0, which

may alternatively be expressed as (1—)0, p=g(q') —+ 0,
i.e., it is the limit of zero-energy forward scattering of
pions of zero "external" mass p. In obtaining these we
have used the relation

ggmp
C =

GE(0)

m= mN p= p, G= G~~
(3.25)

where E(t) is the pionic form factor of the nucleon for
momentum transfer t.

Relations similar to (3.24) may be written for the
proper parts T„'+) of the forward scattering amplitudes
at q=0 qp=0. For this we separate out the pole terms
on each side of Eqs. (3.15) and (3.16), note that they
cancel, and then take the limit g

—+ 0, qp
—+ 0. This gives

the following equations:

limT„(—& =0;
8 G21(.2 (0)

lim—T„( &= (1—g~ ) (3 26a)
Bv 2g~ m

G'E'(0) GE (0)
limT„(+) = h; lim—T~(+) =0. (3.26b)

m mgg pl p

"When the intermediate baryon has a mass different from the
initial baryon, the Born terms that give rise to the left-hand side
of Eqs. (3.22) vanish in the limit q~ 0, qo~ 0; their derivatives
also vanish. Equations (3.24) are again obtained,
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To compare Eqs. (3.24) and (3.26), we note that the
limit of the Born terms

Gs( p
—1

a&+&=
i 1+

m

G2
T;~P&+ (P,P») = P E'(0)

2m
are given by

(3.27)
P&-r

—P P&&+ P

h p'/4m'—
(3.33b)

ggGE (0) 1—p'/4m'

G'E'(0)
=p4C 2gg2,

8
lim—T; p(—&=

BP Gsp ( p
—i

8rrmsg~s «m
2m2

(3.34a)
G'E'(0) c&

lim—T; p&+& =0, (3.28b)
m BP

limT; p(+~=— —Gh p
a&+& = 1+

4mmsggE(0) m
(3.34b)

where the limit is again q ~ 0, q0
—+ 0.

These are obtained from (3.27), on writing As the Born terms vary fairly rapidly with P for
small P,'4 and as the amplitudes T„'+) vary more slowly
than T'+~,"' it seems to be a better approximation to
extrapolate TP&+& using (3.30) and add the exact Born
terms than to extrapolate T&+~ directly. However, the
extrapolation from P=O, t=0, q'=0 to the physical
threshold involves an extrapolation in p—=g(q') as well
as in P, and it is useful to examine quantitatively the
difference between the two extrapolations.

For the experimental values of the S-wave scattering
lengths, we take the estimates of Samaranayake and
Woolcock (referred to as SW)'r:

8

BP
P'&~P + (P) Ti~y + (0)j=lim, (3.29)

v~0 P

putting P» = —q'/2m, and taking q —+ 0, qs
—+ 0.

Note that the vanishing of T' &, BT&+&/BP, etc. , in
(3.24), (3.26), and (3.28) at P= 0 follows from crossing
symmetry.

To obtain the scattering lengths we need the values
of T&+' at the physical threshold P=p, t=0, q2=p, 2.

The extrapolation of the amplitudes T'+) from P=O,
t=0, q2=0 to the physical threshold may be performed
in two ways.

One may start with (3.26) and assume the following
extrapolation for the amplitudes TP&+&(P,f,qp, qs'):

ag =0.183~0.017; as = —0.109&0.010; (3.35a)

(3.35b)a'+& = —0.012&0004 a' & =0.097&0.007.

The estimates given by other authors" for a( & agree
with (3.35b) to about 10-12%, while those for a&+&

differ considerably. We also assume G» s/4m=14. 6,
gg= —1.18.

Equations (3.33a) and (3.34a) differ by the last term
on the right-hand side of (3.33a), which is only about
0.8% of the first term. In (3 33b), th.e first term on the
right is unknown; the left side is also not known to any
degree of accuracy. However, the second term on the
right-hand side of (3.33b) is seen to be comparable in

T„&+&(p,,0,0,0)= T„&+&(0,0,0,0)

8
+p T„&+&(p, 0,0,0) i „s,—(3.30a)

BP

T &+&(p0p, 'p, ')=T &+&(p000)/E'(0) (3.30b)

Using Eqs. (3.26) and (3.30) and adding the exact
Born terms for q'= p,

' Lwhich are obtained by dividing
(3.27) by E'(0)j, we obtain T&+& at the physical
threshold. Using the definitions of the S-wave scattering
lengths,

'4 Note that although the slope of the Born term in T(+) vanishes
at P=O (because of crossing symmetry), this slope itself varies
rapidly, and gives rise to a rapid variation of the Born term in T&+).

"That T„(+) vary more slowly than T(+) at low energies for
the physical amplitudes may be seen from the experimental phase
shifts. At the unphysical values of v and of q' of interest here, a slow
variation may be shown by assuming a dispersion relation in v.
For q~=p~, the absorptive parts may be evaluated in terms of
total cross sections; one expects that going to q~=0 should not
alter the properties of the amplitudes appreciably.

'6 A quantitative study of these features and of higher order
terms in the amplitudes will be reported elswehere.

"Y.Samaranayake and W. I, Woolcock, Phys. Rev. Letters
15, 936 (1965)."See, for example, J.Hamilton and W. I.Woolcock, Rev. Mod.
Phys. 35, 737 (1963). These authors give ar=0.171&0.005;
u, =—0.088&0004' from which we obtain u( )=0.086&0.009;
u(+) =—0.0025a0.013.

m f —p'
M&+&( jc,

4&r (m+p) E 2m
(3.31)

a&+& =-;(ar+2as); a&—
& = —',(ar—as); (3.32)

vre obtain

G'p p,
' p'/4m'

1+— g~ '+
8' m' m 1—ps/4m'

(3.33a)

Alternatively, we may start with Eqs. (3.24) and
assume an extrapolation analogous to (3.30) for the full

(3 28a) amplitudes T '+'. This gives the following results:
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magnitude to the left-hand side, so that (3.33b) and
(3.34b) differ significantly.

Equations (3.33) give the following expressions for
Gy and 83.'

G'&4 ( 14
—' (&4/4m) (1 &—4/m)

I1+— g~ '—
4~ms( m

—G'1 t'

I 1+—
I

8~ms & m)

(3.36a)
&4ggGK(0)

p/2m 2m&
x g~'+ +

1—p/2m 14ggGK(0)
(3.36b)

Using the experimental estimate of c(+~ given by
SW I see Eq. (3.35b)5 in (3.33b) gives k=0.02K(0);
the term with Js contributes about 1-2% to ut and us

Lassuming K(0) to be not too different from unity5 and
may be neglected. Equation (3.33a) gives a& &=0.102,
which agrees reasonably well with (3.35b). In terms of
a~ and a3, the results are a~=0.192, as= —0.114.

We finally note that using (3.34) and neglecting Is

gives 8+ =0, and' '
at= 2as=—G'1L44vrgz'm'(1+@/ m)5 '=0 202 . (3.3.7)

Relations similar to (3.36) may be derived for the
other meson-baryon scattering lengths. Further ques-
tions arise in connection with E-meson scattering
lengths; these will be discussed elsewhere.

The derivation here shows the occurrence of the
term X(y&r) in Eq. (3.16) when qi, qs are kept off the
mass shell. The reason why this term occurs in our
equations and not in those of some other authors" is
analyzed in the Appendix; it is related to the ambiguity
in dining off-mass-shell extensions of S-matrix
elements.

We note in passing that the second equation in
(3.26a), together with an unsubtracted dispersion
relation for Ts & &/v, gives the Adler-Weisberger
relation "

We shall 6nally obtain a rough approximation for
low-energy forward mE scattering, starting with the
values of the sAr forward scattering amplitude and its
derivative (with respect to &) at the unphysical limit
v=0, q~'=q2'=0, which are obtained from the current

"Other authors who have obtained these expressions for the
S-wave scattering lengths are Y. Tomozawa, Institute for Ad-
vanced Study, Princeton, New Jersey (to be published); A. P.
Salachandran, M. Gundzik, and F. Nicodemi, Nuovo Cimento 44,
1257 (1966); B. Hamprecht, Cambridge University, Cambridge,
England (to be published); and Ref. 20 below.' S. Weinberg, Phys. Rev. Letters li, 616 (1966)."S.L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
140, 8736 (1965);W. I. Weisberger, Phys. Rev. Letters 14, 1047
(1965).

algebra, and extending the extrapolation (3.30) (and
the analogous one for T&+&) above threshold. We shall
write down the expressions resulting from (3.26) and
(3.30), as well as those obtained by starting with (3.24)
and extrapolating T(+), and examine whether there is
any empirically significant difference between the two
extrapolations.

Equations (3.26) gives the values of ReT„&+& and
&) ReTs'+&/&)& at & =0 (for q'=0) and state that ImT„&+&

and &) ImT„&+&/&)v vanish at this point. Assuming that
ReT„&+) are continuous and slowly varying functions
of v for small v, we write

8
ReT„'+' (& )=ReT„&+&(0)+v —ReT„'+&

Bp
(3.38)

ReT&+&(&, 0) =
—Gh G' &44/4m'

mggK(0) m v' &44/4m—s
(3.39a)

ReT& &(&, 0) =
25$ gA

Gs& (—is+&4'+p, /4 4)m
(3.39b)

v' —&a4/4m'21n2

The alternative extrapolation starting with Eqs.
(3.24) for ReT&+' gives the following:

Gh
ReT&+&(v, 0) =

mggK(0)
(3.40a)

G'v
ReT& &(v, 0) =

m2gA~
(3.40b)

The expressions (3.39) and (3.40) differ by the last
terms in the right-band sides of (3.39a) and (3.39b). The
last term in. the right-hand side of (3.39a) is comparable
to the left-hand side, so that there is a significant diKer-
ence between (3.39a) and (3.40a). At threshold, the

for small u, As the lowest "internal" threshold, i.e., the
threshold for the (vr+X) intermediate state with a
maSSiVe piOn, iS at v=p+14s/2m (fOr qts=qs'=0), the
imaginary parts of the amplitudes are zero below the
branch point at »=p, +p,'/2m (and become nonzero
above this point), and the vanishing of ImT„&+& and
their derivatives with respect to s at v=0 does not give
any indication of the behavior of ImT~(+& above the
threshold. (Note that the real parts of the amplitudes
are continuous at the threshold branch-point, although
the imaginary parts rise from zero to a nonzero value. )

Using (3.38), assuming a relation analogous to (3.30b)
for ReT~&+' at small v, and adding the exact Born
terms, we obtain the following low-energy approxima-
tion for the real part of the forward xE scattering
amplitude T(&,1) (with massive pions):
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TABLE I. Comparison of the expressions for ReT(+) for low-energy ~S forward scattering edith experiment.

Pion lab
kinetic
energy

(in MeV)

0
6

10
15
20
25
31

EReT& &/&

1.45
1.34
1.27
1.19
112
1.04
0.96

LReT&-&$2

1.46
1.52
1.56
1.615
1.67
1.725
1.785

LReT &-&].„„
1.24
1.13
1.06
1.0
0.94
0.845
0.75

LReT&+& jg
—0.173
—0.161
—0.154
—0.146
—0.138
—0.131
—0.124

pReT&+&$2

—0.173
—0.173
—0.173
—0.173
—0.173
—0.173
—0.173

(ReT &+&g.,vt,

0.334
0.198
0.21
0.224
0.237
0.248
0.26

a LReT (~)jx are the values obtained from (3.39), and LReT &*)g2 those obtained from (3.40). LReT(+)„l1 and t ReT(+)ja agree at zero energy because they
were both obtained from the s{attering lengths a(+) as given by SW {Ref. 17). t ReT(+)gexpt dre obtained from the phase shifts of RWF {Ref.22).

last term in the right-hand side of (3.39b) is negligible
compared to the 6rst term; however, at energies above
about 6 MeV (pion lab kinetic energy), the difference
between (3.39b) and (3.40b) becomes appreciable.

Writing the partial-wave expansions of ReT(+) and
keeping only the 5, I', and D waves, we may express
Eqs. (3.39) in the form of the following sum rules for
the low-energy phase shifts:

sin28&&++sin2I&& +2 sin2I&q++2 sin28, +3 sin282+ ——
qG' v p' (v —p'/4m) h——(1—gg-')+—

2n.W m m v' —&«'/4m' g~GK (0)
(3.41a)

sin2»&&++sin2»& +2 sin2»&++2 sin2»2 +3 sin2»2+= (1—gg 2)—
2mB' 2m v —p'/2m AGE (0)

(3.41b)

In these, 5~+ denote the I=—', phase shifts and g~~ the
I=-', phase shifts.

One may similarly write down the sum rules following
from (3.40).

To compare these relations with experiment, we use
the estimate of h obtained from the experimental value
of (a&+2a~), 'r and the low-energy phase shifts given
'by the 0—350-MeV solution of Roper, Wright, and
Feld (RWF)"

The values of ReT' ' and Re T'+ at low energies pre-
dicted by (3.39) and (3.40) are shown in Table I,
together with the values obtained from the phase shifts
of RWF. The phase shifts at 10, 15, and 25 MeV were

, obtained by interpolation from the values given

by RWF.
As the value of h Lin (3.39a) or (3.40a)] has been

obtained by using the experimental value of a&+& (as
estimated by SW), and as the latter is not known

accurately, the predictions for ReT(+) in Table I are
useful only in showing the nature of the variation with
'energy of ReT(+), rather than in giving its absolute
magnitude.

The 0—350-MeV solution of RWF was obtained by
an over-all fit to the data between 0 and 350 MeV, and
is not expected to give accura, te values of the low-

energy phase shifts. Thus, for the scattering amplitudes
at threshold, these phase shifts give T( )=1.243 and
T(+)=0.335, whereas the estimates of SW for the
scattering lengths" (which were obtained from integrals

~ L. D. Roper, R. M. Wright, and 8. T. Feld, Phys. Rev. 1/8,
B190 (1965).

over total cross sections and are expected to be more
reliable) give T' &=1.46, T'+&= —0.173 at threshold.
The threshold value of T'+' obtained from the estimates
of RWF differs even in sign from that obtained by SW;
one would therefore not expect the predictions for
ReT(+' obtained from the phase shifts of RWF to be
reliable at energies near the threshold. However, at
energies not too close to threshold, the qualitative
variation of ReT'+' with energy is probably given
correctly by the estimates of RWF. For ReT' ), the
estimates would be more reliable, although not accurate
numerically. We shall compare below the nature of the
variation with energy of ReT'+' and ReT' ) as pre-
dicted by (3.39) and (3.40) with that of the experimental
values obtained from the estimates of RWF.

Table I shows that ReT& & as predicted by (3.39b)
decreases with increasing energy (at low energies), as do
the experimental values, whereas (3.40b) predicts that
ReT( ) should increase linearly with energy. Also, the
numerical values predicted by (3.39b) are closer to the
experimental values than the predictions of (3.40b).

Equation (3.39a) predicts that ReT'+& should increase
slowly with energy, whereas (3.40a) predicts that it
should be constant at low energies. Above 6 MeV, the
experimental values increase slowly with increasing
energy, in agreement with (3.39a); at lower energies the
predictions obtained from the phase shifts of RWF are
probably not reliable, as observed earlier.

More accurate values of the phase shifts in the low-
energy region are needed before definite conclusions can
be reached about the quantitative agreement of the
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predictions with experiment. However, the available
estimates already suggest, for the amplitude T' ', that
with the simple method of extrapolation used here, the
procedure of extrapolating the proper part of the ampli-
tude linearly and adding the exact Born term gives a
better approximation than extrapolating the total
amplitude linearly. As stated earlier, this may be
expected, because the Born terms vary relatively
rapidly at low energies, and the proper parts of the
amplitudes vary more slowly with energy than the full

amplitudes.
Further results on meson-baryon scattering will be

discussed in subsequent papers. "
IV. CONCLUSIONS

In this paper we have discussed how the generalized
Ward- Takahashi identities for a current algebra
generated by conserved and partially conserved currents
may be used for deriving relations for physical ampli-
tudes and their absorptive parts. We have illustrated in
the simple example of meson-baryon scattering how the
exact consequences of the current commutation rela-
tions and the PCAC hypothesis, which give the scatter-
ing amplitude and its derivative in an unphysical limit,
may be used as boundary conditions starting from which
one may obtain the scattering lengths and simple low-

energy relations for a physical amplitude.
We have examined some questions that arise in

making an off-mass-shell extension of an S-matrix
element, and have shown how using the PCAC hy-
pothesis at different stages of a reduction procedure can
give different results when some of the momenta are
off the mass shell. '4 We suggest that in order to make
explicit the questions arising in off-mass-shell limits,
one should reduce the S-matrix element completely to
the Fourier transform of a vacuum expectation value
before using relations between local operators such as
the PCAC hypothesis and current commutation rela-
tions. This ensures that all the terms that should occur
on using such relations are taken into account. This will

be further discussed in a separate work.
In subsequent papers we shall discuss further results

for two-body reactions and for the production of low-

energy mesons" in a general process involving a multi-

particle final state.
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where x, is the Klein-Gordon operator (+,2+/42).
Removing the derivative from the matrix element in

(A1) gives
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On the other hand, taking the derivative out in (A2)
and integrating by parts gives, in addition to (A4), a
term
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APPENDIX

In this Appendix we examine why the extra term K
obtained by us on the right-hand side of (3.8), . (3.9),
and (3.16) does not appear in the derivation of some
other authors. ' We analyze this explicitly as it illus-
trates the questions arising in off-mass-shell limits.

We keep the baryons on the mass shell throughout,
and therefore leave them in the state vectors for the
initial and final states.

Using the PCAC hypothesis, the matrix element for
AS scattering may be written as
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This gives exactly the additional term K in our
equations (3.8), (3.9), and (3.16).

This additional term did not appear in the erst
derivation Lin which B„was removed from the matrix
element in (A1)) because q~ was there kept on the mass
shell, by virtue of being kept in the state vector. The
additional term (AS) vanishes when q& (or q2) is on the
mass shell; this happens because (AS) with the factor
(p~' —qP)(p2' —q22) removed does not have poles at
q~'=p~' and q2'=@~', in contrast to the corresponding
function with 8(xo—yo) replaced by 8(xo—yo).

Thus we see that if the momenta q& and q2 are to be
later taken o6 the mass shell, using the PCAC hypothe-
sis at the two different stages of the reduction procedure
considered above gives results di6ering by the non-

vanishing term (AS), i.e., the two procedures give two
diQerent o6-mass-shell continuations of the 8-matrix
element under consideration.

In order to specify which continuation is to be taken
in such an oB-mass-shell limit, an additional prescription
is needed. We suggest the prescription that all those
terms should be kept which arise if we reduce the
S-matrix element completely (to the Fourier transform
of a vacuum expectation value) before using divergence
conditions (like current conservation or the PCAC
hypothesis) and current commutation relations. In a
process involving photons, for instance, this insures
that no contribution is omitted in which a soft photon
is emitted by some external oR-mass-shell charged
particle in the process.


