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The Bethe-Salpeter equation is solved numerically for a ¢3 theory in the ladder approximation up to the
second inelastic threshold. Below the first inelastic threshold, the results agree with previous work. Between
the first and second inelastic thresholds, it is found that there are coupling strengths which cause unitarity

(0t0tal = Gelastic) to be violated.

I. INTRODUCTION

N the past few years the N/D equations have been
applied extensively to the study of the dynamics of
strongly interacting particles. Among other advantages,
one practical advantage of the N/D equations is that
they can readily be solved numerically. On the other
hand, the N /D equations suffer from several difficulties.
One difficulty is that even for a completely renormaliz-
able theory one needs cut-off parameters in order to get
finite results. Moreover, some recent study' indicates
that these equations yield unphysical- results. As the
calculations have become more refined, it has also
become apparent that it is hard, in general, to include
accurately certain forces which may be important. In
particular, forces arising from three-particle intermed-
iate states are usually left out. Recently Mandelstam?
has given a set of N/D equations for three particles;
but they are very complicated, and, in practice, the
left-hand singularities are not well known.

An alternative way of including inelastic effects is the
use of off-shell equations from field theory. As an
example, the Bethe-Salpeter (BS) equation® in the
ladder approximation includes some multiparticle
processes. It is of some interest to see whether the
solutions are physically reasonable.

Recently Schwartz and Zemach succeeded with the
use of a variational technique in obtaining the positions
of the bound states* and the values of the phase shifts
in the elastic region® of the BS equation in the ladder
approximation for a ¢? theory. Their method, however,
breaks down beyond the inelastic threshold. Recently
we described a method® to reduce the BS equation to a
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more manageable form which is suitable for extending
the BS calculation into the inelastic region. In this
paper we present the numerical results for the phase
shifts, obtained with the use of this method, for s and
waves up to the second inelastic threshold for a range of
coupling constants and for two values of the mass of
the exchanged particle.

Of course, it is not known how important other sets
of graphs are; the ladder results may not be a very good
approximation to the complete theory. Further investi-
gation along this line should be undertaken. In fact,
we find that in the inelastic region the unitarity
inequality )

Ototal Z Oelastic

can be violated if only simple ladder graphs are included.
Preliminary results indicate that this can be easily
cured by including other graphs.

In Sec. IT we review for completeness the equations
given previously and discuss their extension to the
inelastic region in more detail. In Sec. III we present
the results of the calculations, and we furthermore
compare them with the approximation to the BS
equation suggested by Blankenbecler and Sugar.”

II. NONSINGULAR FORM FOR THE
BS EQUATION

The BS equation given formally by
T=V+VGT

describes relativistic two-particle scattering in terms
of the T matrix, an interaction V, and the free two-
particle Green’s function G. We limit ourselves here to
the scattering of two distinguishable spinless bosons of
equal mass . While V may include any number of
irreducible interactions, we further restrict ourselves to
the exchange of a single spinless boson of mass pu.
While these restrictions exclude any physically interest-
ing cases, they do present a reasonable starting point
for solving more complicated problems. Since the total
angular momentum is conserved, we may decompose T

7 R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966) ;
to be called BBS.
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and V into partial wave components 7; and V; to
obtain®

TZ(PJw; plrw,; S)
=Vi(pw; p' ') —1 / dw" / dp"' Vi(pw; p”' ")
—0 0

XG" "5 )Tu(p" 0" ;"' 5), (2.1)

where
Vl (P:w 5 Pl;w,)
= (2N/m)QUA[p*+ p"*+u?— (0—o')2—ie]/2pp"} .

The Green’s function G, being the product of two
free-particle propagators, is given by

Glpw35) = ([ +m—ie— (ot h/5)7]
X[pmi—ie— (/51

The total center-of-mass energy is (s)V2, and p=[2s
—m?]"2. In the c.m. system, p and w are half of the
relative momentum and energy, respectively. The
phase shift is obtained from the fully on-shell 7 matrix
by
t(s) = (2/7)2p (P2+m?2) /% sind
= Tl(ﬁ707 ﬁ)oy S) .
The solution of the BS equation is considerably

complicated by the singularities of the kernel: the 4
poles of the Green’s function at

o= (/oo [ i)
and the four branch points of the potential at
o' =t ([ (petp a2 ] i)

The most serious singularity arises from the pinching of
the integration contour by the poles +&, with

B=} ()= (p 2o,

This happens when p”’=45. In analogy with the tech-
niques of Kowalski® and Noyes,! because the potential
also appears in the inhomogeneous term, we can
introduce a zero into the potential term of the kernel
at p”’=p and w”’=0. We do not attempt to remove all
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of the propagator singularities as do Graves-Morris!!
and Taylor'? since the equations are soluble by ordinary
numerical techniques without this further refinement
and the accompanying complexity. We define fi(p,w; s)
by factoring the fully on-shell behavior out of the half
off-shell T-matrix

Tz(P,w;ﬁ,O;S)=fl(P,w;S)tl(s).
As a result we have
fl(ﬁ,0,8)=1

Letting Vi(s)=V:($,0; $,0), suppressing some s and
all  dependence, we may use Eq. (2.1) to find ¢ in terms
of f:

t(s>=v<s>[1+i/ & / APV (3,0; )
—00 0

-1
X6 s | - @)
The resulting equation for f is
w)=—-——V(P’w;ﬁ’O)+¢/w dw'/w dp’
V(s) o 0
y lV(;b,w; BOYV(p' w5 5,0)
V(s)

f(?’

Vooui )

XG0 (). (2.3)

It is desirable to rotate the contour of the ' integra-
tion!3so that it lies along the imaginary axis, well away
from the singularities except at the origin. Even there,
the potential term introduces a  zero making the
integration manageable. If we restrict ourselves to the
elastic scattering region (2m)?<s< (2m—4u)?, we find
that the only singularities in the first and third quad-
rants are the propagator poles, w”’==¢ for p”’=p.
Because of the strong convergence for |w'| — =, we
may therefore take the ’ integration contour along the
imaginary axis and add the residues at these poles.
Letting g(p)=f(p,»), and noticing that only f(p,w)
+ f(p, —w) enters into {(s), we find a set of coupled
equations

. V(piw; p,0) > @ 2V (piw; $,0)V (p i ; §,0)
(i) =D / de / dp’G(p',iw')f(p',iw'>{ PR BT POy g s i)
V(S) 0 0 V(S)

P (2V(pyiw; BO)V(B,0; 4,00
~V(p,iw;p’,—iw’)]+ / dp,{ (B BOYVB.0; #,6(8)

24/sJo V(s) )

. 4
—V(psiw; #,3(0))— Vpyio; #, —a(8) (2.4)
SR S e R PR eR e
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and
V(p,w(p) £,0) 2V (p,@(p); p,O)V (' iw’; $,0)
dv'G !
= / / PG i) (8 i >{ o
T [P 2V (p,a(p); 5,00V (H,0; p',a(p
—V(p,w);p',iw')—w,w(p);p',—iw')]+— / { @5@): bOVE0: #:5')
20/s V(s)
V(b,5(8); 0,08 V(pa(8); ¢ '<p'»} 8®) 2.5)
- W y PLw - W P, —w : :
()L (Bt mt ]

At s=(2m+p)?, the first inelastic threshold, it
becomes possible for the pole at w’=a to pinch a branch
point of the potential. This pinching introduces a
branch point in the scattering amplitude #(s). In the
region (2m~+p)2<s< (2m+2u)? this is the only addi-
tional singularity problem; since this potential branch
point is only logarithmic, it does not destroy the
Fredholm properties of the kernel and reasonable
numerical care suffices. For s> (2m—2u)?, an additional
logarithmic branch point moves into the first quadrant.
We have not carried our calculations above this second
inelastic threshold.

Finally, the integral in Eq. (2.2) can also be done
along the imaginary o’ axis, if the pole contribution is
added. It is convenient to add and subtract the con-
tribution of the box diagram to this integral so as to
introduce a zero whenever two of the poles in the
Green’s function coincide:

1(s)=V([1+u(s)+ta(s)+0(s) I (2.6)

with

f(s)=— / de / YV (B,0; 4, )G (P i)

V@B
x[f(p,m e } @7)
ms)—— / AYVE0; § (5 Nalp) !
V(' 5(8); 5,0)
2 2 1/2 —
XLy +mT [gu») o } 2.8)
b(s)= +z/ do / ATV B0; p )T
- XG(p' )/ V(s). (2.9)

III. NUMERICAL RESULTS

The coupled equations (2.4) and (2.5) for f and g
were solved numerically by transforming the integra-
tions to a finite range, approximating the kernels and
inhomogeneous terms by finite matrices and then
solving the matrix equations on a computer. There is an
integrable singularity at p'=$, »'=0, which was
eliminated by a change in variables. The elements of the
matrices were obtained by averaging the value of the
function at several points near each mesh point.

When the logarithmic singularity of the potential lies
within the range of integration, the kernel is replaced
by a smoothed function obtained by averaging the
logarithm analytically in the neighborhood of each
mesh point assuming the other factors are constant.
The number of mesh points in any single variable
varied between 8 and 12. Typically, the kernel in
Eq. (24) was approximated by a 10X10X10X10
array. This yields an accuracy of about 2%, in the real
part of the phase shifts and 5-109, in the imaginary
part as estimated by varying the mesh size and point
distribution. In general, the percentage error in the
imaginary part increases as the magnitude of the
imaginary part decreases.

The real part of the phase shift is shown in Figs. 1,
2, and 3 for m=1 and for various values of y, /, and A
as a function of s. These results agree with those of
Zemach and Schwartz in the elastic region for p=1.

¥16. 1. Real part
of the s-wave phase
shift for exchange
mass=1 in the
Bethe-Salpeter equa-
tion.

F16. 2. Real part
of the p-wave phase
shift for exchange
mass = 1 in the
Bethe-Salpeter equa-
tion.
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F1c. 3. Real part of
the s- and p-wave phase
| shifts for exchange mass
=0.15 in the Bethe-
Salpeter equation.

The imaginary part of the phase shift is similarly shown
in Figs. 4, 5, 6, and 7. It is to be noticed that these
phase shifts can have a negative imaginary part for
larger coupling constants. As a result the corresponding
S-matrix elements become greater than one in absolute
magnitude. Hence, the solutions of the BS equation in
the ladder approximation exhibit some unphysical
features.

A similar situation can be found in the well-known
Lee model.* The ladder approximation to the V-0
scattering in this model amounts to omitting the V-
particle self-energy corrections. In doing this we have
found a similar behavior for the phase shifts of the V-9
scattering. The coupling constant for which the V-6
S-matrix element starts to become greater than 1 in
magnitude lies below the critical value for the existence
of the V-particle ghost state. Hence, the occurrence of
this anomalous behavior in the V-9 sector in the ladder
approximation is not at all related to the presence of
ghost states in the V-6 sector. The effect of including
certain self-energy diagrams in the BS equation in
order to satisfy unitarity exactly up to the second

F16. 4. Imaginary part of
the s-wave phase shift for
exchange mass =1 in the
Bethe-Salpeter equation.

-.02f .
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14 G. Killén and W. Pauli, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 30, No. 7 (1955).
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threshold is now being investigated. In this way we
should at least be able to restore the unitarity inequality

U'totalz Telastic.

For comparison, we consider an interesting approx-
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imation to the BS equation recently suggested by
Blankenbecler and Sugar.” It has the important
practical feature that the resulting equation is more
amenable to numerical calculation than the BS equa-
tion. The approximation amounts to replacing the
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o4k _ phase shift for ex-
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free Green’s function in Eq. (2.1) by the expression

o s’
E2=21ri/ - 5 6[‘_?//2_'_1”2_ (%\/s-{-w”)z:[

m?S —

4 S XaEPnz+m2_ (%\/S—w")“’] .

On substituting this into Eq. (2.1), the BS equation
reduces to

Ti(,059',0; )=V1(p,0; p',0)+1§r / dp”
1]

XL "*+mH) 1 2(p "2 -m2—s) I
XVi(p,0;5 p”,0)T:(p",0; $'055). (3.1)

We have solved Eq. (3.1) and determined the corre-
sponding phase shifts. These results are shown in
Figs. 8, 9, and 10. These results approximate the Bethe-
Salpeter results to within 10-309,. The agreement is
worse for higher / and for smaller exchange mass. Of the
two, the BBS phase shifts are consistently higher for

Fi16. 8. s-wave phase shift
for exchange mass=1 in
the Blankenbecler-Sugar
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Fic. 10. s- and p-wave shifts
for exchange mass=0.15 in the
Blankenbecler-Sugar approx-
imation.
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F1G. 11. Position of the first bound state for the Bethe-Salpeter
equation and the Blankenbecler-Sugar approximation.

equal A. Finally, the positions of the first bound states
in the two cases'® are given as a function of \ in Fig. 11.
An alternative is to compare the phase shifts for \’s
giving the same position for the first bound state rather
than for equal . It is then possible to bring the phase
shifts into a somewhat better agreement with each
other for low coupling strengths. However, the situation
becomes markedly worse for higher coupling constants.
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16 The bound-state positions for the BS equation were taken
from Refs. 4 and 3.



