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The equal-time current-current commutation relations are deduced from equations for the divergence
of the currents including electromagnetic and weak interactions, and canonical assumptions for equal-time
commutators of electromagnetic and of weak boson 6elds.

' T has been shown in a previous paper and, inde-
' ~ pendently, by Adler and Dothan' that the longi-
tudinal component of the o6-mass-shell pseudoscalar-
meson electroproduction amplitude can be determined
from the equal-time commutator of the vector and the
axial vector currents. Furthermore, it has also been
pointed out that this gauge condition can be obtained
without explicit use of commutators if we include to
first order a weak interaction which gives rise to the
meson decay. In this case, the neutral vector current
of the hadrons is no longer conserved, and one 6nds
the surprising result that the divergence of this current
to first order in weak interactions is given by the
equal-time vector and axial vector current-current
commutator. Recently, Veltman' has introduced weak-
interaction contributions to the divergence of the axial
current as well as to the vector current and obtained
many of the results which had previously been derived
from the equal-time current-current commutators. The
purpose of this paper is to show the fundamental con-
nection between the equal-time current-current com-
mutators and the assumed divergence equations for
the currents including first-order electromagnetic and
weak interactions.

We consider 6rst the electromagnetic contributions
to the divergence' of the charged components of the
vector current j„~ and the axial vector current j„

the order of the product of j„+and A„ in the divergence
Eqs. (1) and (2) is immaterial i.e.,

LA. (x),j'(y) j=0,
where xp ——yp. Then

L(» p/»o) (*),jp+(3)]+LA p(x),~"j'(y)3=o,

and substituting for the divergence of j„+ Eqs. (1) or
(2), we obtain

P(cjA p/c)xo) (x),jo+(y))=0,

where we assumed the canonical equal-time commuta-
tion relations

P.(x),A. (y)j=0, LA, (x)A (y)1=0.

For the space components j;+ we need to assume only
that its equal-time commutator with BA„/Bxo is local.

Taking the following linear combination of partial
derivatives of Eqs. (4) and (5):

and substituting the electromagnetic source Eq. (3),
we obtain

B~j„'+=—zeA~j ~+

8"j„A += cg+ ieA "j„A+—, (2)

1 BA„
t:j."(*)+—j"( ), j '(3)j+ ( ),~"j'(y)

8$p

where g+ is the charged meson fteld, c is a constant,
and A„ is the electromagnetic potential satisfying the
source equation

t9 l9A p
(*),j'+(y) (6)

i=i ~P'i- ~&p

j- .~2A —e(j v,s+—j v, s+j tept) Finally, substituting Eqs. (1) and (2) into Eq. (6)
for the divergence of the vector and axial vector
current, respectively, and using the canonical commu-
tation relations for the electromagnetic potential,

We assume that the charged current j„+ (which
stands for either j„v+ or j„"+)and the electromag-
netic potential A„commute at equal times, so that

L (BA „/Bxp) (x),A, (y)j= —g„„its(x—y)

L(BA„/Bxp) (x),po(y))=0,
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we arrive at the familiar current-current commutator
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(to zero order in e),s

Ei."(*)+l&~i."(*) i+(y)3

In an entirely similar manner we obtain correspond-
ing commutation relations between two axial vector
currents if we introduce, in direct analogy with the
electromagnetic potential A„, a weak boson Geld 8'„
which has the weak interaction current as a source. '
It should be clear that we can not assume in general that
the equal-time commutator of BA„/Bxs with the space
component of j„+vanishes, since this commutator ac-

' We have left out of Eq. (8) a term

gA„—s Z ~'(y) "(x),i;+(y),i-1 ~&0

which is first order in e.

counts for the presence of gradients of bs(x —y) terms' in
the current-current commutator, Eq. (8).

This result can also be obtained readily if we consider,
for example, the matrix elements of the divergence
equations between a hadron state (a) and another
hadron state (b,p) containing a single photon. Applying
the Lehmann-Symanzik-Zirmnermann (LSZ) reduction
formula to the photon and keeping only Grst-order
terms in e, we Qnd Eq. (8), showing explicitly how the
compensation of the gradient of bs(x —y) terms occurs
in the divergence equations. 2

I should like to thank K. Gottfried, M. Veltman,
and W. Weisberger for interesting discussions.

s The presence of a gradient of P(x—y) term in the vacuum
expectation value of the equal-time commutator of the time com-
ponent with the space component of the electromagnetic current
appears to have been first noticed by T. Goto and T. Imanura,
Progr. Theoret. Phys. (Kyoto) 14, 396 (1955).I am indebted to
Professor G. Kallen for calling my attention to this reference.
See also J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
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The baryon-meson vertex is studied within the framework of broken SU(6)s symmetry The bre.aking is
provided by a 8'=1 spurion transforming like the I=0=F member of the adjoint 35 representation of
SU(6) w and which belongs to an SU(3) octet and/or SU(3) singlet. The spin kinematic factor in this case
is diferent from the 8'=0 spurion breaking. The present type of breaking forbids all decuplet decays of the
type D ~8+8, and in this respect the present situation resembles that of the static SU'(6) s in exact sym-
metry. The BM' couplings are related, in general, by 5 parameters which, under certain simplifying as-
sumptions, reduce to a smaller number. Sum rules are listed for all the possibilities that might arise, and
it is found that the predictions for the symmetry broken by a W=1 spurion belonging to an SU(3) octet
plus an SU(3) singlet —both in the same 35 representation —are consistent with the present knowledge of
the couplings.

I. INTRODUCTION
' 'N an earlier paper' (hereafter referred to as I) we
- - have considered the baryon —pseudoscalar-meson
vertex and the decuplet decays within the framework
of exact and broken SU(6)w symmetry. In I we
attributed the breaking of the SU(6)s symmetry to
a lV-spin scalar spurion having I=0= F and belonging
to the adjoint 35-dimensional representation of SU(6) s .
However, this is not the only way in which the sym-
metry might be broken. For example, the symmetry
may also be broken by a W=i spurion which may
belong to an SU(3) octet and/or an SU(3) singlet
having I=0=I and belonging to the 35-dimensional
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adjoint representation of SU(6) s .This type of breaking
introduces a spin kinematic factor difFerent from that
for the 8'=0 spurion. Thus the two cases have to be
considered quite independently. This has provided the
motivation for the present paper, and we investigate in
an exhaustive way the consequences following from
the 8'-spin 1 spurion breaking the symmetry. In Sec. 2
we write down the interaction Lagrany. an and outline
the various interesting possibilities. In Sec. 3 the sum
rules are listed for various cases, followed by discussions
in Sec. 4.

II. BARYON-MESON VERTEX

The SU(3) octet and singlet spurions with IV=1
which transform like the I=0= I member and belong
to the adjoint 35-dimensional representation may be


