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Solution of the Bethe-Salpeter Equation in the Inelastic Region*
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The Bethe-Salpeter equation is solved numerically for a @3 theory in the ladder approximation up to the
second inelastic threshold. Below the 6rst inelastic threshold, the results agree with previous work. Between
the erst and second inelastic thresholds, it is found that there are coupling strengths which cause unitarity

(ot q,i)o,~„t;,) to be violated.

more manageable form which is suitable for extending
the BS calculation into the inelastic region. In this
paper we present the numerical results for the phase
shifts, obtained with the use of this method, for s and p
waves up to the second inelastic threshold for a range of
coupling constants and for two values of the mass of
the exchanged particle.

Of course, it is not known how important other sets
of graphs are; the ladder results may not be a very good
approximation to the complete theory. Further investi-
gation along this line should be undertaken. In fact,
we 6nd that in the inelastic region the unitarity
inequality

I. INTRODUCTION
' 'N the past few years the 1V/D equations have been

applied extensively to the study of the dynamics of
strongly interacting particles. Among other advantages,
one practical advantage of the X/D equations is that
they can readily be solved numerically. On the other
hand, the E/D equations suffer from several difficulties.
One di@.culty is that even for a completely renormaliz-
able theory one needs cut-off parameters in order to get
finite results. Moreover, some recent study' indicates
that these equations yield unphysical results. As the
calculations have become more redned, it has also
become apparent that it is hard, in general, to include
accurately certain forces which may be important. In
particular, forces arising from three-particle intermed-
iate states are usually left out. Recently Mandelstam'
has given a set of X/D equations for three particles;
but they are very complicated, and, in practice, the
left-hand singularities are not well known.

An alternative way of including inelastic effects is the
use of off-shell equations from field theory. As an
example, the Bethe-Salpeter (BS) equation' in the
ladder approximation includes some multiparticle
processes. It is of some interest to see whether the
solutions are physically reasonable.

Recently Schwartz and Zemach succeeded with the
use of a variational technique in obtaining the positions
of the bound states4 and the values of the phase shifts
in the elastic region' of the BS equation in the ladder
approximation for a P' theory. Their method, however,
breaks down beyond the inelastic threshold. Recently
we described a method' to reduce the BS equation to a

&total +0 elastic

can be violated if only simple ladder graphs are included.
Preliminary results indicate that this can be easily
cured by including other graphs.

In Sec. II we review for completeness the equations
given previously and discuss their extension to the
inelastic region in more detail. In Sec. III we present
the results of the calculations, and we furthermore
compare them with the approximation to the BS
equation suggested by Blankenbecler and Sugar. 7

II. NOÃSINGULAR FORM FOR THE
BS EQUATION

The BS equation given formally by

T= V+VGT

describes relativistic two-particle scattering in terms
of the T matrix, an interaction V, and the free two-
particle Green's function G. We limit ourselves here to
the scattering of two distinguishable spinless bosons of
equal mass ns. While V may include any number of
irreducible interactions, we further restrict ourselves to
the exchange of a single spinless boson of mass p.
While these restrictions exclude any physically interest-
ing cases, they do present a reasonable starting point
for solving more complicated problems. Since the total
angular momentum is conserved, we may decompose T

*Work supported in part by the U. S. Atomic Energy Com-
mission.
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to be called BBS.
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Ti(p, ol ' P,Q); s)

= Vi(p,~; p', ~') i— dP Vt(pp'i P ~oi )

and t/' into partial wave components T~ and V~ to
obtains

of the propagator singularities as do Graves-Morris"
and Taylor" since the equations are soluble by ordinary
numerical techniques without this further refinement
and the accompanying complexity. We define f&(p,o&; s)
by factoring the fully on-shell behavior out of the half
o6-shell T-matrix

where

Vi(p, ~; p',~')

XG (P",co"; s) T& (P",oi"; P',co'; s), (2.1) Ti(p,u; p,O; s) =fi(p, ~; s)ti(s).

As a result we have

fi(P 0' s) =1
= (»/ )() ([P'+P"+ '—( —')'-i ]/2PP'}.

The Green's function G, being the product of two
free-particle propagators, is given by

G(p, re; s) = {[p'+ m' ie —(&u—+-,'gs)']
X [ps+ms se (M res)2]}—1

The total center-of-mass energy is (s)'~', and P=[srs
—m']'". In the c.m. system, p and &u are half of the
relative momentum and energy, respectively. The
phase shift is obtained from the fully on-shell T matrix
by

ti(s) = (2/s)'p(p'+m')"'e" sinh

= Ti(p, O; p, O; s).

The solution of the BS equation is considerably
complicated by the singularities of the kernel: the 4
poles of the Green's function at

(a"= &(-,'Qs& [p'"+m']'" —ie}

-and the four branch points of the potential at
oi"=~a f[(pap")'+ti, ']" ie}—

The most serious singularity arises from the pinching of
the integration contour by the poles ~co, with

~= s (s)in —(p s+ms)i(s+

This happens when p"=p. In analogy with the tech-
niques of Kowalski' and Noyes, ' because the potential
also appears in the inhomogeneous term, we can
introduce a zero into the potential term of the kernel
at p"=p and a&"=0. We do not attempt to remove all

Letting Vi(s)=Vi(p, O;p, O), suppressing some s and
all I dependence, we may use Eq. (2.1) to find t in terms
of

t(s)=V(s) 1+i do)' dp' V(P,O; p', (u')

V(p,~;PO)
f(p,-)=

' ' ' +'
V(s)

doo dp

V(P, ; P,O) V(P', '; P,o)

V(s)
—V(p ~ p~ )'

XG(p', ~')f(p', ~'). (2.3)

It is desirable to rotate the contour of the ~' integra-
tion" so that it lies along the imaginary axis, well away
from the singularities except at the origin. Even there,
the potential term introduces a zero making the
integration manageable. If we restrict ourselves to the
elastic scattering region (2m)'(s((2m+ii)', we find
that the only singularities in the erst and third quad-
rants are the propagator poles, ~"=+oi for p"=p.
Because of the strong convergence for ~te'~ ~ ~, we
may therefore take the ~' integration contour along the
imaginary axis and add the residues at these poles.
Letting g(p) =f(p, &v), and noticing that only f(p, cu)

+f(p, —
&u) enters into t(s), we find a set of coupled

equations

XG(p', ')f(P', ') (2.2)

The resulting equation for f is

f(p, i~) = V(p,i'; p, 0)

V(s)

2V(p, uo; p, 0) V(p', i(o'; p,0)—V(p,i~; p', ice')

—V(p,i~; p', i'') +—

V(s)

2V(p,~;P,o)V(PO; P', ~(p'))
dp'

2+s
g (p')

V(P' 'P (P)) V(P' 'P (P)) (2.4)
~(P') [(P')'+m']'"

V(s)

s B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962). The coupling constant k is the same as in Ref. 5 and is related to Lee
and Sawyer's by g'/(2v)'=2&/s. .' K. L. Kowalski and D. Feldman, J.Math. Phys. 2, 459 (1961);K. L. Kowalski, Phys. Rev. Letters 15, 798 (1965).' H. P. Noyes, Phys. Rev. Letters 15, 538 (1965)."P.R. Graves-Morris, Phys. Rev. Letters 16, 201 (1966)."J. G. Taylor, Nuovo Cimento Suppl. 1, 1002 (1963); A. Pagnamenta and J. G. Taylor, Phys. Rev. Letters 17, 218 (1966)."G. C. Wick, Phys. Rev. 96, 1124 (1954); W. Kemmer and A. Salam, Proc. Roy. Soc. (London) A230, 266 (1955).
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v ', 'po)2V(P.-(P);P,o) (P
qG (pt ~~)f(p )~ )

and

U(s)

2V(P. (P) PO) (PV "0
P M(P))

V(s)

V(P,GJ(P) j P& )
g(p) =

V(s)

(P) jP ) 2+$0
—z)+

g(P')
(2.5))'p" (p) . p' —co(p ))

(pi)L(p')z+nz $

~ /-
(p) ~ p', m )

2.0
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the s-wave phase shift for
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The imaginary part of the phase shift is similarly shown
in Figs. 4, 5, 6, and 7. It is to be noticed that these
phase shifts can have a negative imaginary part for
larger coupling constants. As a result the corresponding
S-matrix elements become greater than one in absolute
magnitude. Hence, the solutions of the BS equation in
the ladder approximation exhibit some unphysical
features.

A similar situation can be found in the well-known
Lee model. " The ladder approximation to the U-0

scattering in this model amounts to omitting the V-
particle self-energy corrections. In doing this we have
found a similar behavior for the phase shifts of the V-0
scattering. The coupling constant for which the V-0
S-matrix element starts to become greater than 1 in
magnitude lies below the critical value for the existence
of the V-particle ghost state. Hence, the occurrence of
this anomalous behavior in the V-8 sector in the ladder
approximation is not at all related to the presence of
ghost states in the E-8 sector. The effect of including
certain self-energy diagrams in the BS equation in
order to satisfy unitarity exactly up to the second
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free Green's function in Eq. (2.1) by the expression

ds'
E2= 2~i 8Q"2+m2 —(-,2+S+a&")']

9$ —$
XSpp"2+m2 —(-'2+s—(o")'j.

On substituting this into Eq. (2.1), the BS equation
reduces to

T((p,0; p', 0; s) = «(p, 0; p', 0)+— dp"
0

XL(p~~2+~2)1/2(pi&2+~2 2g)j—1

X«(p, 0; p" 0)T (p",0; p'o; ). (3.1)

Fio. 10. s- and p-wave shifts
for exchange mass=0. 15 in the
Blankenbecler-Sugar approx-
imation.
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We have solved Eq. (3.1) and determined the corre-
sponding phase shifts. These results are shown in
Figs. 8, 9, and j.0.These results approximate the Bethe-
Salpeter results to within 10-30%. The agreement is
worse for higher / and for smaller exchange mass. Of the
two, the BBS phase shifts are consistently higher for
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Fxo. 8. s-wave phase shift
for exchange mass = 1 in
the Blankenbecler-Sugar
approximation.
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Fte. 11. Position of the 6rst bound state for the Bethe-Salpeter
equation and the Blankenbecler —Sugar approximation.

Fro. 9. p-wave
shift for exchange l.o
mass=1 in the
Blankenbecler-Sugar
approximation.
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to
S
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equal ) . Finally, the positions of the erst bound states
in the two cases" are given as a function of X in Fig. 11.
An alternative is to compare the phase shifts for X's

giving the same position for the 6rst bound state rather
than for equal P. It is then possible to bring the phase
shifts into a somewhat better agreement with each
other for low coupling strengths. However, the situation
becomes markedly worse for higher coupling constants.
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