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Classical Scattering of Neutral Mesons. II*
ALBA D. CRAET$ ANn PETER HAvAst

Departmertt of Physics, Lehigh Ussieersity, Bethlehem, Pertasylvartia

(Received 22 August 1966)

In Paper I, the scattering of neutral scalar and vector mesons by nucleons was calculated on the basis of a
classical action-at-a-distance theory and compared with the corresponding field-theoretical results. In both
theories the postulated vector and tensor coupling terms of the vector mesons with the nucleons were analo-
gous to those of electrodynamics. Recently, a more general form of interaction was proposed; for monopole
singularities it introduces a pseudovector coupling term which does not satisfy an equation of continuity. In
this paper, the scattering of neutral spin-1 mesons by heavy particles is calculated using all three coupling
terms, on the basis of the field-theoretical as well as the action-at-a-distance equations of motion of the
particles. Cross sections due to the pseudovector coupling alone are examined in detail. Unlike the results of
Paper I, the new field-theoretical and action-at-a-distance results show significant differences; furthermore,
the behavior of the cross sections is found to depend critically on the magnitudes of the physical constants
characterizing the meson Geld and the particles, exhibiting various resonance-like features.

I. INTRODUCTION
' '

N Paper I ' the scattering of neutral scalar and vector
~ ~ mesons by nucleons was calculated on the basis of a
classical theory of point particles developed from the
point of view of action at a distance. ' The resultant cross
sections were compared with those obtained using a
field-theoretical approach by Harish-Chandra' and
Shabha. 4

The motivation for the development of the action-at-
a-distance equations was to obtain a theory free from
the divergence difBculties inherent in the field-theo-
retical approach, closely analogous to the development
familiar from electrodynamics. ' While the predictions
following from the two approaches are identical in
electrodynamics, ' this is not the case in meson theory.
However, the differences found in I are too small to
allow an experimental distinction.

In both the field-theoretical and the action-at-a-
distance calculations, the interactions of the vector
mesons with the nucleons were formulated in analogy
with the electromagnetic interactions, and thus the
source densities were required to satisfy an equation of
continuity. It was shown subsequently that for fields of
nonzero rest mass and spin this restriction is more
stringent than required by the invariance properties of
the fields'; using a less restrictive condition, a more
general set of equations was proposed introducing new
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interactions. Corresponding equations of motion were
derived for arbitrary multipole singularities in neutral,
charged, and charge-symmetric 6elds. In a subsequent
paper, ' forms of the multipole moments compatible with
these equations for vector and pseudovector (spin-one)
fields were established.

In this paper we restrict our attention to monopole
and dipole singularities of neutral meson 6elds of spin
one. Two monopole interaction terms are used, a vector
one which was introduced by Bhabha, 4 and a pseudo-
vector one which does not satisfy the equation of
continuity. ' The dipole interaction term used is also due
to Bhabha. '

The radiation reaction terms following from these
interactions (which were obtained by the method of
Harish-Chandra") introduce third-order derivatives of
the multipole moments; any of the possible multipole
interaction terms proposed would lead to higher order
derivatives and result in eGects whose evaluation is
prohibitive.

Cross sections are calculated for the scattering of
neutral spin-one mesons by heavy particles; for con-
venience we shall refer to these particles as nucleons,
without, however, implying identification with any
currently known particles. These cross sections show
significant qualitative as well as quantitative differences
in behavior as functions of meson energy for the field-
theoretical and the action-at-a-distance equations. Fur-
thermore, their behavior is found to depend critically
on the magnitudes of the physical constants characteriz-
ing the mesons and nucleons. The results obtained are
instructive because they show the wide variety of
features associated with a particular dynamical theory,
features which without the availability of such a theory
might be interpreted as being due to a correspondingly
wide variety of physical phenomena.

The calculations presented here are entirely classical.
It is of course clear that a theory of elementary particle

' P. Havas, Phys. Rev. 116, 202 (1959).' H. J. Bhabha, Proc. Roy. Soc. (London) A178, 314 (1941).I Harish-Chandra, Proc. Roy. Soc. (London) A185, 269 (1946).
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interactions must be quantum mechanical. In recent
years much work has been done on quantum mechanical
alternatives to Geld theory"; however, a satisfactory
quantum theory of action at a distance is still lacking,
and thus the problems considered in this paper can as
yet be approached only from the classical end. It has
been shown, however, that the results obtained in I as
well as numerous other results of the classical theory of
action at a distance are the classical limit of the
quantum theory of radiation damping. " Thus the
similarities revealed between these theories could be
exploited to anticipate the results of a future quantum
theory of action at a distance by calculations based on
the quantum theory of radiation damping.

The classical action-at-a-distance theory used here
was developed in close analogy to classical field theory.
It should be noted, however, that both classical and
quantum theory also provide the possibility of action-
at-a-distance formalisms which do not necessarily have
a field-theoretical counterpart. " These have not been
developed suKciently, however, to establish whether
they can be of importance in elementary particle
physics.

II. THE EQUATIONS OF MOTION

A neutral spin-one meson Geld is described by the
potentials U„and the field strengths Ut„„~, where

Ut„„)——a„U„—a„U„. (1)
The potentials satisfy the Geld equations LEqs. (23) and
(24) of Ref. 7j

U„+XsU„=4sr(p„+X 'B„B p ), (2)

with the restriction

x'8 U =4~8 p . (3)

In general we are using the same notation as in I. The
constant X characterizes the rest mass of the meson and
the vector p„describes the source densities. For a source
at s, due to a monopole-dipole singularity, p„ is given by

S,„B(so)B(s)8(s )8(s )dr

where S,„and S„,„represent the monopole and the
dipole moments, respectively. The equations of motion
of a point particle described by (4) are (see Theorem I
of Ref. 8'4)

A„=S B„U —S 'B„U„ (3)

B„„=S,„U„S,„U—„S„,.—B„U +S„,.B„U'
S—„B, U.+S „B~U„+v„A„v—„A„, (6)

with

A„= (m+S, ,U' S,.B~—U )v„B„.v—
+S,.v'U„S,„v'—U

+S„„U' S—.v B, U„+S„B~U, ,v',

~~B„„=0, B~"B„„=O.

It follows from Theorems I and II of Ref. 8 that we

can choose a monopole moment of the form

S,„=gtv„+fS„, S&=so~»B ttv„,

and a dipole moment defined by

Sl,~= g2BI ~ (10)

where f, gr, and gs are coupling constants which, for
convenience, were not given explicitly in Ref. 8. e& && is

a pseudotensor antisymmetric in each pair of indices,

with c '"=—Gpy23=1. B„„and S„satisfy the equations

where m is the mass of the particle (nucleon). A dot
over the quantity denotes di6erentiation with respect
to the proper time 7-, and e&—= i& is the four-velocity. A„
is the four-momentum of the nucleon and B„„is an
antisymmetric tensor which can be interpreted as the
intrinsic angular momentum of the nucleon if it is
subject to the conditions

S"B„„=0, e&S„=0, S&8„=0.

S,„B(ss)5(st) 8(ss) 8(ss)ds. , Thus the translational and rotational equations of

s,=g,—s„(4) motion (5) and (6) can be written

{/m+ fS'U—, gsB 'B U.jv—„B„.v'+gtU„—fS„v U.+gs—ttB„.U +Be„Bv'U. j't
dT = tLgtv'+ fS'jB„U. gsBa'B„U. , (12)—

(13)

"See, e.g., G. F. Chew, S Matrix Theory of S-trong Interactiorts (W. A. Benjamin, Inc. , New York, 1961).
"J.E. Chatelain and P. Havas, Phys. Rev. 129, 1459 (1965);R. L. Knight Utah State University thesis, 1964 (unpublished)."For a review of the various approaches see p. Havas, in StatisticaL Mechanics of Eqttilibrittnt and fqon Eqttitibrilnt, -edited by J.

Meixner (North-Holland Publishing Company, Amsterdam, 1965), p. 1.
'4 Note that in Eq. (C) of that theorem as well as in Eqs. (1), (15), (68), and (C') of Ref. S.we should have „(i.e., dA„/dr), but,

apparently due to defective type, the dot is missing in some or all of these expressions in many copies of the Physical Reviewer.

and

B„,=AS„U„S„U„+(v„S„v„S—„)v'U,j+gs[B„—,B„U'—B„,B„U'+B~„B U. Ba„B U„+v„B„,U'—v„B„,U'—
+ (B „v„B„v„)BU.v j [e—„B„.v v„B„.v j—. —
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III. CALCULATION OF SCATTERING
CROSS SECTIONS

To calculate the scattering of neutral mesons, we
must take for the potential U„'" describing the incident
mesons a plane-wave solution of the empty-space field
equations:

phases. Therefore we try the solutions

Ss——ssB sin((vr+ns),

Si——i)i sin(cur+Pi),

Ss——gs sin(&or+Ps),

Ss=J3,

(19)

Us'" ——8(k/co) cosrp sin(&or —k R),
Ui'"=8 cos8i sin(~r —k R),
Us'" ——8 costs sin(err —k R),
Us'"=8 costs sin(&ur —k R),

k—=
~
k) = (~'—X')'Is.

Here cosa, are the direction cosines of the polarization
vector and q is the angle between the directions of
polarization and of propagation. No wave can be
propagated for cv(x.

We now substitute U„= U„'"+U„"swith Eq. (17F)
or the corresponding action-at-a-distance equation into
Eqs. (12) and (13). The resulting integro-differential
equations of motion are of such mathematical com-
plexity that exact solutions of scattering problems can-
not be obtained. The usual method for handling such
problems is to assume the incoming Geld to be suK-
ciently weak that only small perturbations are induced
in the nucleon variables, 4 and to retain only terms of
first order in the amplitudes of the perturbations and the
incoming Geld. The resultant motions'. "-'are then con-
sidered to induce a scattered wave descry. ibed by the
retarded potential calculated at a point'it a suQiciently
large distance from the nucleon that onIy-the first-order
terms in 1/r are significant. The energy-flows due to the
scattered field and to the incoming Geld. are calculated
from the energy-momentum tensor, and the scattering
cross sections are computed from the ratio of these
energy Qows.

In previous calculations of scattering from particles
with a dipole moment' ' ""the small amplitude ap-
proximation resulted in a complete decoupling of the
translational and rotational equations of motion; con-
sequently, independent cross sections were obtained for
monopole and dipole scattering. However, in our
problem the equations cannot be uncoupled and thus
the calculations are considerably more complicated.

If we omit the radiation damping terms, we can
readily find solutions of the coupled equations of motion
(5) and (6) in which the nucleon performs small-
amplitude three-dimensional vibrations with the S~ and
$2 components of the pseudovector S„oscillating with
small amplitude about the constant component $3. If
the radiation damping is included, we shall assume, as
usual, the motion of the nucleon variables to di6er from
that of the simpler problem only in the amplitudes and

's C. R. Mehl, Lehigh University thesis, 1954 (unpublished)."R.C. Majumdar, S.Gupta, and S. K. Trehan, Progr. Theoret.
Phys. (Kyoto) 12, 31 (1954).

and

st= (si/M) cos(cior+Gi) )

ss ———(ss/(s) cos(cvr+ns),

ss= —(ss/M) cos (oor+Qs),

(20)

where 8 is a constant and the n's and p's are phase con-
stants. All terms appearing in the equations of motion
which are quadratic in the amplitudes e&, ~2, es, z&, z2,
and 8 will be neglected.

From Eq. (9) we have

=1B„y———,e„„~p S&. (21)

Therefore we can replace the various components of
the tensor 8„„in the equations of motion by the ap-
propriate components of the products of the vectors v

and S&. Defining the spin I of the nucleon by

gpv 212

we have
S„Sf'=—82= —28„8""= —412.

(22)

We consider only nonrelativistic velocities and thus
r = t and s'= s,s& =so' ——(t—t')'. All integrals in the equa-
tions of motion are transformed to integrations over s
with the change of variables t'=t —s, dt'= —ds. The

. resulting integrals are readily evaluated. "
Substituting our expressions for the incoming field

and the motion of the nucleon variables into the equa-
tions of motion we obtain ten simultaneous algebraic
equations which determine the conditions imposed on
the amplitudes and the phase constants in order that
(19) and (20) be solutions in the first-order approxima-
tion. These conditions relate the amplitude ratios s;/5,
rt;/b and the phase constants a;, P; to the frequency,
polarization, and direction of propagation of the in-
coming field. The calculations are straightforward
though very tedious and the resultant expressions are
extremely long, and will not be presented here. '7

If f is set equal to zero, the equations of motion un-
couple and the results reduce to those obtained earlier
both in field theory ' and in action-at-a-distance
theory. ""The solutions for fAO are of the same type
for f coupling alone as for this coupling together with

g& and g2 coupling. ' Consequently the principal features
of the pseudovector coupling of interest to us can be
discussed by setting g& and g2 equal to zero, which results
in considerable simplification in the mathematical ex-
pressions. However, the complete expressions can be
found in Ref. 17.

In order to compute the scattering cross sections, we
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need only the lowest order tenn in 1/r of the retarded potential. Then we get from Eq. (14)'2

U' r—
0

and

2fIM X f~(~2 X2)1/2

p 2/Leos@ cos%'2' —/I, 2j sin(cu/+n, —k r)+— p 2/, cos@ sin(art+p/ —k r), (23)
y X2 T X j~&

2fr (~2 X2)1/2

U = P2, cos+,'
EO X o)'

(cos%,' cos1112'—8,'8,2) —(1—8 2)8,2 —+8,2(1—8,2) cos%
X2 X2

co X
)&sin(a&/+n/ —k r)+- g 1/; cos%' cos%' +(1—8,2)5,' sin(a&t+p/ —k r), (24)

X

where i= 1, 2, 3, the 4,' are the angles between the propagation vector k and the 2:, axes, and 8 is the Kronecker 8.
To calculate the energy-Qow terms necessary to get the cross sections, we must compute the time average of the

energy-momentum tensor for the retarded and the incoming Gelds, respectively. This tensor is given by

4nT„"= U-(„.i U&'"&+ ~b„"U/, pi U~ »+X'$U„U"—', b„"U,U-'j,

and its time average for a plane wave of the form

U„=A„since x
equals 4

—~&GO"3
Sm.

(25)

(26)

(27)

The potential describing the incoming meson field is already of the form (26). The expression for the potential
of the scattered field (23) and (24) can be put in this form with the amplitudes A„specif1ed by rather lengthy
expressions involving the phase constants n, , P/ and the amplitudes of sin(&dt+n, —k r) and sin(~t+P/ kr).'2—
As we wish to consider the effects of the longitudinal and transverse components of the retarded Geld separately,
we must resolve the amplitudes of (23) and (24) into longitudinal and transverse components. Then we obtain for
the energy Bow into the solid angle dQ' due to the longitudinal component

1 QJ
2

~(~2 X2)1/2 f2 L1/12 cos21111&+2/ 2 cos2+
Sm X2

Q)2 X2

+4f'I' L~i' costi' cos&2'+22' cos%2' cos%2'+22' sin%2')+Z dQ', (28)
X2

and due to the transverse component

—-10((v'—x')'/' f'fgi2 sin%1'+1/2' sin% ']
8w

6) —X
+4f2P $212 costi' sin2@ '+222 cos2+2' sin2+ '+2 ' cos2%'2' sin2+2'j+Zr dQ'. (29)

X2

Z~ and Zr represent expressions involving cross terms in the amplitudes and phases of (23) and (24). These terms
vanish upon integration over the entire solid angle 0' and hence will not be written out explicitly. "

The energy flow due to the incoming field defined by (18) is also computed using (27). If the incoming field is
transverse, we have y=ir/2, and the energy flow equals

~(~2 X2)1/262

Sx
(3o)

If the Geld is longitudinal, we have q =0, and the corresponding energy Bow equals

1 Xb 2—10 ((O2—X') '/'—
8x CO

Taking the appropriate ratios of (28) and (29) to (30) and (31), we obtain the four differential cross sections
corresponding to all the possible combinations of a transverse or longitudinal incoming wave with a transverse



CLASSICAL SCATTERING OF NEUTRAL MESONS. II

or longitudinal scattered wave. Integrating over the entire solid angle, we get for the total cross sections

82l 40 X el +42 e3 'gl +rt2
oil = f—3I 2 +—+

3 $2 $2
(32)

42r 401 QP —X el +e2 es ril +'g2
«1= f' ——

I
;I' —+8—+

3 X) ~2 g2 g2 g2
(33)

82r f40 40 —X el +es e3 f/1 +'212
«4=—f'l — 3I' 2 +—+

402 82 52 52
(34)

4lr (40 40 X el +e2 e3 rtl +'g2
f'I —— 3I' +8—+

~2 P y p
(35)

The first index on o denotes whether the incoming wave is transverse (t) or longitudinal (t) and the second index
similarly specifies the scattered wave. The e's and q's are different for incoming transverse and longitudinal waves,
respectively; their explicit expressions are given in Ref. 17.

IV. DISCUSSION

The explicit form of the scattering cross sections follows from Eqs. (32) through (35) upon substitution of the
expressions for the appropriate components of the ratios of amplitudes e;/8 and rt;/8. For computational purposes,
we also transform back into the system of units in which the velocity of light c and Planck's constant 5 appear
explicitly. Introducing the dimensionless parameters

A =4f 2IItc ' 8=223c(XI&) 'x=40(Xc—) '

we can write the total cross sections in the form"

(36)

2 sin2O3 '4 sin'0 3 cos2O3 Tcos%3 cos O3

0t~ c4 s sin O3
,

s sin%3 cos O3= 122r — ~ F1(g,A,B)+ «Fs(g, A,B)+
0-~& g 2@2 sin%3 4x' sin'+3 cos~+3

4$ cos%3 cos O3

F3(x,A,B) . (37)
g2 Sin%3

x4 sin%3 .x sin%3 cos'0'3 ~ .4@4 sin&3

In 6eld theory
A'x'(x'+3)+1

Fl(x,A,B)=
*'PA '*'(*'+3)+1)'—16A '

-', (x'—1)'($8gs+2A (x'—-')j'+ (1/25)A'(x'+4) '(x' —1)'+xs)
F2(g,A,B)=

($8g2+2A (x2—2)$2+ (1/25)A'(xs+4)'(g' —1)'+x') 2—4xsLBgs+2A (x2—gs)]2

—',(x'—1)'
F,(x,A,B)=

(Bxs——,'A j'+ (4/25) A '(4x'+1) '(x' —1)'

and in action-at-a-distance theory

Fl(x,A,B)=
xsLA'x'(x'+3)+ 1j—4A'

-'(*'—1)'LB'*'+(1/25)A'(*+4)'(*' —1)'+*'j
F2(x,A,B)=

L82g4+ (1/25)A 2 (g2+4) 2(g2 1)3+gs)2 482x10

—;(x'—1)'
F3(x,A,B)=

8'g4+ (4/25)A'(4x'+1) '(x'—1)'

(38F)

(39F)

(4oF)

(38A)

(39A)

(40A)

'0 In Ref. 17 the Eqs. (6-1) through (6-7) corresponding to our Eqs. (37)—(40) contain some errors and should be replaced by the
latter. The 6gures have to be changed correspondingly.
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These equations determine the cross sections as functions of the frequency of the incident meson field, and of its
directions of polarization and propagation relative to the nucleon dipole, if the values of the constants characteriz-
ing the meson and the nucleon (which define the parameters A and B) are specified. However, our primary interest
in this study is not in matching experimental results of known particles, but in a qualitative understanding of the
behavior of particles characterized by pseudovector coupling. Therefore we are also concerned with the dependence
of these cross sections on the constants themselves.

In order to study this dependence we simplify the expressions assuming the incoming transverse meson field to
be unpolarized. We thus eliminate 83 by averaging over the transverse polarization. Then we get

2(1+cos'4 ) ' 4 sin%3 'sin%3 cos'0 3

(A ' x'(1+cos'%3) x sin%3
«F i(x,A,B)+»

k X 4x' sin'e, 8x' sin'@3 cos'@3
&F2(x,A,B)+»

2x' sin4+3

4x' sin%3 cos'0
«Fs(x,A,B)

.2x4 sin%3 .2x' sin%3 cos%3. .8x4 sin4% 3

(41)

We can also eliminate 43 by assuming that all orientations of the nucleon dipole are equally probable. Hence,
averaging over all values of @3, we get

16

o. i fA«' x' 1 4x' 1 4x'
«=4~~ —

~
Fi(x,A,B)+ »«F2(—x,A,B)+ »«F3(x-,A,B)

o.ii (Xl 2x' 5 Sx' 5 Sx'
(42)

.X4 Z .2x'. .32x4.

thus now 0-t) ———,'O.gt.

F~ represents the contribution to the scattering due
to the nucleon dipole motion, whereas Ii2 and Ii 3 are a
result of nucleon recoil. The latter two terms vanish
in the infinite mass approximation (B—«~ as un~~).
Furthermore, FI is nonzero at the threshold frequency,
~=Xc(x=1); hence the cross sections are nonzero at
threshold for the pseudovector interaction in contrast
to the usual monopole and dipole interactions. "'

We note that in both theories the cross sections fall
off at least as x—' for large x. This is a necessary con-
sequence of the fact that pseudovector coupling does not
exist for zero rest mass fields (X ~0, x «~).

For small values of f(A«1), or weak coupling, the
cross sections are proportional to f4. For strong coupling
they become independent of the coupling constant ex-
cept near the threshold frequency at which the action-
at-a-distance cross sections are proportional to f4 for all
values of f. The field-theoretical cross sections show a
peculiar feature at threshold in that Fi, by Eq. (3SF),
exhibits a singularity at A —=A p

——2. This corresponds to
a critical coupling constant given by

3 g )i/2
f= ——

I (gcm) "-'.
2 2IAj

The large numerical values for f, apparent from (43),
are due to the way f is introduced into the equations of
motion. The quantity to be compared with gi (which has
dimensions of a charge) is fA, which for the cases con-
sidered here is of the order of 10 "to 10 7.

The constant X, which characterizes the meson field,
is the classical analog of the quantum-mechanical
constant pcA ', where p, is the rest mass of the meson.
Thus x and B correspond to the constants Aid (pc') ' and
m(pI) —'.

In order to establish a standard for numerical values
for the cross sections we arbitrarily choose constants
characteristic of the neutron and the x' meson. These
are I=~, m=1838mp ——1.67)(10 "

g, p, =264mp ——2.40
&10 "g, where mp is the rest mass of the electron. This
corresponds to &=6.82X10" cm ', B=—Bp= 13.9.

Using an electronic computer, " the behavior of the
cross sections was studied for A = 10 A p, A p and 10'A p,

which typify weak coupling, critical coupling, and
strong coupling, respectively. The corresponding values
for f are (assuming I=2 throughout)

f=4.62X10" (g cm) 'I, weak coupling,

f=4.62X 10" (g cm) 'I critical coupling,

/=4. 62X10' (g cm) 'I, strong coupling.

For each A above, B was varied from 10 'Bp to 10'Bp
by factors of 10.The following figures present the more
prominent features resulting from these calculations on
a log-log scale for suitably selected values of B.We also
calculated the cross sections for selected more extreme

"The authors wish to express their appreciation to the Tech-
nical Computing Department, A. O. Smith Corporation, Mil-
waukee, Wisconsin for the preliminary computations performed
on their IBM 705 computer; and to Dr. R. L. Knight and D. W.
Baltz for the final computations utilizing the C.D.C. 16048
computer at EGRG, Las Vegas, Nevada.
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Figures 1(a)—1(c) show the cross sections for weald

coupling, Figs. 2(a)—2(c) those for critical coupling, and

values of A and 8, but no significant new features were
found.

We have plotted "normalized" cross sections de-
fined by

Figs. 3 (a)—3 (c) those for strong coupling. The action-at-
a-distance and 6eld-theoretical results coincide for weak

coupling (small A). This is to be expected since lit, Fs,
and F3 differ in the two theories only in terms containing
A as a factor. Also, for A =0, Fs(x) has a singularity at
x=8 which corresponds to a meson energy equal to the
rest energy of the nucleon divided by its spin. As a
result, the cross sections exhibit a sharp, finite spike at
x=8 for small 2 if 8 is greater than 1. For large B, a
second maximum appears; both maxima move to larger
values of x for increasing B.

The more prominent differences between the action-
at-a-distance and the field-theoretical cross sections are
due to the difference in dependence on the coupling
constant at the threshold frequency, and therefore occur
for small values of x with critical and strong coupling.
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FIG. 1. Normalized cross sections for weak coupling (A =10 'Ao) as a function of x=ca(xc) ' for selected values of B/Bs (delned in
Sec. Ip). The field-theoretical and action-at-a-distance results cannot be distinguished in this limit. The curves represent: (a) incident
and scattered mesons both transverse, (b) incident transverse and scattered longitudinal mesons, (c) incident and scattered mesons both
longitudinal.

awwwmFT

AD

T
I

-I
s
I
I
s

---—FT
AD

annwfn f
AD

IO Io
s

Qgg Qca Qu

)o'—

'IOR

16R

IOR I 1 I I I I I I I
I OR

(a)

lo

(b)

lo

(c)

IO

Fro. 2. Normalized cross sections for critical coupling (A =A o) as a function of x =a&(xc) ' for selected values of B/Bo (de6ned in Sec.
~ ~FT~ a d a~t'o -at-a-d sta ~e theo ~ ~AD) The FT ~u ver go to n~ t~ as + ~ ~he ~u + s ~e~ ese t (

cident and scattered mesons both transverse, (b) incident transverse and scattered longitudinal mesons, (c) incident and scattered
mesons both longitudinal.
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Fro. 3. Normalized cross sections for strong coupling (A = 10'A p) as a function of x = ~(xc)
—~ for selected values of B/Bp (deGned in

Sec. IV), for Geld theory (FT) and action-at-a-distance theory (AD). For x ~ 1, the AD curves approach 2 in case (a), and 1 in cases
(b) and (c). The curves represent: (a) incident and scattered mesons both transverse (b) incident transverse and scattered longi-
tudinal mesons, (c) incident and scattered mesons both longitudinal.

For critical coupling, the field-theoretical cross sections
are larger than the corresponding action-at-a-distance
ones for small x. With two exceptions, the maximum
values for the cross sections occur at the threshold
frequency (&o = Xc); the exceptions being the action at. a
distance cross sections Qtt and Qtt for 8=10 'Bp.
Fig. 2(b) depicts the rather anomalous behavior of Q«
which from threshoM passes through a minimum at
g=1.03 and then reaches a maximum at g=1.12. In
Fig. 2(c), Qtt has a maximum at x= 1.17 with
8= 10 'Bp. For 8=Bp, Qtt has a weak broad secondary
maximum at x= 2.70 for both theories.

With strong coupling, the roles of the action-at-a-
distance and the Geld-theoretical cross sections are
essentially interchanged in that the former are the
larger, though finite, at threshold. We also note the
appearance of secondary maxima for the Geld-theoretical
cross sections )Figs. 3 (a) and 3(b)j and for the action-
at-a-distance cross section in Fig. 3(c).

It is clear from the figures that in some instances the
cMerences between the two theories are sufEciently
large that an experimental distinction might be possible
if scattering events were observable for mesons having
the kind of interaction studied here. Of course, even if
such mesons were available, the magnitudes of the

various constants (and thus the choice of optimum
observational conditions) would not be at our disposal.
It should be noted, however, that quite apart from the
difference between the two theories, the behavior of the
cross sections depends critically on the values of these
constants; curves obtained from the same dynamical
theory show strikingly diferent behavior depending on
these values, some displaying secondary maxima or
(broad or narrow) resonance-like features. " Rather
than dwell on the particular features resulting for
particular values of the constants, it might be more
appropriate to conclude that one should be very
cautious in interpreting particular characteristics of
curves obtained experimentally in terms of physical
models, as they might not be representative properties of
the interactions involved, but rather accidental features
of a general expression for particular values of the
parameters.

"These maxima do not result from any excitation of the
nucleon. The possibility of excited states exists for the field-
theoretical, but not for the action-at-a-distance equation of motion;
however, it has not been taken into account in the calculations
presented here. For the case of scalar and vector meson fields, see
Ref. 18 and P. Havas and C. R. Mehl, in paper presented at the
Colloguium ort Theoretical Physics irt Honour of Professor P. A. M.
Dirac (National Research Council, Ottawa, 1955).


