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Number of Subtractions in Partial-Wave Dispersion Relations*
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Under the usual assumption of unitarity and analyticity for the partial-wave amplitude f&(s), it is proved
that the dispersion relation for fi(s) requires no more than one subtraction for any angular momentum f,
provided that

l f~(s) ~
& expLC(in es~)' 'j, s)0, holds for ]s ~

-+~, and that the number of times that the
sign of the discontinuity Im fi(s+i0) changes in the interval (s,0) does not increase more rapidly than
C'(ln ~s ()' ' as s ~ —~ along the negative real axis.

I. INTRODUCTION

HE partial-wave dispersion relation is one of the
most frequently used tools in the dynamical

study of strongly interacting particles. However, its
theoretical foundation has been in a rather unsatis-
factory state. First of all, there is still no rigorous
derivation based on the axiomatic 6eld theory of the
analyticity domain, usually assumed for partial-wave
amplitudes, although such a domain has been obtained
in perturbation theory in some cases. ' This being the
case, it is perhaps not surprising that little attention
has been paid until recently to the question of the
number of subtractions necessary for writing down a
meaningful dispersion relation. The first discussion of
this problem was given in our preliminary paper under
some restrictive assumptions. ' The same problem has
since been discussed by Jin and Kang, ' Woolcock, ' and
by Contogouris and Martin' under various assumptions.
The purpose of this paper is to present a detailed
treatment of this problem under more general assump-
tions than those of Ref. 2.

For simplicity we shall restrict our consideration to
the elastic scattering of spinless particles of equal mass.
We denote by s the square of the total energy of the
incident particles in the center-of-mass system. We
assume that the partial-wave amplitude fi(s) has the
following properties:

(a) It is regular in the cut s plane with two cuts
(—ao, se) and (4p', +ac), real in the interval (ss,4ii'),
and continuous on the cuts. ' lt has no essential singu-
larity at any finite point on the cuts.
(b) It has the threshold behavior ft(s)= (s—4ii')'Fi(s), —
where Fi (s) has a finite limit as s —& 4fi'. '
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(c) On the right-hand cut, fi(s) satisfies the unitarity
condition

0& L(s—4y')/s]
l fi(s) l'& t (s—4p')/sJ~' Imf&(s) & 1.

To complete the usual set of assumptions we have to
add some restriction on the asymptotic behavior of
fi(s) for large s. A quick survey of these assumptions
indicate, however, that they are probably not suQicient
for determining the number of subtractions. At the
same time it seems reasonable to guess that the neces-
sary additional information will be related to the num-
ber of zeros of f~(s) or the number of times (denoted
by v) that the discontinuity Imfi(s+i0) changes its
sign on the left-hand cut. In fact it was found' that if v

is finite, the dispersion relation for fi(s) requires no
more than one subtraction for any angular momentum /.
In this paper we are mainly interested in 6nding out
the extent to which the assumption of hnite v can be
relaxed without losing the above result.

As was noted in Ref. 2, there seems to be a strong
correlation between the behavior of the discontinuity
Im fi(s+i0) on the left-hand cut and the restriction on
the asymptotic behavior of fi(s) required for limiting
the number of subtractions. For instance, when v is
finite, it is su%.cient to impose the very weak assumption
that f~(s) satisfies

Ifi(~) I
«xp(CI~I' ')»0

as lsl ~ ~. If we want to allow for Imfi(s+iO) the
possibility of inhnite v, on the other hand, we will have
to make a much stronger assumption on the asymptotic
behavior. We have not been able to determine how
these properties are related to each other in general;
however, we have at least found that the problem of
subtraction can be given a definite answer under these
assumptions:
(d) For sufliciently large s, fi(s) satisfies

l fi(s) l
&exp[C(lnlsl)' ') for any «)0.

(e) The number of times that the discontinuity
Imfi(s+i0) changes its sign in the interval (s,O) does
not exceed C'(inlsl)' ' as s goes to —~ along the
negative real s axis.

Y. S. Jin, ibid (to be publish. ed). For a critical comment of these
papers see A. Martin, Nuovo Cimento (to be published).
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a(s) = II (s—«') II (s—cr) (s—cr*) ~~(s) (1)
i=1 j=l

which has no zero in the cut s plane. Unitarity condi-
tion (c) allows us to choose the phase of g(s+i0) to be
between 0 and s in the interval (4ies, + oo). Then the
phase of g(s) is either 0 or z. in the interval (so, 4ys),
according to the assumption (b). Since Imf~(s+iO)
changes its sign at s~, s2, ~ ~, s, on the left-hand cut,
Img(s+i0) also changes its sign at the same set of
points. Without loss of generality we may assume that
sv+sv —1+ ' ' ' %$1+$0

Next we construct from g(s) a new function whose
imaginary part is non-negative on the real axis. It is
easy to see that the function

p

G(s) = (s—so) 'II (s—s )R'(s)
k=1

(2)

has such a property if we choose co=0 or 1 according
to whether Img(s+iO) is greater or less than zero in the

' Y. S. Jin and A. Martin, Phys. Rev. 135, 31369 (1964).

We note that we have not been able to weaken the
assumption (e) even if we replaced the assumption (d)
by the stronger condition

lf~(s)l&lsl" f»
where X is a 6xed positive number.

This is as far as we have been able to go. We hesitate
to consider our result as very satisfactory, not only
because the assumption (e) looks rather artificial and
is probably too strong, but also because everything was
obtained by mathematical manipulation alone and we
have gained very little insight into the physical signi6-
cance of the oscillation of Imf~(s+i0) on the left-hand
cut, .

Although the case of finite v was already discussed
in Ref. 2, we shall repeat the argument in Sec. II in
order to improve some details. The case where the
assumptions (d) and (e) are made is treated in Sec. III.
Lemmas on Herglotz functions used in this paper are
discussed in Appendix A. An inequality on the minimum
modulus of entire functions of order 0 is derived in
Appendix S.

II. FINITE v CASE

As was discussed in Ref. 2, our approach to the prob-
lem of subtraction is to relate f~(s) to a Herglotz func-
tion using the technique introduced by Jin and Martin. '
Suppose f~(s) has p real zeros «r, «s, ~, «o in the
interval (so, 4p') and 2g complex zeros cr, ct*, ~ ., c„c,e
in the cut s plane. Suppose also that Imf~(s+iO)
changes its sign at s~, s2, ~ ~, s„on the left-hand cut,
where v is assumed to be 6nite in this section. Our first
step is to construct the function

interval (si,so) . In general this function is not a Herglotz
function because positiveness of the imaginary part on
the real axis does not necessarily imply positiveness of
the imaginary part in the entire upper half of the s
plane. As is shown in Appendix A, however, the former
implies the latter in the particular case where the phase
of the function is confined to the interval (O,s) every-
where on the real axis. This leads us to the following
construction of Herglotz functions.

To avoid unnecessary complication we shall assume
that the change of phase of g(s) does not exceed rr when
we go around the small semicircle s—se = cere (8=0 -+ z.,
e)0) at each s~ (h=O, 1, ~, v).' Then the function
h(s), defined by

where a=1, 0, or —1 according as argg(s+iO) is in
(—z,0), (O,s), or (z.,2s) for si&s&s, , and ri„= 1 or —1
L1 if the slope of the function G(s) at s& is positive, —1

if negativej, has the property that the phase of h(s+i())
lies between 0 and vr on the entire real axis. According
to Lemma 2 of Appendix A, Imh(s) is therefore positive
everywhere in the upper half of the s plane. Thus h(s)
defined by (3) is a Herglotz function.

Once one has succeeded in constructing a Herglotz
function, one can take advantage of its well-known
mathematical properties. The most important is the
property that h(s) can be represented in the formn

1 " (1+xs) Imh(x)dx
h(s) =A+Bs+

(1+x')(x—s)

where A and B are real constants, B)0, Imh(x))0
and the integral

" Imh(x)dx

1+x'

is convergent. From this representation and the fact
that —1/h(s) is also Herglotz it follows that there exist
positive constants C~ and C2 such that

C, lsl-'& lh(s) I &C,I.I

holds in any complex direction as
l sl ~ oo. Of course

such precise information cannot be expected about the
behavior of h(s) along the real axis. However, it has

9,lt is easy to remove this assumption insofar as the phase
change is Gnite at any sic. Then the value of qp is not restricted
to 1 and -1.

» J. A. Shohat and J. D. Tamarkin, The Problem of 3IIomeets,
Mathematical SNreeps, Eo. 1 (American Mathematical Society,
New York, 1943), p. 23. For more recent literature, see
N. Aronszain and W. F. Donoghue, Jr., J. Anal. Math. (Israel) 5,
321 (1956-57);7, 113 (1964).
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been shown by Martin" that for any positive number C
large'r than Cs one can find an infinite sequence {s;),
s.-++oo, such that

Ih(s~) I &cls;I. (7)

In the same manner we can find a sequence {s;),
s; —+ —~, along the negative real axis for which (7)
holds. Since —1/h(s) is Herglotz, we can also find a
sequence {s,), s;-+ + oo or —oo, such that

C'ls'I '& lh(s~) I (g)

Applying (8) to the Herglotz function (3) constructed
from f~(s), we obtain

Cls;I "& If (s;) I

for suQiciently large s; in the sequence {s;},where

tt=f+p+2q ot 1——
and 6=gs i" rts is the number of points ss with rts

——+1
minus the number of points s~ with gk= —1.n is dined
in (3).

Now, because of unitarity, ft(s) is bounded by a
constant as s -+ + oo on the right-hand cut. Combining
this with (9) we obtain the restriction

1&0, i.e., 6)l+p+2g ot 1. ——(10)

This is a generalization of the result of Jin and Martin
which was obtained under the more restrictive assump-
tion that Ft (s) has no zero and all its are equal to 1. It
shows that the total number of zeros of f~(s) cannot
exceed an upper limit set by 6 and hence by v.'2 Or,
conversely, given the total number of zeros of fi(s),
the left-hand-cut discontinuity must change its sign
at least as many times as is given by (10).

The crucial point in our consideration is that the
inequality (10), which is derived. from the behavior of

ft(s) in the limit s-+ + oo, can also be used to deter-

"This is an improvement of the result given in Ref. 8. It can
be proved as follows: Let f(s) be h(s) minus the integral of (4) on
the left hand ottt only Then f-(s) i.s regular in the s plane with the
right-hand cut only, and is bounded by C~s( in any complex
direction as well as along the negative real axis, as is seen from
(4), (5), and (6). Suppose now that along the right-hand cut ( f(s)

~

is never smaller than C'~ s (, C'& C, for sufliciently large s. Then,
applying the Phragmdn-Lindelof theorem (Ref. 13) to the func-
tion 1/f(s), which is regular in the s plane minus the positive real
axis and a finite circle centered at the origin, we find that

I f(s) I

must be larger than C'Is
~

in the complex direction too. This is a
contradiction. Thus, for any C'&C, there must be a sequence
{s;),s; ~ +~, along the positive real axis such that i f(s;) ) &C's;
holds for this sequence. Since the integral on the left-hand cut
divided by [s [ tends to zero as s; ~ + oo, we obtain ( h(s;) i

(C's;
for the same sequence. Clearly, a similar result is obtained by
interchanging the role of the right-hand and left-hand cuts. I
should like to thank A. Martin'for informing me of this un-
published result and for allowing me to describe it here.

"n is roughly equal to the number of times

Reft�

(s) changes its
sign when s takes the Chscrete values s1, s2, ~ ~, s, in this order.
For instance, if Reft(s) is of one sign everywhere on the left-hand
cut, qI, takes the values +1 and —1 alternately as k takes the
values 1, 2, ~ ~, r successively. Thus the values that 6=gs 1"rts
can take is limited to +1,, 0, and —1. Clearly, d is also related to
the number of times that ft(s+i0) goes around the origin of the
complex ft plane when s go'es to —co along the negative real s axis.

ls
—' Imft(s) Ids& oo . (12)

It is also seen from (6) that f~(s) satisfies

Ift(s) I &clsl' (13)

for large lsl in any complex direction. Altogether we
can therefore conclude that we need at most three
subtractions in writing down a dispersion relation for
ft(s). Actually this can be easily improved by a closer
examination of the constants A and j3 in the repre-
sentation (4).

For this purpose we note that ft(s) satisfies the
inequality

(lns)'
I fi(s) I

&C exp I

.i(tr —h)

in the domain defined by 0&args(sr —5 (except for a
small neighborhood of the origin), where 8()0) can be
chosen arbitrarily small. This can be proved easily by
applying the Phragmen-Lindelof theorem" to this
domain. It follows from (14) that, as lsl -+ oo along
the ray s= Is I e e, for 0&8&sr, fi(s) is bounded by

( I
s I

2e/{»—s) (15)

Thus the power of (sl in (15) can be made as small as
we wish by choosing a small enough tII.

The asymptotic behavior of ft(s) may now be dis-
cussed case by case for values of n equal to 0, —1,
or & —2.

Cttse st=0. In this case l't(s) ft(s)/s for large lsl.
From (15) we see that we can choose a nonvanishing 8
such that h(s) is bounded by s '+', 0& a&1, along this
ray. Taking the limit lsl ~ oo in (4) while keeping 8
fixed, we find that 8=0 and

x Iml't (x) (1+xs)—'dx/sr

is convergent and is equal to A. This means that the
dispersion relation for h(s) requires no subtraction.
Thus ft(s) satisfies a dispersion relation with at most
one subtraction. Furthermore, since ft(s) does not
vanish in the limit lsl ~ ~, as is seen from (6), we
have to make exactly one subtraction in this case.

's R. P.3oas, Entire Fttnetions (Academic Press Inc., New York,
1954), p. 3.

mine the behavior of f~ (s) in the limit s ~ —~ . In fact
it is easily seen from (7) and (10) that

If,(s,) I &cls;ls (11)

holds for suKciently large ls;I in the sequence {s;),
s,~ —oo . As far as the behavior of Imft (s+s0) on the
left-hand cut is concerned, we obtain a more precise
information from (5) and (10):
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Case e= —1. In this case h(s) fi(s) for large IsI.
Thus h(s) must be bounded by s', 0&p&1, for some
nonvanishing 0. By the same argument as above we
6nd that J3=0.The dispersion relation for fi(s) requires
at most one subtraction.

Case m( —Z. As is seen from (5), the integral

" (xlmfi(x)Idx

is convergent in this case. We note further that
I fi(s)I&CIsI'+" for IsI ~ pp. Thus the dispersion
relation for fi(s) does not require any subtraction for
e& —3. When n= —2, there is likewise no subtraction
needed, except possibly when 1=0.

In summary we can therefore say that when v is
6nite, the dispersion relation for fi(s) requires no more
than one subtraction under any circumstance. Of course,
when /&1, we can avoid introduction of an arbitrary
constant of subtraction by choosing the subtraction
point at the threshold s= 4@,'.Thus the only place where
an arbitrary constant may be introduced is in the
s-wave amplitude.

polynomials, in6nite products grow at different rates
in the directions s —++pp and s~ —pp. Thus, if we
want to make use of relationships similar to (11), (12),
and (13), we have to impose some restrictions on the
growth rates in diferent directions.

These considerations have led us to the investigation
of the assumption of the form

&(s)=(s s ) IIL1—(s/s )) '+
k~1

(19)

Q(s) = (s—4~')' ll I.I—(s/»)]"—
k 1

g I 1—(s/sp)g &expLC'(InIsI)'-'g
k=1

for IsI —+ pp, (18)

which characterizes the asymptotic behavior of the
left-hand-cut discontinuity in a certain way and is
apparently the weakest assumption satisfying the above
criteria. As is seen from (B4), this is equivalent to the
assumption (e). For simplicity we shall put

II I:1—(s/») j
k~1

(16)

II L1—(s/cs) r1—(s/c9*)j.
j=l

(17)

From the assumptions (a), (c), and (d) alone it seems
to be impossible to 6nd any reason why these products
should converge. If they are divergent, we have to
include convergence factors in de6ning these products.
However, since the problem of subtraction itself is
likely to become meaningless in such a general case, it
would be reasonable for us to assume that the products
(16) and (17) are in fact convergent. This assumption
means that the entire fun. ctions de6ned by (16) and (17)
should not grow faster than exp(IsI' —'), p)0, as
IsI -+ ca.

It turns out, however, that even this assumption is
still too general and we have to make much stronger
assumptions if we want to derive a result similar to that
of the 6nite v case. This arises from the fact that, unlike

IIL CASE v=

We shall now discuss the case where 1m'(s) changes
its sign in6nitely many times on the left-hand cut. Since
the relations like (9) and (10) are no longer well defined,
the consideration of Sec. II must be modi6ed or gener-
alized in several ways. First of all, we have to make
sure that the procedure by which the Herglotz function
is constructed from fi(s) can be generalized to infinite v.
Thus we must examine the convergence property of the
in6nite products such as

(s—r~) g L1—(s/c, )jL1—(s/c;*)$, (20)

where p~, +———,'(1&iIi,) and a, iIi, are de6ned in the same
way as in (3). To avoid unnecessary complications we
have assumed that all s~ are negative and that+ =0 or 1.
If n= —1, we should divide both E(s) and Q(s) by
(s—sp) .

Under the assumed convergence of the in6nite
products E(s) and Q(s), the construction of the Herglotz
function h(s) described in Sec. II can be carried out
without difhculty in the case v = ~.Thus we 6nd that
the product fi(s)P(s)Q '(s) is a Herglotz function a;nd.

satis6es the inequality

c I I '&If ()&(~)Q '()I&c
I I (21)

for sufficiently large IsI in any complex direction.
From (18), (21), and assumption (d) we see that the
function Q(s) has the property

I Q(s) I
& expLC" (lnl s I)' '1 (22)

as
I sI -+ ~ in any complex direction. This bound. can

be easily extended to the real axis making use of the
Phragmen-Lindelof theorem. "

Along the real axis we can find, as in (8), a sequence
(s,},s;-+ + pp, such that

Cs; '&
I fi(s;)P(s;)Q '(s~) I. (23)

Combining this with the requirement of unitarity (c)
we obtain

IQ(s~) I
&C'Is,r(s,) I

for the same sequence (s;}.However, for our purpose
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we need a relation stronger than (24) which holds for
all large positive s. This can be derived in the following
manner.

We first note that, according to the assumptions (a),
(c), (d), and the Phragmen-Lindelof theorem, f4(s)
satisfies the inequality

lns '( )
I f((s)((C exp

37ri
(25)

Then, as is proved in Appendix 8, the assumption (18)
leads us to the inequality

(P(s) I
&M(r) expL —A(r)(lnr)' 'j, e)0, (29)

on the circle lsl =r, outside a set of circles the sum of
whose radii can be made arbitrarily small. d, (r) is a
function of r which grows to infinity as slowly as we
wish. Note that, in the case of P(s), all these excluded
points are located in the small neighborhood of points
(si) on the negative real axis. Thus, if we define the

'4 i4Ve may be able to improve the factor (lns)s in this formula
by more careful estimates. However, such an improvement is not
necessary for our purpose.

for all
I
s

I
&R in the upper half of the s plane, where C

is a constant larger than 1 and E. is a point of the
sequence (s,) such that the assumption (d) holds for
all Is( &R. It follows from (25) and a similar inequality
in the lower half of the s plane that f4(s) is bounded by
a constant in the small neighborhood of the semi-
infinite interval s&E. defined by

largsl &y(ln(s() ', ls(&I', (26)

where y is a positive constant. On the other hand, it is
easily seen from the representation (4) that the in-

equality

C'ls '(lns) '[( If4(s)P(s)Q '(s) ((C"ls(lns)'(

holds on the boundary curve of the domain (26)."From
these results we find that the function Q (s)/Ls (lns)'P (s)j
is bounded by a constant on the boundary of the
domain (26). In fact, since this function is regular in

(26), the inequality

(Q(s)/Ls(lns)'P(s)j I
(C (27)

must hold everywhere in (26). To prove this we have
only to consider this function in the s plane, where s is
related to s by

z= expLrr(1 )'n/s6yj,

and apply the Phragmen-I. indelof theorem to the right
half of-the s plane.

%hat we would like to find out is the nature of
restrictions which the "unitarity bound" (27) imposes
on the asymptotic behavior of f4(s) in complex direc-
tions and along the negative real axis. For this purpose
let us define

3E(r) = Max (
P (s) I

.
[& t=&

domain D by

—rr+o. (args(~ —o, lsl &E, (30)

IQ(s) I
& Is+~( "Q(Is+~I —~) ~

Now, if we define the function q (s) by

(32)

q (s) =Q(s)P-'(s)s-'-'~-'o(lns)-', (33)

which is regular in the domain D defined by (30), it is
bounded in D by the ratio (P((s+a( —u)/P((s() I

as
is seen from (27), (31), and (32). Since this ratio itself
is less than 1, P (s) being monotonically increasing along
the positive real axis, p(s) is bounded by a constant
everywhere in D. It follows that

(P(s)/Q(s)()const(s ' 'P so(lns) '( (34)

holds in D. Combining this with (21) we find that f4(s)
satisfies

( fI(s) (
&C(s'+4~+so(lns)

( (35)

in the domain D.
Of course the inequality (35) cannot be used on the

negative real axis which is outside of the domain D.
However, as is seen from (5), we have on the negative
real axis the relation

~ (P(x) Imf)(x) (dx
-g oo

IQ(*) I (1++)
(36)

In order to estimate the magnitude of (P(x)/Q(x) I on
the real axis, we note that since P(s) and Q(s) satisfy
(31) and (32), the lower bound (34) can also be used
on the negative real axis if we avoid the small neighbor-
hood of the points st. where P(s) vanishes. If we dis-
regard this exception and use the inequality (34) every-
where in (—~, E), then we overestimate —the contri-
bution from the neighborhood of sl, . However, since
Im f4(x) vanishes at x= si, and since the set (sq) is very

where 0- is a small positive number, then we can choose,
according to (29), a small fixed number bi ()0) such
that

P(s) [&r s&P(r), r= is( 4 (31)

holds in D. Here we have taken account of the fact that
the maximum of (P(s) I

for fixed ls( occurs on the
positive real axis. In the case of Q(s) we do not know
where on the circle

I
s

I
=r the maximum value is taken.

Thus we can only deduce from the property (22) that
there exists a small b@()0) such that

IQ(s) I
&r"Q(r)

holds except when s= r happens to lie within one of the
excluded circles along the positive real axis. However,
since the formula (29) may be applied equally well to
a circle whose center is not at the origin, we can always
find for any given complex s a finite positive number a
such that

I
s+u I

—a does not fall in any of the excluded
circles. For such an a we have
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sparsely distributed according to assumption (e), the
overestimation in the neighborhood of the set (sl,} can
be bounded by a finite number. Thus we obtain from
(34) and (36) the inequality

IImfi(x) ldx
oo .

I
x'+'p+'o(lnx)'

I

(37)

'~ This assumption on the distribution of zeros is not essentia&
for our consideration. See Ref. 13, pp. 40 and 43."See Ref. 13, p. 56.

Since or+ho can be chosen as small as we wish, we see
from (35) and (37) that we have to make at most three
subtractions in writing down a dispersion relation for
f~(s). Using the technique similar to the one employed
following Eq. (14), it is now easy to show that the
dispersion relation for f&(s) does not actually need more
than one subtraction.

We note that, if f&(s) grows more rapidly than is
allowed by the assumptions (d) and (e), it is not possible
to choose a finite 5i j5o in the formula (35). Thus we
cannot replace 2—e in assumptions (d) and (e) by any
larger number insofar as our method is based on the
inequality (29).

Finally, we should like to discuss the possibility of
replacing the assumption (18) by a slightly different
assumption:

I Q(s) I =O(expLC(lnl. l)'-'3)

We have seen already that (38) or (22) follows from (18)
under assumption (d). But the reverse is not always
true. Thus (38) offers us a somewhat different approach
to our problem.

As is seen from (27), the function P (s) must grow at
least as rapidly as Q (s)/I s (lns)'j along the positive real s
axis. This means that as an entire function P(s) must
grow like expl C(lnlsl)' 'g or more rapidly as lsI ~ ao.
In the first case we obviously obtain the same result as
before. If it grows more rapidly, for instance, if

P(s) =O(expl C'I ~I'&), 0(p(-,', (39)

and if the zeros of P(s) are distributed in some regular
fashion along the negative real axis, then we have""

lnP(s) Cs&/(sins p) as s ~ +~, (40)

lnl P(s) I
C(cotrrp)

I sl & as s ~ —~, (41)

except in the neighborhood of si, sz, , where P(s)
vanishes. It is now seen from (21) and (36) that f~(s)
goes to zero very rapidly as

I sl ~ eo in all directions.
Thus the dispersion relation for f~(s) requires no sub-
traction in this case. However, if P(s) grows even more
rapidly as s ~ +~, for instance if s &p(1 in (39), it
has to go to zero very rapidly in the direction s —+ —~,
as is seen from (41).We cannot say anything about the
number of subtractions in such a case.

Thus the assumption (38) enables us to treat the
problem of subtraction in a more general manner than
the assumption (18). Unfortunately, the significance of
this improvement is not very clear because the physical
implication of the assumption (38) Lwhich is mainly
concerned with the distribution of zeros of Im fi(s+zO)
with rid

———1 on the left-hand cutj is as obscure as that
of the assumption (18), which is concerned with the
distribution of zeros of Imfi(s+iO) with rfi, =+1.
Nevertheless, it may be useful to point out that (38)
also implies that the number of complex zeros of fi(s)
within the circle of radius s should not increase more
rapidly than (lnlsl)' ' as s ~ ~. If we could relate
this restriction to assumption (d) on the asymptotic
behavior, and if we could properly take account of the
fact that the parts of P(s) and Q(s) associated with the
oscillation of Imf~(s+zO) on the left-hand cut tend to
cancel each other, then we might be able to weaken
assumption (e) considerably.
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s " Img(s'+ jO)dz'
G(z) =—g(z) ——

z'(s' —z)
(A1)

where s=o is assumed to be a regular point, is well-
defined and regular in the whole s plane, and has the

"See, for instance, K. Symanzik, J. Math. phys. I, 249 (]960),
Appendix B.

APPENDIX A. LEMMAS ON HERGLOTZ
FUNCTIONS

We discuss here some lemmas on Herglotz functions
adapted to the specific need of our problem. There is
nothing new about them. "

Lemma 1. Let f(s) be a real analytic function defined
in the cut s plane with two nonoverlapping cuts
(—~, L) and (R, +~) on the real axis. Suppose f(s)
has these properties: (i) It has neither zero nor pole
within the cut plane; (ii) it is continuous and does not
vanish or diverge on the cuts; (iii) Imf (s+z0) is positive
on the cuts except at the end points I and 8, where it
vanishes; (iv) It is bounded by exp(CI s I

'—'), c)0, as
Isl —+ ~. Then Imf(s))0 everywhere in the upper
half of the s plane.

Proof. Let g(s)=lnf(z). For definiteness we shall
choose the branch of logarithm such that Img(s)=0
or rr in the gap (L,R). Then g(z) is regular in Ims&0
by (i), and satisfies 0& Img(s+i0) &rr on the real axis
by (ii) and (iii). Since Img(s+zO) is bounded for any
real s', the function
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1
ReG(x) =— d8 ReG(x+e")

2%

&C([x[+1)' '+C' ln([x[+1)+C", (A3)

which is obtained with the help of Poisson's formula,
and where C" is a finite constant. Thus, ReG(s) is
bounded by [z[' ' on the real axis, too. But an entire
function with such a property must be a constant. "
This means that g(z) satisfies the dispersion relation
vrith one subtraction:

s " Img(z'+i0)dz'
g(z) =g(o)+-

z'(z'-z)
(A4)

property"

ReG(z) &C[s['—'+C' In[ s[ —C' ln[Ims[ (A2)

according to (iv). Thus ReG(z) is bounded by [z[' ' in
the s plane except possibly on the real axis. However,
since G(s) is actually regular at any real point x, we can
obtain a better bound:

except at some isolated points and

if'(z) —= lim argf(z+ti+iO)

satisfies 0(f+(z) (s- everywhere on the real axis; (iv)
it is bounded by exp(C[z[' '), e&0, as [z[ ~ ~ except
at the isolated points on the real axis [where f(z)
diverges) which are separated from each other by
finite distances. Then f(z) is a Herglotz function.

I'roof. Under assumptions (i), (ii), and (iii), we can
still construct an entire function G(z) as in (A1).
Although the inequality (A3) no longer holds for all
large [z[, it holds at least for an increasing sequence of
values of [s[ according to (iv). This is sufhcient to
show that the entire function G(z) is a constant. The
rest of the proof is the same as that of Lemma 1.Q. E.D.

APPENDIX B. PROOF OF INEQUALITY (29)

This inequality can be obtained by a slight modifica-
tion of the similar inequality given on page 50 of Ref. 13.
From Jensen's theorem expressed in the form"

For Im2'/0 we obtain from this the relation t 'e(t)dh&lnM(r), (81)

Imz " Img(z'+i0)dz'
Img(z) =-

„(z'—Res)'+ (Imz)'

where 3f(r) is defined by (28) and e(r) is the number
of zeros of I'(s) within the circle [s[ =r, we obtain

t 'N(t)dk&lnM(r') (82)n(r) 1nr=n(r) t—'dt&

(83)

t ' (i)dt=ON(r

—O rI/2 lnr I—~ ]—3I2d~

(84)

Thus, according to the formula (3.5.11) of Ref. 13,
we obtain

In
I ~(,) 1

& lnM(r)-~(r) (lnr)i- (85)

Lemma Z. Let f(z) be a real analytic function defined
in the domain given in Lemma 1, having the following
properties: (i) It has neither zero nor pole in this
domain; (ii) it has no essential singularity at any finite
point on the cuts; (iii) the phase of f(s) is continuous

outside a set of circles the sum of whose radii is at most
br, where 8 can be chosen arbitrarily small. D(r) is a
function of r which tends to ~ arbitrarily slowly. This
proves the inequality (29).

~o See Ref. 13, p. 2.
'8 I should like to thank A. Martin for supplying this proof."See Ref. 13, p. 3, Theorem 1.3.4.

From (A5) we can easily conclude the following: Since
Img(z+i0)&0 on the cuts, Img(z)&0 everywhere in r

the upper half of the z plane; since Img(z+iO) &s. on
the cuts, we obtain Img(s)&s for any Ims&0. These

we have
properties together show that Imf(z)&0 everywhere

n (r) =O((lnr)' —') .
in the upper half of the z plane. Thus f(z) is a Herglotz
function. Q. E.D. From this it follows that

It is obvious from this proof that assumptions (ii)
and (iii) can be replaced by somewhat weaker ones. t '(let) dt)' '
For instance, Lemma 1 is valid even if Imf(z+i0)
vanishes at isolated points on the cuts insofar as
Ref(z+iO) does not vanish at the same time, which is
guaranteed by (ii). We may even relax (ii) and allow

f(s) to vanish or diverge at isolated points on the cuts
if it does not violate the crucial inequality 0(lmg(z+iO) =0((lnr)' ').
&x anywhere on the real axis. Thus we are led to


