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Lorentz Commutators of Internal Dynamical Variables

GQRDQN N. FLEMING

DePartment of Physics, The Pennsylvania State University, University Park, Pennsylvania

(Received 7 September 1966)

A definition of internal dynamical variables which includes the unitary-spin generators is used to deter-
mine the pure Lorentz commutators of these variables in the presence of nonconserving interactions. A
geometrical interpretation of the nonvanishing Lorentz commutators is presented in terms of the hyperplane
formalism, previously discussed by the author.

1. INTRODUCTION

HK converse of the McGlinn theorem, ' that
translationally invariant dynamical variables

which are not conserved do not commute with the
Lorentz generators, can be applied to such internal
dynamical variables as isotopic spin, hypercharge, or
indeed any of the SU(3) generators. ' The conserva-
tion of every one of these dynamical variables is
violated by at least one of the prominent interactions
among the photon, leptons, and hadrons. This raises
two interesting questions concerning the commutators
of these variables with the Lorentz generators. First,
what is the interpretation of the nonvanishing com-
mutators for variables which, in a casual frame of mind,
one tends to think of as Lorentz invariants? Second,
what, precisely, is the (operator) value of the
commutator'

Clearly the answer to the second question must
depend on the dynamics since if the internal variables
are conserved they do commute with the Lorentz
generators. In the general case, however, one might still
seek an expression for the Lorentz commutator in terms
of the commutator of the variable with the Hamilton-
ian. Such an expression is derived in the next section.

In the third section of this article the interpretation
of nonvanishing Lorentz commutators is provided via
the hyperplane formalism. ' It is shown there that a
precise meaning can be given to the notion that internal
dynamical variables are Lorentz invariants even in the
presence of nonconserving interactions.

The derivation in Sec. 2 is carried out in the conven-
tional formalism to facilitate the reader's comprehen-
sion. The physical interpretation seems much clearer
in the hyperplane formalism, however, and it was in
that formalism that the author first obtained the result.

2. LORENTZ COMMUTATORS OF INTERNAL
DYNAMICAL VARIABLES

For this discussion an internal dynamical variable
A (t) will be defined by the conditions of translational

' W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964). See also
the papers reprinted in Symmetry Groups in nuclear and Particle
Physics Ledited by F. J.Dyson (W. A. Benjamin, Inc. , New York,
1966), pp. 246-268) which discuss refinements and generalizations
of the McGlinn theorem.

~ See Acknowledgment at the end of this article.' G. N. Fleming, J. Math. Phys. ?, 1959 (1966).

invariance,

rotational invariance,

[P,A]=o, (2.1)

(2.2)

and momentum independence. The last condition
means that the eigenvalue spectrum of A is independent
of the total momentum eigenvalue; i.e., for any eigen-
value A' of A the states

IP A'Q) (2 3)

exist for all values of the I' from —~ to +~.
It may be objected that (2.2) does not allow for

variables analogous to the relapse positionormomentum
of two subsystems that may enter into the structure of
a particle. Such variables are somewhat less ie/ernal
than those which are uninfluenced by rotations and the
present definition includes the currently interesting
unitary-spin generators. 4 The generalization of the
following arguments to internal vector variables is
straightforward, in any case.

From the states (2.3) one can construct the states

[R,A]=o.

If the spin vector S is now defined by

J=—RXP+S,

(2.5)

(2.6)

then the Lorentz generator N is well known to be
given by'

N =H: R+ [(PXS)/P'] (H—Mc) —ctP, (2.7)

where the colon indicates a symmetrized product and

Mc—=
I
(H' —P')'"

I
. (2.g)

4It does not, of course, include the SU(6) generators. The
corresponding analysis for SU(6) is presently under study.

~ T. Newton and E.P. Wigner, Rev. Mod. Phys. 21, 400 (1949).
6L. L. Foldy, Phys. Rev. 122, 275 (1961); F. Coester, Helv.

Phys. Acta 38, 7 (1965).

1475

't

I
R',A', cr)—= (2sr t't) 't' d'P' exp —P' R'

I I
P',A', n),

t't i (2 4)

which are simultaneous eigenstates of A and the
Newton-Wigner position operator R.' It follows tha, t
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3. INTERPRETATION OF THE NONZERO
LORENTZ COMMUTATOR

If the time-dependent variable A (t) is not a Lorentz
invariant, then what is its transformation rule? That
a fundamental difhculty is involved in the very phrasing
of the question is easily demonstrated. A transforma-
tion rule, inherently kinematical in nature and having
no dependence on specidc dynamical assumptions, can
exist for. A (t) only if there exists an operator B(t) such

that
A'(t') =B(t). (3.1)

If t' is given, however, then t is inherently ambiguous.
The value of t depends on spatial coordinates x' as
well as t' while A'(t') has no dependence on x' and, in

fact, may not refer to points of space at all. Clearly

(3.1) can hold only if A' and B are independent of their

temporal variables, i.e., only if they are conserved.
At this point it is natural to conclude that only

dynamical variables which depend on spatial coordi-

nates as well as the time can play a fundamental role

in the theory since such variables can have simple

transformation rules. This is a position frequently held

by advocates of local quantum 6eld theory. An equally
natural and less restrictive alternative exists, however,

and it does not seem unreasonable that it should be
considered seriously at this late date. Thus, instead of

imposilg the restrictioe that only field-like variables

A (x,t), can be the basic variables of the theory one may
ieeoke the generalisatioe of regarding dynamical variables

on arbitrary space-like hyperplanes on an equal foot-

ing. Instead of asking what happens ut u giver time

one may ask what happens oe a given hyperplane. 7

Many years ago Tomanaga and later Schwinger'

pointed out the conceptual advantages of focussing
one's attention on the physical situation on an arbi-

trary curvilinear space-like surface, an invariant

' See Ref. 3, Sec. 4.
S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1, 27 (1946);

J. Schwinger, Phys. Rev. 82, 914 (1951).

From (2.1), (2.2), (2.5), and (2.6) it follows that

LS,Aj=o (2.9)

and then, 6nally, from (2.7)

t N,Ag= R:LH,A]+L(PXS)/P'jLH —Mc,A j. (2.10)

The commutator of A with 3A can, of course, be
expressed in terms of $H,A j but only as an infinite
series since from (2.8)

Mc =H (I—-'P'/H' —'(P'/H')' — ) . (2.11)

If the dynamics PH, A j are given then the Lorentz
commutators $N, A g are uniquely determined by (2.10)
and (2.11).

geometrical construct. The present notion is not simply
a special case of this older idea. Within the framework
of special relativity it is only through the use of local
Geld variables that one can de6ne variables on arbitrary
space-like surfaces, of which hyperplanes are a special
case.9 Quite independently of field-theoretic considera-
tions, however, one can de6ne dynamical variables on
hyperplanes via the active interpretation of Poincare
transformations applied to variables de6ned at a given
time. This latter approach has the further advantage of
separating the purely kinematical problem of how a
dynamical variable on a given hyperplane appears in
different reference frames from the purely dynamical
problem of how the dynamical variable changes from
one hyperplane to another. '

From this point of view the intuitive notion that an
internal dynamical variable is Lorentz-invariant can
be realized in the requirement that the internal
variables on a given hyperplane as measured from two
inertial frames are the same, or

A'(g', r') =A (g,r), (3.2)

where the hyperplane parameters g„and r de6ne the
hyperplane (in the corresponding reference frame) as
the set of space-time poirits satisfying the linear
equation"

(3.3)

In fact (3.2) is not an arbitrary choice but is dictated
by a consideration of the appearance in the two frames
of the same measurement of the internal variable A on
the fixed hyperplane.

The nonvanishing commutator of A with the Lorentz
generators is now seen as a dynamical fact due to the
dependence of A on the orieetatioe of the hyperplane in
space-time, i.e., dependence of A on p„.This dynamical
dependence is related to the dependence of A on the
locatioe of the hyperplane, i.e., dependence of A on 7-,

which is expressed by the commutator of A with the
Hamiltonian H." It is precisely this relation between
the dependence of A on the orientation and location of
the hyperplane that is expressed by (2.10).
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' See Ref. 3, p. 1963.
"See Ref. 3, Sec. 6."See Ref. 3, p. 1965."Strictly speaking, for observables on noninstantaneous hyper-

planes, a linear transformation of the conventional Poincard gen-
erators must be performed to obtain the generators of pure
reorientations or relocations (orthogonal timelike displacements)
of the hyperplane. Nevertheless, the resulting IIyperplune gen-
erators are very analogous to N and II, respectively, and the pre-
ceding statements are exact if the initial hyperplane is instan-
taneous. See Ref. 3 for a complete discussion of this point.


