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In an entirely similar manner we obtain correspond-
ing commutation relations between two axial vector
currents if we introduce, in direct analogy with the
electromagnetic potential 4,, a weak boson field W,
which has the weak interaction current as a source.?
It should be clear that we can not assume in general that
the equal-time commutator of 94 ,/dx, with the space
component of j,* vanishes, since this commutator ac-

4 We have left out of Eq. (8) a term
—i % 40 L@, |
? = 3 axo 7]1 )

which is first order in e.
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counts for the presence of gradients of 8 (x—y) terms®in
the current-current commutator, Eq. (8).

This result can also be obtained readily if we consider,
for example, the matrix elements of the divergence
equations between a hadron state (a) and another
hadron state (b,y) containing a single photon. Applying
the Lehmann-Symanzik-Zimmermann (LSZ) reduction
formula to the photon and keeping only first-order
terms in e, we find Eq. (8), showing explicitly how the
compensation of the gradient of 8(x—y) terms occurs
in the divergence equations.?

I should like to thank K. Gottfried, M. Veltman,
and W. Weisberger for interesting discussions.

5 The presence of a gradient of 3 (¥—y) term in the vacuum
expectation value of the equal-time commutator of the time com-
ponent with the space component of the electromagnetic current
appears to have been first noticed by T. Gotd and T. Imanura,
Progr. Theoret. Phys. (Kyoto) 14, 396 (1955). I am indebted to
Professor G. Killén for calling my attention to this reference.
See also J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
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The baryon-meson vertex is studied within the framework of broken SU (6) w symmetry. The breaking is
provided by a W=1 spurion transforming like the 7=0=Y member of the adjoint 35 representation of
SU (6)w and which belongs to an SU(3) octet and/or SU (3) singlet. The spin kinematic factor in this case
is different from the W =0 spurion breaking. The present type of breaking forbids all decuplet decays of the
type D — B-+P, and in this respect the present situation resembles that of the static SU(6) s in exact sym-
metry. The BBP couplings are related, in general, by 5 parameters which, under certain simplifying as-
sumptions, reduce to a smaller number. Sum rules are listed for all the possibilities that might arise, and
it is found that the predictions for the symmetry broken by a W=1 spurion belonging to an SU(3) octet
plus an SU(3) singlet—both in the same 35 representation—are consistent with the present knowledge of

the couplings.

I. INTRODUCTION

N an earlier paper' (hereafter referred to as I) we

have considered the baryon-pseudoscalar-meson
vertex and the decuplet decays within the framework
of exact and broken SU(6)w symmetry. In I we
attributed the breaking of the SU(6)w symmetry to
a W-spin scalar spurion having I=0=Y and belonging
to the adjoint 35-dimensional representation of SU (6)w.
However, this is not the only way in which the sym-
metry might be broken. For example, the symmetry
may also be broken by a W=1 spurion which may
belong to an SU(3) octet and/or an SU(3) singlet
having I=0=Y and belonging to the 35-dimensional

* On leave of absence from Roorkee University, Roorkee, India.
1S. N. Gupta, Phys. Rev. 151, 1235 (1966). All other references
are listed in this paper.

adjoint representation of SU (6)w. This type of breaking
introduces a spin kinematic factor different from that
for the W=0 spurion. Thus the two cases have to be
considered quite independently. This has provided the
motivation for the present paper, and we investigate in
an exhaustive way the consequences following from
the W-spin 1 spurion breaking the symmetry. In Sec. 2
we write down the interaction Lagrangian and outline
the various interesting possibilities. In Sec. 3 the sum
rules are listed for various cases, followed by discussions
in Sec. 4.

II. BARYON-MESON VERTEX

The SU(3) octet and singlet spurions with W=1
which transform like the 7=0=Y¥ member and belong
to the adjoint 35-dimensional representation may be
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written in the usual notation? as

'Vaa’= (0’3?3)5’:,YAAI (2.1)
and
So¥ = (03p3):¥'044", (2.2)
respectively; ¥ is given by
1 0 O
Y=10 1 0. (2.3
0 0-2

For generality we assume that these two spurions
belong to two different 35 representations. The inter-
action Lagrangian may then be written as

L=gwbapy ¥ "' [ 5"V 12+ V57" ]
+ 8oV ay P b PV Yt gibapy WP 15V V 0
+ f1dapy P Y [ 95754 04-S57¢, 0]

+f2‘/’aﬂvf¢aﬂ'7’¢ﬂ’ﬂSv"y'*‘f!i‘/’aﬂvwaMd’ﬂ’Sv’5 ’ (2'4)

where Y287 and ¢.? were defined earlier.! For the inter-
action Lagrangian (2.4) it appears that the couplings
are now related through 6 parameters. However, it is
apparent that the term with f; does not contribute to
any process, since Tr(¢S)=Tr(¢)=0. On further
analysis we find that the interaction (2.4) forbids all
decuplet-octet pseudoscalar-meson decays, as the spin
kinematic factor vanishes in this case.? This is analogous
to the situation one meets in exact SU(6)s symmetry,
where again the decuplet decays are forbidden. Inci-
dentally, in the broken SU (3) symmetry there are seven
parameters connecting the twelve baryon-meson ver-
tices, and five sum rules result. No quantitative esti-
mates can, however, be given for these, because of the
present lack of knowledge about the seven independent
couplings. Nor can one reduce the seven parameters to
a smaller number. In contrast to this, in our present
model the twelve independent baryon-meson vertices
are connected by only five parameters and, as we show
at the end of this section, it is possible, under certain
simplifying assumptions, to further reduce the number
of parameters; this enables us to estimate most of the
coupling strengths. We may also remark that the term
with g; contributes only to the four baryon-n vertices.

2 See Ref. 1; we follow the notation of this paper.

3 We thus note that the breaking by W =1 spurions does not
yield any new information about the decuplet decays. A similar
remark has also been made by H. Harari e al., Phys. Rev. 140,
B1003 (1965). We, in fact, find that the structure of the SU(3)
terms for the decuplet decays is exactly the same as that for the
W =0 spurion except for the spin factor which, however, vanishes
in the present case.
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We now have

V2G(ppm®) =381+ (5/9)g2+3 f1+ (4/9) fo,
V2G(EE %) =—3g1— (4/9)g— 3 f1-+3 12,
V2G(Z'Ztr)=—4g1— (5/9)g— % f1— (5/18) fa,
V/6G(ZA7%) = (11/18) /2,

\6G(ppn)=2g1—3go+2f1+5f2+12¢s,

V6G(AAn) =4g1—% g+ (11/18) fo-+12g;,

V/6G(Z2%) =4g1+3 g+ (11/18) fo+12gs,
\/6G(E—En) =681+ go—2 fr— (13/18) fo+12¢s,
V2G(p2°K*) =341+ (7/18)g—3 fr+d fo,
VO6G(pAKT) = g1+ (1/18)g2—3 f1— (13/9) /2,
V2G(E2°K™) = —3g1— (1/18)go+3 1+ (4/9) f2,
V6G(EAKT)=—gi—3g+2/1+5 /-

(2.5)

The following four possibilities may now arise:

(A) The SU(3) octet and singlet spurions belong to
two different 35 representations. In this case the twelve
independent couplings are connected by five parameters
and we get seven sum rules.

(B) The breaking is due to a W=1, SU(3) singlet
spurion only. In this case g1=g.=g;=0. We now have
two parameters connecting the twelve vertices, giving
ten sum rules.

(C) The breaking is due to a W=1, SU(3) octet
spurion only. Then fi=f,=0; there are now three
parameters and nine sum rules result.

(D) Both the spurions belong to the same 35 repre-
sentation. This implies gi= f1, go= f2. We again have
three parameters and nine sum rules; these are different
from those in (C).

In case (A), to estimate the coupling strengths, we
require experimental information for five vertices,
which at present is lacking. In the two situations (C)
and (D) we are able to express six vertices other than
the 7 couplings in terms of the two known vertices
G(ppr®) and G(pAKt). Three of the four n couplings
can also be expressed in terms of these two known
vertices and the fourth » coupling, say G(ppn). In con-
trast, all ten couplings are expressible in terms of the
known ones in case (B).

III. SUM RULES

In this section we list all the sum rules which result
under the four different possibilities outlined in the last
section. We number the sum rules by the corresponding
condition A, B etc. Thus we get:



1458 SACHCHIDA NANDA GUPTA 154

Case (4).
V3G (ZAT0) = 3G (ppr0)+5G(E-E%) —G(Z=+r), (3.1A)
G(p=K+) = (105/44)G (pp%)+ N3G (pAKH) + (117/220)G (2= +r) + (259/220)G (E=E—19) , (3.2A)
G(E-2K~) = — V3G (pAK*) — (39/44)G (ppr®) — (67/220)G (20T +n—) — (149/220)G (E-E-=Y) , (3.3A)

(W6)G(E-AK=) = — (54/11)VIG (pp®) — (64/55)VIG (2= +n~)
— (208/55)V2G (Z—E~1") — (9/5) (W/6)G(pAK™), (3.4A)

(WV6)G(AAn) = (\/6)G (ppm)+ (12/5) (v/6)G (pAK+)+- (111/22)V2G (ppn°)
— (141/110)V2G (2= +r~)+ (903/110)V2G (E-E-7%), (3.5A)

(W6)G(EZ%)= (v/6)G(AAn)+3V2[G (ppr®)+G (ZZHr) —G(E-E )], (3.6A)
V3G (E=En)+V3G (ppn) —V3G (AAn) —V3G (2°=°n) = — 3G (ppn®) +3G (Z=+7~) — 3G (E—E~10). (3.7A)
Case (B).
G(22%) = — (11/18) (\/3)G (pp7") — (11/18)G(pAK ™), (3.1B)
G(E-E—7°) = — (29/18)G (ppn%) — (11/18W3G (pAK ™), (3.2B)
G(ZA") =G (=) , (3.3B)
G(ppn)= (38/9V3)G (ppn°)+ (11/9)G(pAKT), (3.4B)
G(AAn) =G (=), (3.5B)
G(E=En)=(65/18)(v/3)G (ppn®) — (11/18)G (pAK ™), (3.6B)
G(p='K+)=G(E—E "), (3.7B)
G(E-2'K~)=G (ppn2), (3.8B)
G(EAK)=G(ppn), (3.9B)
G(EzH+r—) = — (47/18)G (ppr®) — (11/18)V3G (pAK™) . (3.10B)
Case (C).
G(E-E—) = — (11/14)G (ppn®) — (1/T)WV3G(pAK+) , (3.1C)
G(EZ+r~) = — (13/14)G (ppr®) — (5/TWV3G (pAK+) , (3.2C)
G(Z°Ar%)=0, (3.3C)
G(pZ°K*) = (5/T)G(ppn")— (1/T)V3G (pAK™), (3.4C)
G(E-2K-)=— (1/14)G (ppr®)— (2/T)V3G (pAK*) (3.5C)
G(E-AK™)=— (2/TW3G (ppr®)— (3/T)G(pAK™), (3.6C)
G(AAn)=G(ppn)— (3/14)V3G (pp7")+ (15/7)G(pAKH), (3.70)
G(Z2%)=G(ppn)+ 3/ T)G(PAKT)+ (9/14)V3G (ppn°) (3.8C)
G(E"E)=G(AAn)+V3G (ppr°). (3.9C)
Case (D).
G(E-E-1") = — (105/118)G (ppr") — (26/59)V3G(pAK ™), (3.1D)
G(EZ+r) = — (215/118)G (ppn®) — (42/59)V3G (pAK+) (3.2D)
G(Z°Ar) = (11/118) (v/2)G (ppn®) — (22/59)G (pAK™) (3.3D)
G(pZ°K*)=— (15/118) (/3)G (ppm®) — (29/59)V3G (pAK ™), (3.4D)
G(E-2°K-)= (16/59)G (ppr°) — (5/59)V3G (pAK+) (3.5D)
G(E-AK™)=—(20/39) (/)G (ppn°) — (37/39)G(pAK™), (3.6D)
G(AAD) =G (ppn)+ (9/118)V3G (ppm®) — (18/59)G (pAK ™), (3.7D)
G(2Z) =G (ppn)+ (11/118)V3G (ppn®) — (66/59)G (pAK™) (3.8D)

G(2~E7n) =G (ppm)+ (VB/59)G (ppn)— (12/39)G(pAK™). (3.9D)
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IV. DISCUSSION

To make any quantitative estimates of the couplings
for the set A, we require a knowledge of the strength
for five vertices which, however, is not available at
present, and so we are unable to compare these predic-
tions with experiment.

For the rest of the cases (B, C, and D) we have made
an estimate by using the couplings gyn- and gyax. We
use the following relation to define the G’s:

%O_)zgmvf( 1 )2’ (4.1)

4 4 ;A;

where M is the mass of the baryon octet, which we take
to be 1 BeV, and (gww.%/4m)~~15 is the well-known
nucleon-pion coupling constant. The (VAK) coupling
as determined on the basis of forward dispersion rela-
tions* for KN scattering gives (gnax?/4m)~4.8 which
gives G(pAK*T)=—3.9 BeVL

In Tables I, II, and III, we have listed the estimates
for the various coupling constants for the cases B, C,
and D. The dimensionless coupling constants (g?/4m)
are also listed in the last columns of these tables.
Lusignoli et al.* have put an upper limit on (NZK)
coupling; they give (gpzx?/4m)< 3.2. The estimates for
the pion couplings® based on experiments give

w2zt 4r=23.09,
g22,2/47r=4.3 y
geart/4r=11.42,
From Table I, we find that the estimates based on

the symmetry breaking due to a W=1 spurion belong-
ing to only an SU(3) singlet are in sharp disagreement

TasLe I. The predicted values of spin-3* baryon and
pseudoscalar-meson coupling constants when SU(6)w is broken
with a W=1 spurion of the SU(3) singlet. Input parameters are
gnna2/4r=15 and gnax?/4r=4.8.

G (BeV)1 &/4r

Vertices (predicted) (predicted)
03t~ —13.8 60
ETAK~ 12.2 48
ppn 12.2 48
EE —12 48
EE w0 —6.9 ~16

0K+ ~06.9 ~16
EXKT 6.85 15
=030 —0.06 0.001
ZOA70 —0.06 0.001
AAn —0.06 0.001

4 M. Lusignoli, M. Restignoli, G. A. Snow, and G. Violini,
Phys. Letters 21, 229 (1966). See also J. Dufour, Nuovo Cimento
34, 645 (1964) who give (gpax?/4n) between 5 and 6.

5I. G. Aznauryan and L. D. Soloviev, Dubna Report No.
E-2544, 1966 (unpublished).
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TaBLe II. The predicted values of spin-i* baryon and
pseudoscalar-meson couplings when SU(6)w is broken with a
W=1, SU(3) octet spurion.

G (BeV)! g2/4r
Vertices (predicted) (predicted)
PEOKT 5.87 11.2
ogow —4.51 ~6.5
HEAK- —1.75 0.9
203t —1.51 ~0.7
E 2K~ 1.45 0.6
S0A70 0 0

TasLe III. Predicted values of spin-}* baryon and pseudoscalar-
meson couplings when SU(6)w is broken by W=1, SU(3) octet
and singlet spurions which are in the same 35 representation.

G (BeV)! /4w
Vertices (predicted) (predicted)
poloar o —4.7 ~7
PR+ 1.9 1.1
B0 —1.8 ~1
EZK- 1.6 0.8
Z0Ax0 1.4 ~A0.6
EAK~ —0.3 ~0.03

with the present knowledge about these vertices. From
Table II, we see that the pure W=1, SU(3) octet-type
breaking predicts G(ZAm)=0 and gpzox+?/4r>~11.2,
which seem to disagree with experiment. Similarly,
gzz+2/4w=0.7 is too low. On the other hand, the break-
ing due to a W=1 spurion with 7=0=Y that is a
member of the SU(3) octet and singlet and belonging
to the same 35 representation seems to give better
agreement,’ as is seen from Table ITI. [Nofe added in
proof. It is interesting to compare the predictions of
thin paper with those of I where the symmetry breaking
is assumed due to a W-spin scalar spurion. Using the
input value 4-8 for (g2VAK/4r) in I we find that the
predictions based on the W-spin scalar spurion break-
ing the SU(6)w symmetry are in better agreement with
experiment and the important conclusion which emerges
is that if at all the W-spin symmetry is good, then the
nature prefers the symmetry breaking due to a W-spin
scalar spurion rather than the breaking due to a W-spin
=1 spurion. ]
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SIf we take (gnax?/4m)~1, as determined by M. Moravscik
[Phys. Rev. Letters 2, 352 (1959)] and G. Morpurgo [Ann. Rev.
Nucl. Sci. 11, 41 (1961)7] from photoproduction amplitudes, our

general conclusions remain unchanged, although numerical esti-
mates are different.



