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tions (of lesser mass then pN;) which connect signifi-
cantly to the pN; configuration in question. (Here recall
the isospin factors discussed above. ) For a given transi-
tion mN, .~ pN, that one with the greatest l(srN, ) will
dominate because of the centrifugal barrier. (Mathe-
matically this is enforced by the threshold division
discussed in Sec. IV.) Generally the highest spin
(s;+1) goes with the greatest l. It is this feature which
accounts for the simple recurrence of resonances as

s, is increased by two units. An example was given in
the Introduction.
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The many-body quantum mechanics of a set of (self-consistent) composite particles is developed for use
as the basis for a theory of strong interactions. The theory deals only with physical particles which may in
general have an extended spatial structure. It is a bootstrap theory in which physical particles are examined
in terms of superpositions of the physical multiparticle states of the theory; no auxiliary quantities such as
bare particles or fundamental local fields are introduced and no question of renormalization is encountered.
Many-particle states are constructed which are (many-) three-momentum eigenstates and whose spatial
integrity is assured via cluster-decomposition properties. The present theory is a dynamical theory in the
sense that there is a Hamiltonian that respects the extended and composite structure of the particles and
which, unlike 5-matrix theory, allows a system to be studied during the course of its interactions. A drawback
of the theory is that it is not manifestly Lorentz-covariant. The present paper deals with the theory in a
simplified form in which heavy baryoas interact with structureless mesons in the static limit of no baryon
recoil. The self-consistent bootstrap dynamics is examined in the lowest order approximation, including some
three-body effects. The conventional Born approximation to the scattering amplitude is recovered. The
relation between the existence of particles and signs of forces is obtained. In particular the Cutkosky con-
nection between attractive forces and group-theoretic structure is derived.

I. INTRODUCTION
' 'T is possible that the particles of the strong inter-
' ~ actions are all composite, each formed from com-
binations of similar particles. The phenomenological
evidence for this is the correlation which exists between
the existence of a given particle and the attraction
between particles whose total quantum numbers are
the same as those of the single particle. This correlation
was erst pointed out by Chew' in his classic work on
the structure of the pion-nucleon system. Chew showed
that the existence of the nucleon and 3-3 resonance
might be accounted for by a self-consistent mechanism
in which the exchange of a nucleon would provide the
force to cause the resonance and vice versa.

Later papers by Caruthers' extended this idea so
that not only were the nucleon and 3-3 resonance
spanned by the mechanism, but the entire system of
baryon octet, baryon decuplet and many of the excited
states of these objects could be understood. This and

*Supported in part by U. S. Air Force Once of Scientific
Research Grant No. 508-66 and AF 816-65.' G. F. Chew, Phys. Rev. Letters 9, 233 (1962).

s P. Carruthers, Phys. Rev. Letters 12, 259 (1964).

other work, especially by Cutkosky, ' demonstrated a
remarkable interplay between the group-theoretic
structure of the strong interactions and the dynamical
forces. The group-theoretic structure of the particle
couplings seems to guarantee the attractive forces
wherever they are needed to bind the particles. 4'

The S-matrix methods' 7 which have been put
forward to deal with this system seem to the author
to not be ideally suited to formulating the necessary
concepts of composite structure. Because the S matrix
describes only the asymptotic states of a scattering
system, ignoring the internal structure of the particles,
the definition of a composite system is very indirect
and far removed from physical intuition. One is forced
to examine the effects of bound states on the analyticity
of the S matrix in the oversimplified two-particle
potential-scattering theory'' and to extrapolate these

3 R. K. Cutkosky, Phys. Rev. 131, 1888 (1963).
4 R. H. Capps, Phys. Rev. 132, 2749 (1963).
~ F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).
6 S. Mandelstam, Phys. Rev. 112, 1344 (1958).' G. F. Chew, S Matrix Theory of S-trong Interactions (W. A.

Benjamin, Inc. , New York, 1961).
'R. Omnes and M. Froissart, 3fuedelstam Theory used Regge

I'oles (W. A. Benjamin, Inc. , New York, 1963).
e T. Regge, Nuovo Cimento 14, 951 (1959).
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effects to a very diferent kind of system. ' " In addi-
tion, to even formulate the dynamical equations,
dificult and unsolved problems of the singularity
structure of multibody amplitudes must be solved. ""

The main technical advantage of the S matrix is that
it deals only with Quite and (we may hope) rapidly
convergent quantities.

This paper is the first of a series in which a com-
prehensive theory of self-consistent bound states will
be described. The theory uses only Gnite quantities but
unlike the 5-matrix theory, it is directly concerned with
the internal structure of the particles. The self-con-
sistent composite structure is not an artifical assump-
tion and in many respects is the most natural assump-
tion to make. We might add that all this is done without
the aid of local fields. In Sec. II the meaning of a state
containing two or more particles close together in space
is discussed in the context of simple held theory and
potential theory. This leads to the introduction of a
basis of multiparticle-state vectors that are not ortho-
normal sets. The specific assumptions about the
structure of the space of states are formulated in Sec.
III.The analytical form of the assumption of composite
structure is introduced as a statement of linear de-

pendence among the noninteracting physical-particle
states. This leads to a large number of equations
that are the self-consistency requirements of the
theory.

The present paper introduces the methods in terms
of a preliminary model in which there is a multiplet of
heavy particles —baryons —which interact with struc-
tureless mesons in the static limit of no recoil. The
static model is introduced in Sec. IU and used in the
remainder of the paper. Formal solutions to some
self-consistency equations are proposed. Dynamical
considerations are taken up in Sec. V. Self-consistency
requirements are derived for the matrix element of the
Hamiltonian and a solution is found.

In Sec. VI dynamical equations are derived, for the
structures, masses and interactions of the particles.
The equations are investigated in an approximation
and the conventional Born-approximation pole in the
scattering amplitude is isolated. The existence of
particles and the sign of simple force diagrams of other
methods are related. The equations have interesting
algebraic properties and are similar to equations used

by Cutkosky' to explain the relation between groups
and self-consistent binding.

Section VII is summary and conclusions. Because
this paper is largely introductory, no great effort is
made to keep the theory logically independent of simple-
6eld-theory and potential-theory ideas, if these ideas

' G. F. Chew, S. C. Frautschi, Phys. Rev. Letters 8, 41 {1962).
"M. Gell-Mann, S. C. Frautschi and F. Zachariasen, Phys.

Rev. 126, 2204 (1962).
"D.I. Olive, Phys. Rev. 135, 3745 (1964).
"We have in mind the fact that no integral representation

similar to the Mandelstam Representation is available for higher
particle processes.

aid in the physical understanding. In later papers we
shall be more careful in this respect.

II. SOME BASIC CONCEPTS

In order to understand what is meant by a system
being composed of two or more other systems it is
necessary to have a definite idea of what is Ineant by
having two or more systems present simultaneously.
If the systems (particles) are very far apart the meaning
is unambiguous. Any measurement performed in the
region in which particle 1 is located must agree with the
results of a similar experiment performed on a state
containing particle 1 but no other particle. Similar
requirements on the measurements performed in the
region of particle 2 apply. In any other region the
result of an experiment must agree with the results in
the vacuum state. This defines a state with two well-
separated particles.

We assume the existence of a linear operator pt
which acts on the vacuum to produce a one-particle
state with momentum p. In addition we assume that
pt is chosen so that J'f(p)g(q)ptqt~0) is a state with
two well-separated particles in states f and g if f(p)
and g(q) are momentum-space wave packets for two
well-separated con6guration-space packets.

We stress here that we are dealing with physical
particles, entire extended structures, which might be
quite complicated. For this reason certain ambiguities
arise when the two systems are brought so close to-
gether that the extended structures overlap.

The problem is that in order to discuss deeply bound
states, composites of particles which are very close
together must be studied. There are two things that
can be done. A description in terms of bare particles
as in conventional 6eld theory may be possible. "This
requires introducing objects which are more elementary
than the physical particles.

We are going to try something new here. Instead of
trying to make the bound states out of bare particles,
we shall try to generalize the states of several physical
particles to include states with more than one physical
particle close together in space. Then a definition of a
composite bound state of several physical particles will
be possible.

To deal with physical particles it is found that states
describing the particles must not form an orthonormal
basis. In fact it will be directly in terms of the overlaps
among the physical-particle states that the self-con-
sistent composite-structure assumptions will be
formulated.

Before formulating the required ideas, some simple
examples of physical-particle states in potential theory
and simple held theory are in order.

Ke wish to describe a state in 6eld theory containing
two physical particles. A given physical particle con-

"N. N. Bogoliubov and D. V. Shirkov, Ietroductioe t0 the
Theory of Quamtesed Fields (Interscience Publishers, Inc. , New
York, 1959).
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sists of products of bare-particle creation operators
applied to the vacuum. For the 6rst particle, the effects
due to possible differences between the bare and
physical vacuums are ignored.

IP-&=P-t Io&. (1)

In Eq. (1) I p ) is a one-particle state with a particle
of type o. and momentum p, and p t is a sum of products
of creafioe operators for bare particles. The operator

pJ is unique since it contains oe/y creation operators.
We define the two-particle state lp, qs& to be that

state which has all the "stufP' of p superimposed on
the stuff which makes up qp,

Ip„qp&=p tlqp&=p tqstl0). (2)

That is, we apply all the bare particles making up

Iqp) to the vacuum and follow this by superimposing
all the bare particles of p . Since all creation operators
commute (or anticommute), the order in which qs and

p are put into the system is irrelevant.
A second illustrative model is the nonrelativistic

potential theory of multiparticle systems. "A system
of e particles may have many combinations of bound
states among the particles. Suppose the particles divide
into two groups of m and. e' particles such that the
group e has a bound state b and the group e' has a
bound state b',

f

(a) g ~ a

F&G. 1. Overlap of two-particle states.

taken by inserting a complete set of bare particles into
Eq. (6), which corresponds to linking the bare particles
of I f,g& with those of

I
f',g'). Since all the bare particles

of f and f' are far from those of g and g' and will there-
fore never be linked with g, the overlap consists of only
those links linking f to f' and g to g'. This is shown in
Fig. 1(a).

Now imagine bringing g closer to f so that the bare
particle distributions begin to overlap. %hen this
occurs Eq. (6) is no longer valid. The "stuff" of the
two particles lose their separate identities and in addi-
tion to the contributions from Fig. 1(a) there are now
links which cross from f to g.

In terms of the momentum states I pi, p~), the above
phenomenon manifests itself as a modi6cation of the
usual orthonormality conditions. Instead of &q&q2I pips&
being just a sum of delta functions, an extra continuous
connected function of the momenta arises.

Ib)= |p(xg x„)lxg x &dxg dx,

4"(~i" ~")lyi "x-&dxi" 6-"

A state with a b and a b' present is de6ned as

IV')= 0(» "x.)4'bi" y")lxi" x-,yi "x-&
Xd"xd"'y. (4)

If any of the particles in the group e is identical to one
in e' then Eq. (4) must be properly symmetrized.

Consider a state with two physical particles in
d.istantly separated. regions of space,

I fg) = f(P)g(q) I P,q)dpdq

The functions f and g describe two spatially sepa-
rated packets.

A second such state, I
f',g') with f' near f and g' near

g has an overlap with
I f,g) given by

&f g'I f,g) = &f'I f&&g'I g& (6)

This is so because the f's and g's are states containing
the bare particles of f and g. Inner products may be

'SR. Rajaraman and L. Susskind, Nuovo Cimento 38, 1201
(1965).

(q4qml P4P2&= ~(qi —Pi)~(qm —P~)

+~(ql P2)&(qm —px)+&(q~, q2; pip2) (~)

The extra connected term C is a continuous function
apart from an over-all delta function of initial less 6nal
momentum. It arises because of the cross links between
the particles. A typical term of this kind is shown in
Fig. 1(b).

GI. VECTOR SPACE OF THE
STRON 6 INTERACTIONS

The picture adopted here will always be the Schro-
dinger picture. The vectors describe the possible con-
6gurations of the system at an instant and not a history
of configurations as in the Heisenberg picture. All time
dependence of the system is in the state vector, while
the operators describing observables do not change in
time.

The overlaps between vectors are overlaps between
con6gurations at an instant and are not matrix elements
of the time-development operator, Green's function, or
S matrix.

The system will consist of several different kinds of
particles, each of which carries a three-momentum p
and a set of quantum numbers labeled by a Greek
subscript. Unless necessary, the Greek subscript will
be suppressed. The space of states is assumed to be
spanned by the following set of vectors: IO), the
vacuum; Ip), a state with one physical particle of
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momentum p; I pi, p2), a state with two physical
particles; and so on.

According to the discussion of Sec. II, this set of
vectors will not, in general, be orthonormal. The main
purpose of this section is to discuss the special require-
ments on the overlaps in order that a self-consistent
set of composites is described.

We assume that the addition of a particle is a linear
operation on the space of states, performed by operating
with pt,

P'Io&= IP),
P'lq&= Ip q&

pt I qi, q~&= I p, qi, q2&.

It is not trivial to assume that the addition of a
particle to a system is a linear operation.

By no means do we wish to assume the linear inde-
pendence of the physical-particle states at this point.
Suppose a linear relation exists among the vectors

I pi, p2 ). Then if the addition of a particle is linear,
an infinite number of new linear relations may be ob-
tained by operating on the original linear relation with
operators pt.

In addition to being linear we assume that particle
additions commute (anticommute for fermions),

LPi ~p& 3+

In both field theory and potential theory, the struc-
ture of the space, the inner products among physical-
particle vectors, and the possibility of linear relations
is determined by appeal to the bare or elementary
particles. If the properties of the bare-particle states
and the description of physical particles in terms of
bare particles are known then it is a simple matter to
compute the inner products of physical particle states.

In the present theory, we wish to assume that
nothing more elementary than the physical particles
exists. How then are we to learn anything about the
structure of the vector space? The answer can be found
in our original reasons for introducing the multi-
physical-particle states in the first place; namely, to
describe each physical particle as a composite. If we
assume each particle is a composite of two and more
physical particles, then we may hope to determine the
overlaps by a self-consistent identification of each state
with a state in which each particle has been brok. en
down into a multiparticle con6guration. From this
point of view, the self-consistent theory is not an ad ho@

idea. It is the only theory of a particular kind which
can be worked out in terms of physical-particle states
without implicit or explicit reference to bare particles.

Hence it is postulated that every one-particle state is
equivalent to a particular superposition of states con-
taining two or more particles,

Ip&=p e '"}(qi,q, q ) Iq»q .
q &d"q. (1O)

n=2

This assumption distinguishes the theory from usual
field theories and allows an elimination of objects more
elementary than physical particles.

Equation (10) can easily be generalized to a linear
relation among operators. In terms of operators Kq.
(10) becomes

ptlo&=p e.("}(q," q.)q '"q„tlo
n=2

AtptlO)=p e &"}(qi q )Atqit q.tlO)
n=2

(12)

P'IA&= Z
n=2

"("}(qi".q-)q ' "q-'IA&

Since IA) may be any state, Eq. (12) is a relation
among the operators.

P'= & "("}(qi"q-)qi'q". "q-'d"q.
n=2

(13)

This equation is useful because it gives a represen-
tation for a multibody state similar to Eq. (10).

I P,q) =P'q'I o)

te, n=2

e„&"}(li l„)e,& }(ki. .k )

Xlit ltkit k. .tl0&

e„&"}(li l )ep(ki k~)

X l~l' ' '/ kl' ' k ) (14)

Equation (1) will be denoted graphically by the use of
"e" bubbles as in Fig. 2(a). Equation (14) is then
represented in Fig. 2(b).

Consider now, some function of an arbitrary set of
momenta, F(pi,p2. P~). Define a process called the
"expansion of F by pi" to be the replacement of
F(piP2 ) by

Z ~ '"'(q" q )F(q" q P P ")
n=2

[See Fig. 3 (a).j
A function will be called "expandable from the right"

if its expansion by each of its momenta gives back the
same function. Such functions have the same linear
dependences as the vectors of the space of states. They
are of interest because they represent the possible inner

Since, by assumption any state can be expanded by a
suitable sum of products of the pt on the vacuum we
may write

IA)=Atlo&,

where [At,pt)=0. Hence,
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I(a)

li, i, i. & = Ip&
FIG. 3. Expandability
of a matrix element.

(b)

~e
*

~ li, i, k, k, & = lpq&

FIG. 2. Expansion of physical particles.

products of a vector Q I
with the particle states,

(alp. ,p "&=a
&&gilt "l-,ps, " ). (»)

The inner products are expandable from the left also.

(pr ps". I4& 2 em("'(lt" l.)
&&«t" l-,p" lf& (»')

The inner products (qt, qs ~

I pt, ps ~ .) are expandable
both left and right. In Fig. 3(b) a diagrammatic nota-
tion for inner products is given. The "I'" stands for
projection. In Fig. 3(b) the condition that the inner
products are expandable is shown.

The linear relations of Eq. (13) require the vectors
to be nonorthogonal since there can be no linear relation
among an orthogonal set of vectors. The extent of this
nonorthogonality can be examined as follows: First
suppose (contrary to fact) that the entire extent of the
overlap was the necessary overlap among vectors with
different numbers of particles. The vectors with a given
number of particles, we suppose, form a basis for a
subspace H„, the nonorthogonality being restricted to
vectors in different H„.

(qtl pt&=8(qt —pt)

(qt, qsl pt ps&=8(qt —pt)~(qs —ps)+~(qs —pt)8(qt ps)

and so on.
In order to study the consistency graphically, a

straight line without a bubble in it represents a delta
function. In Fig. 4 the orthonormality condition is
substituted into the condition that the overlaps are
expandable. The two-body overlap is expanded ac-
cording to

(qt, qsl pz, ps&= e„(l,m)*e„,(l',m')(l, m, qsll', m', ps&. (16)

The result is found to have two terms, a disconnected
term proportional to a product of delta functions plus
a connected continuous function, which contains only a
delta function of over-all momentum conservation.
Therefore the assumption of orthogonality within a
given subspace H is inconsistent with Fig. 3(b). The
postulated structure of the overlaps is not reproduced
under expansion of the momenta.

A suitable structure which is reproduced under
expansion is the "cluster-decomposable structure"
similar to that of the S matrix. For a complete ex-
planation of cluster properties and their physical
meaning we refer the reader to the article by Wichmann
and Crichton. "Here we shall just state that the cluster
decomposability of amplitudes is an assumption de-
manded by the independence of measurements on
distantly separated system. The structure consists of a
sum of disconnected parts together with an over-all
connected fug.ction of all the momenta containing no
delta functions other than a delta of total initial less
total Anal momentum. The structure is worked out in
Fig. 5.

Expanding the overlaps as in Fig. 6 by using the
expandability of Fig. 3(b) and cluster structure of Fig.
5, we Gnd the result consists of a sum of clusters with the
same cluster structure as Fig. 5.

In Fig. 7, the various terms with given cluster
properties are isolated from Fig. 6 and set equal to
their counterparts in Fig. 5. Only the Grst term of the
expansion of the one-particle states have been included
so that only two-body "e"bubbles appear. The reader
can write out the more general equations and hand the
conclusions of all arguments are valid in the general
case.

Figures 7(a) and 7(b), which come from isolating the
disconnected parts of Fig. 6, are identical to equations
obtained from the expansion of smaller "I'" bubbles.

~e) (~e

FIG. 4. Expansion of two-body overlap assuming orthonormality
in a given subspace.

"E.H. Wichrnann and J. H. Crichton, Phys. Rev. 132, 2788
(1963).
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Peg

Fxe. 5. Cluster of properties of inner products.

will produce a sum of terms with various diferent
cluster properties. These are to be equated to the
corresponding clusters in Fig. 5. This always gives
equations identical to those obtained previously by
expanding a smaller overlap except for the case of the
fully connected equation. The fully connected equation
in every case is new.

In this way, a huge number of relations among the
connected parts may be obtained. The principal task
of Sec. IV is to set up and solve these equations for the
simplified static model. A solution of the equations
means an algorithm for constructing all of the connected
parts from knowledge of the projections of the one body
states on the multibody states, together with some
assurance that the result of the algorithm is cluster-
decomposable and expandable.

For example, Fig. 7(a) reads

8(P—
q) fe(l=m)e(,lm)*,

+ e„(l,m)e, (l',m')*C(l, m; l™).(17)

The delta function can be expanded in the form

8(p q) = e~(l—,m)es*(l', m')(l, mIP, m'), (18)

which is identical to Eq. (17).
Similarly, Fig. 7(b) reads

8(p—q) = e, (l,m)*C„(l,m),

which by Fig. 5 is

b(p q) = e,(l—,m)*(l,m I p) = (ql p) ~ (20)

Therefore the only new equation in Fig. 7 is 7(c), the
fully connected equation.

This circumstance is completely general. Expanding
an overlap and inserting the cluster properties of Fig. 5

IV. STATIC MODEL

For the remainder of this paper we shall consider only
a static model. The objects of the theory are static
composite nucleons and elementary mesons. The
nucleon type is specified by a label e which denotes
spin, isospin and whatever other quantum numbers
we wish to describe. A meson is labeled by k which
denotes its momentum and possible other quantum
nuxnbers. Only one nucleon will be present at a time so
that a complete set of states will be generated by
putting several mesons into a system containing a single
nucleon. %le can write

I~,kt)ks

where k;~ is the creation operator for a meson of
momentum k; and In) is the state vector for a nucleon
of type n.

The mesons in this model are not composite. Each
nucleon is a composite of a nucleon and several mesons.
As before, this means that a nucleon state is expandable
in terms of states containing a nucleon and one or more
mes ons,

I~)=Z e-e'"'(kt" k-)IP,kt" k-)&"k (»)

Since mesons are added by a linear operator k~ Eq.
(21) generalizes to'r

+ e c e + 0=0=A
Inkt'ks' )= Q e p&"&(kr k„)

m=1

X IP)kt ke, k,', ks' ). (22)

+ + +
C c ~P

FIG. 6. Expansion of cluster decomposable overlap,

3ecause the mesons are not composite, the cluster
properties can be taken to be much simpler than in
Sec. III. Elementarity of the mesons is expressed in
terms of cluster properties by having only those con-
nected clusters involving a nucleon on both sides. Some
cluster decompositions are shown in Fig. 8.

"In some equations such as Eq. (22) integral and summation
signs are omitted. The convention is that repeated momenta are
jgtes'rated over and repeated greek indecies are summed over.
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In addition to the cluster properties of

(a,lt,4 . Ip, kt, ks, ks . ),
the expandable nature of projections is available. As
before, an in6nite set of coupled equations among the
connected parts can be derived from these two proper-
ties. These equations might be used in truncated, and
iterated versions to obtain information about the con-
nected parts. The author has examined many such
methods and has found that they all lead to a particular
result when suitably rearranged. We believe the result
to be of more interest than the methods of iteration,
truncation and matching of terms which led to it.
Instead of wasting the reader's time with these methods,
the particular solution will be proposed and its con-
sistency with the two requirements studied.

(a)
+

tb)

e e + e c e + e c e

+ e p e +

~P

A.. Unit Oyerator and Partial Overlays.

Two new quantities must be introduced before ex-
plaining the solution. Consider a complete basis of
orthonormal vectors

I i), which span the space of states.
They resolve the identity:

Fto. 7. Isolation of clusters from Fig. (6).

The second new quantity is the partial overlap

((a~klyksqk3' 'kn)ll&4' ' '
I (p~qlpqs' ' 'ques)pl&ps'

P Ii)(il =I=unit operator.

Each Ii) is expandable in the Ia,kt ~ ks),

(23) de6ned as the sum of those terms in the cluster de-
composition of

(a,kt, ks k,it,4 I p, qt, qs q,pt, ps ),

li&=Z f'(a, kt "k-)la» "k-& (24)

d"kd"l)g f, (a,kt k„)f,(P,lg . l )~j
m=m=0

X I a,kg k~&(P,lt i~I =I. (25)

We define P; f;(a,kt )f;(P,l~ ~ l„)*to be

I(a,kt k„;p,lt. l ).
Denoting the states la, k&,ks ~ ) simply by Ia ~ ), we

may write Eq. (25) as

I(a p )la )(p I
=I (26)

Since the Ia ~ ) are not linearly independent, the
I matrix is not unique. Some relations which are inde-
pendent of the particular choice of I are derived below.

(a "lp ")=(a "IIlp".&

=(a" Iv" &I(v";&" )(~" IP .) (27)"
This equation can be generalized.

(a it 4. IP,qt q„ktks )
= (a,l, lk, tk, t

I p,q, q„)
Iv" &

xQ" Ip,q" q.&I(v"",~ ")
=(alt 4 Iv ktks )

x &~
"IP q," q &I(~""s" )

LSee Figs. 9(a) and 9(b)j.

which do not contain disconnected delta functions
connecting momenta in the group l with those in p.
Figure 9(c) shows the diagrammatic notation used for
a partial overlap. For example

'((a,k)ll (p,q)p) =C(a,k,l; p, q,p)
+C(a,l; p,p)~(k q)+C(a, k;—p,p)S(i q)—

+C(a,l; P,q)5(k —P). (29)

The connected part and the full projection are special
cases of partial overlaps.

((a»~»s ")l(pqtqs "))
=(akt»s "IPqtqs". )~ (3o)

(()l.,l' ~ I(p)p.,p'"&
=C(ll "ppp") (31)

The full overlap can be expressed in terms of partial
overlaps in many ways. In fact, for every partition of

FIG. 8. Cluster proper-
ties of the static theory.
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(b)

; P,'

. P

', P,' ~ p E= As special cases, the connected bubble has the
representation

C(nlr)ls ppi )=&nil'kr k2'''Pips'''&
XI(~,k;";V', qr )&V,q' fr, i, IP) (34)

I
see Fig. 10(b)$ and the full inner product is

&n,kr, ks . Ip, qr, qs &=&n,kr, ks . Ih)kr . )
XI(&',kr'. . ; y'qt' )&V',qr'

I p, q rq s. ) (35)

(iota, " K„) I, "l(8q, "q )p, ") This second equation is of course Eq. (27), which is
implied by the definition of I.

(c&

k

p L

q + k

p

+ l

k

p + i

q k

FIG. 9. The I bubble and the partial overlap.

B. Formal Consistency.

The questions about this representation which con-
cern us are as follows:

(1) Assuming Eq. (33) defines a unique set of over-
lap functions, are the resulting overlaps expandable
and cluster-decomposable'

(2) Does Eq. (33) define a unique set of overlap
functions?

the momenta on the left and right, a different expression
exists.

&-,k l IP,q' P )
=&(n,ki .)fr "l(P,qi )Pi ")

+&(-k' )f'"l(p, )P' &~(~.-P.)
plus other terms with deltas of / minus P. One special
partition of the momenta is to group all momenta on
both sides in brackets in which case the expression for
the total overlap has only one term. The other extreme
is to group no mesons with the nucleon in which case
the expression for the inner product is the cluster
decomposition.

The proposed solution can best be expressed as a
representation for partial overlaps.

&n»r". k-)~r "I(P,qr "q-)Pi".&

=
&npkr

' 'kg
I tiki )ks Pl)ps' ' ')
XI(5',kr'ks', p'qr'qs )

X6'q ' f,~
I p,q, q"& (33)

Sums and integrals over all primed intermediate
indices are implied in Eq. (33). I See Fig. 10(a).)

The cluster decomposability is trivial. In terms of
partial overlaps the cluster properties are the same as
for the full projections except that all terms with delta
functions involving two unbracketed momenta are
absent. By inserting the cluster decomposition of the
overlaps which occur in Eq. (33) we easily see that the
correct cluster properties for the partial overlaps result.

The expandability of inner products is equally trivial.
Consder whether Eq. (36) is true.

&n, k, I p fr .&= p .e.,&"&(pr p.)*
n=l

X&qP, P„k, IP lr ). (36)

The right side can be written in terms of partial
overlaps by grouping all momenta in the set P with the
nucleon y. This results in an expression shown in Fig.
11(a).We encounter the quantity

g e p"(kr k„)*(P,ki k„lo" .lr, ls ).
n=l

This quantity is equal to &nlo" lr, ls .) since the
single particle n can be expanded as a multibody state.

+ ~ ~ ~

FXG. 10. A 'repre-
Sentation for partial
overlaps.

(b)

(b} Fro. 11.Expandability of the overlaps of Fig. (10).
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(a)

rp, ~p' '$mp

Fro. 12. Formal consistency of the
overlaps of Fig. (10).

ot~ e
~Pi 1$~P + P': I ' 'P' ' I ~P

Using this in Fig. 11(a) gives Fig. 11(b).But the right-
hand side is just the cluster expansion of &nki

I
Pls )

thus establishing Eq. (36).
Thus the overlaps will be expandable if the one-

particle overlaps allow an expansion of the one-particle
state into multiparticle states.

The nontrivial question concerning the representation
of Eq. (33) is question two. Does the representation
give a unique set of overlap functions' The problem is
that for every partition of the momenta there is a
different expression for the full overlap in terms of
partial overlaps. As an illustration, consider &nkl IPtt&.

One way of expressing this inner product in terms of
partial overlaps is

&~» 'l~ &&= &(~»)~ I (8)c&+&(~») I Q) &~(t—c)
=&(,k)II (P)v&+&,

klan»(I

—v) (»)
A second expression is given by

&(~)k,fl (i3)v&+&~,klan&~(I —v)+&~,III»(k —v). (38)

Let us try to prove these equal. Inserting the pro-
posed solution gives us the equality of Fig. 12(a) to
be proved.

Let us decompose the P bubble labeled Pj according
to the proposed rule with all the momenta on the right
of Pj.which arrive at the I bubble grouped with nucleon.
This is shown in Fig. 12(b).

Inserting Fig. 12(b) into Fig. 12(a) gives Fig. 12(c)
for the consistency equation.

For the first term of the left side of Fig. 12(c) to
equal the 6rst term of the right-hand side we require

Similarly, the second terms will be equal if

klan &&8
.tlP&I(v, 8 . )=&p .k,llP).

This too is a special case of Eq. (28).
A kind of internal consistency is exhibited by the

representation of Eq. (33). By suitably choosing the
correct partition in internal P bubbles such as P~
consistency can always be checked. We refer to this
as the formal consistency of the representation. It is
completely general.

Arguments of the above kind show only that our
proposed solution has a chance of being consistent. The
question of uniqueness was transformed from the
uniqueness of the over-all projection we started with,
to the question of uniqueness of the bubble labeled P&.
For example, it is not clear that by making a different
partition of the momenta of P~ that a different result
would not have been obtained. In order to prove

This is satisfied as a special case of Eq. (28).
Fn. 13. Consistency by one-particle dominance

in the erst stage.
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Fio. 14. Consistency requirement after one-particle contribution
is removed from an I bubble.

consistency we must choose a particular cueoeicat
partition of momenta and then, using only that par-
tition method in internal bubbles, prove all other
partitions are equivalent. For example, let us choose
the simplest partition &(n)ki, km

I (P)qi)qi. ) as
canonical. The Pj bubble then must be opened up by
this partition. Let us divide the sum over I into two
parts, the one-particle part plus everything orthogonal
to it. This can be accomplished by expressing the unit
operator in the form

I= lo&& I+~',

where I' is the projection onto the space orthogonal to
single-particle states. In Fig. (13) the I'i bubble of Fig.
12 is expanded using the canonical partition of the
momenta and the Ii bubble is decomposed into In&&nl

and I'. The right hand side of Fig. 12 is re-expressed
with the help of Fig. 9(b).

The two one-body contributions are obviously equal.
Hence the total extent of the possible diff'erence of the
left and right hand side of Fig. 13 is due to that part
of the sum over a particular I bubble which is orthogo-
nal to the one-body states. Let us suppose that the sums
over I on either side are dominated by one-body states.
The difference of left and right sides will then be at
most small. For consistency it must be zero. Hence
Fig. 14.

Another example of the formal self-consistency of
Eq. (33) can now be demonstrated by expanding the
P2 bubble in a noncanonical form, with all momenta
on the left of P2 which go to I being grouped with the
nucleon. This would result in a complete identi6cation
of left- and right-hand sides. However, this begs the

&a)

FIG. 15. Consistency by one-particle dominance
in the second stage.

question. P2 must again be canonically expanded. Doing
so leads to Fig. 15 as the consistency condition.

Using Eq. (28) the left side of Fig. 15(a) can be
expressed in the form of Fig. 15(b).

Again it is apprent that for that part of the sum over
I2 due to one-body states, this is the same as the right
side of Fig. 15(a). If we assume as before that the sum
over I2 is dominated by intermediate one-particle states,
then only a small fraction of the previous small fraction
is left to upset the consistency of the proposed solution.
This process can be repeated as many times as one
desires. The questionable P bubble is pushed deeper
and deeper into the diagram, and if one-body states
dominate the relevant sums over I then consistency is
likely. We assume this to be the case.

=&~,ki" Ip"Iv ")&~" I~I@,qiqm

XI(y,o )+&n k, IP q, q, )
&&&(i—p),

we have
(40)

&-&-,k.,
= &n,ki, I p, qi, &8(l—p), (41)

so that
D p'j=~(p t). —(42)

These are the usual commutation relations for
elementary meson field operators. In fact Eq. (33)
could have been derived directly from the commutation
relations of Eq. (42). However, we were more interested
in understanding the X rules from the independent
ideas of the expandability and cluster structure of the
overlaps.

Equation (33) can be used as the basis for an iteration
procedure. Since it appears that the one-body states
must dominate the sum over I in Eq. (33) let us start
our iteration procedure with

C(n)ki)ki ~, P)li)li ) Q &nl y)li)lm )

X&y,ki, kg. IP&. (43)

This is obtained by writing the unit operator in the
foITI1

I= l»b I+I'b,k'; ~,I

where I' projects onto the space orthogonal to the

C. The X Structure.

The particular structure of the overlaps given in
Eq. (33) and Fig. 10 will be referred to as the X
structure.

The X structure admits a simple interpretation
connected with the elementarity of the mesons.

Consider the inner product

&~»i fIP qi q"' "p&
=&(~,k ")~l(P,qi, q2" )p&

+(~,ki l
I p,qi, qi )8(/ —p) (39)



D YNAM I CAL THEOR Y OF STRONG INTERACTIONS

one-body state. In Eq. (43) I' is ignored. Now, in
principle I' is known in terms of the P bubbles. It is
obtained by an orthogonalization procedure among the
vectors orthogonal to the single-particle vectors. There-
fore by using Eq. (43) to obtain a 6rst approximation
to P we also implicitly obtain a Grst approximation to
I'. This value of I' may now be used to complete the
sum over the intermediate I bubble to obtain an im-
proved value for the P bubbles. This process can be
iterated indefinitely to obtain the P bubbles. We feel
that unless the procedure is fairly rapidly convergent
that one can not have much conGdence in the con-
sistency of the theory.

~U L
= k

U

U

U

etEgt

V. DYNAMICAL CO5'SIDERATIONS

A. Hamiltonian

We have not really gone very far toward a dynamics
of the strong interactions in the previous sections. In
nonrelativistic potential theory the analog to our
present circumstance would be that we had discovered
that the set of momentum vectors is an orthonormal
basis. Actually this much is not even known since we
only know the overlaps in terms of the one-body P
bubbles about which we, as yet, know nothing.

In potential theory, the next step would be to deter-
mine how the state vector changes with time, or what
is the same thing, determine the Hamiltonian. We have
a great deal of freedom in potential theory because any
Hermitian potential may be chosen. If the same degree
of freedom existed in the present theory we would not
know where to begin. Many Hamiltonians might be
tried until one was found which agreed with experiment
but this would not be a very satisfactory circumstance.

Fortunately the same freedom does not exist here.
For example, the present theory does not admit free
propagation of particles. Free propagation means that
the time development of u, k& k„) is given by
expLit/h(N +EI„+ E~„)j a,k~ k„) where M is
the mass of a and E~ ——(k'+p')"' Hence the free-
particle Hamiltonian would give

u

FIG. 16. Cluster properties of the time development operator.

properties of the matrix elements of U(t), this can be
expressed as in Fig. 16. It is more convenient to work
in terms of the Hamiltonian instead of U(/). Since for
small times U(t) =I+iIIt, the cluster properties of H
can be obtained from those of U. The resulting cluster
decomposition of H is shown in I'ig. 1.7.

An analysis of B could be made by expanding each
matrix element of H and then inserting the cluster
decomposition of Fig. 17 to equations for the connected
H bubbles. Instead of proceeding this way, we shall
try to make use of some simple Geld-theoretic ideas
concerning the Hamiltonian. We shall derive a repre-

H: 1 = k

0K ~ p oC

Since each EI, is greater than zero every multiparticle
state has energy greater than M, and therefore the
one-particle state is orthogonal to every multibody
state. This is inconsistent with the assumption that the
one-body state lies in the subspace of multibody states.

The problem with free propagation is that the matrix
elements of Hg do not reQect the linear dependences
of the vectors themselves. The matrix elements of an
acceptable Hamiltonian must be expandable since H
is a linear operator.

This is still not enough information to determine the
structure of H. The one extra piece of information that
must be used is that the time development of distant
systems must be independent. In terms of cluster

nH

Fxo. 17. Cluster properties of the Hamiltonian.
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(a)

, (b)

FIG. 18. Notations for matrix
elements involving bare par-
ticles.

(c)

sentation for H in a simple model field theory and then
investigate its consistency with the composite nature
of the nucleons. We feel that such a procedure aids the
physical understanding of the Hamiltonian more than
an investigation of the infinite set of coupled equations
for the connected parts. At any rate the important
point is that the particular representation for H that
we shall propose is the only one we have found which
is formally self-consistent with the expandability and
cluster properties of H.

(a)

+~+~=&I~ia&

between a nucleon and a nucleon plus meson represents
an emission or absorption process in the interaction
term of H. In Fig. 19 various terms of the matrix
element (n,k I

H
I P,l) are shown.

The terms Fig. 19(a) represent kinetic-energy terms
in which the external mesons are not confused with the
mesons in. the nucleon clouds. The terms in Fig. 19(b)
are interaction terms in which the emitted or absorbed
meson was a meson from the nucleon cloud and the
external mesons are still not confused with cloud
mesons. In Figs. 19(c) and 19(d) we 6nd kinetic energy
and interaction terms in which the external mesons on
one side are projected into cloud mesons on the other
side. Finally in Fig. 19(e) the terms in which the

B. Hamiltonian in a Simple Field Theory (b)

a + = (~IHI~&

Consider the static limit of a field theory in which
the mesons are bare and the nucleons emit and absorb
rnesons. The emission and absorption processes involve

FxG. 19. Terms in
the matrix element
of the Hamiltonian
in a simple field
theory.

(e)

single mesons. The notation lo.), I b), etc. will be used
to denote a state with several bare mesons and a bare
nucleon so that as the label u varies, the entire space
of bare-particle states is covered. The nucleon ln) has
a representation

FIG. 20. Matrix elements of II involving physical particles.

external meson on one side is projected onto a meson
produced by the interaction and the meson on the other
side is absorbed into the nucleon cloud.

Note that in each term only one black dot is present.
In particular there are no terms with the interaction
acting twice. This is because we are doing nothing more
than calculating a matrix element of II between two
states in the Schrodinger picture.

The matrix elements (n I
H IP) which equal M,8 p

and (cLIHla), where a is a bare nucleon plus bare
mesons, are shown in Fig. 20. Figure 20 can be used to
"telescope" the internal "dots" to the external physical-
particle legs as follows: The terms in Figs. 19(a) and
19(b) are simple and just add up to the sum of the
kinetic energy of the meson plus the nucleon mass.
Next, consider the sum of the first three terms of Fig.
19(c) plus the two terms of Fig. 19(d) plus the second
term of Fig. 19(e). Using Fig. 20 these sum up to Fig.
21(a). The H bubble is a matrix element of H between
a physical nucleon and set of bare particles. The first,

(a)

We are interested in matrix elements of B of the form

(b)

We use the following diagramatic notation for
matrix element involving bare particles: The expansion
of a nU.cleon in b8,re states is given by a point vertex as
in Fig. 18(a). The dot in Fig. 18(b) represents the
kinetic energy if it is attached to a meson and a, nucleon
mass if attached to a nucleon. Finally, the black dot

Fxo. 21. "Telescoping" the terms of Fig. (20)
into the pb+Sic8l pwf ticks.
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(b)

H I P + P I H

states. This is accomplished by appropriate insertion
of the identity, I ... ,s... ln )(p

H. (n,k; p, l)
=L( I»l&" )('y" lkHIP»(& " v ")

+(nlHl'l~ "&(v lklP&I(~ v ")
&(v I

H
I
' &(' I

k
I p

&&I(8 y ")I( . ;r "), (49)
=L(nlrb. E&(~ klHlp)

+(n IH Ib l&(y k IP&]I(8 y )
»(~ IHI- &(' kl p&j

XI(8 y )I((r ' ) (50)
FIG. 22. A representation for the matrix elements of H.

second, and fourth terms of Fig. 19(c) together with
Fig. 19(d) and the 6rst term of Fig. 19(e) add up to
give Fig. 21(b). The Figs. 21(a) and 21(b) together
include term one and two of Fig. 19(c) and Fig. 19(d)
twice and hence these terms must be subtracted in the
form of Fig. 21(c). Figures 21(a)—21(c) give the con-
nected two-body matrix elements of B.

Denoting bare-particle states by la), lb), we can
express the terms of Fig. 21 as

H, (,k;P,l)=g( I l)(k, IIIIP)

(See Fig. 22).
Equation (50) and Fig. 22(a) can be generalized to

any partial matrix element of H. This is shown in Fig.
22(b). A partial matrix element of H is defined as in
analogy with a partial overlap.

? ~HH

+Q (nlHI a, l)(k,al p) Fto. 24. Consistency of Fig. (23).

—Z ( I a, l&(alHI »(~,k
I p) («)

a, b

H I P + P I H

In particular, the connected parts are given in Fig. 23.
Figure 23 can be simplified by using the fact that the

one-body states ln) are eigenstates of H with eigen-
value M . Hence (nIHI'r &=M (nl'r. '. ) and

FIG. 23. The connected parts of II as a
special case of Fig. (22).

This can be reduced as follows:

H. (n, k; P,l) =2 (nil'I a&(alkHIP&

+g (nlHltl a)(alklP)

C. X-Structure of the Hamiltonian

We are not interested in this representation of H in
the simple-Geld-theory model, but rather as a possible
solution to the expansion and cluster requirements on
the matrix elements of H. It is a simple matter to show
that the representation does satisfy these requirements
if only it defines a consistent set of matrix elements. In
fact, the problem is identical to that of the overlaps,
treated in the previous part: Does the representation of
Fig. 22 define a unique and consistent set of matrix

a, b

Using the fact that the bare-particle states form an
orthonormal basis, this becomes

H. (n,k; P,l) =(nI»kHIP&+(nI»» IP)—(nlltHk
I p). (4g)

Assuming that the states In, kt, ks .)= In .) are
complete, it is possible to express this in a form involving
matrix elements of H between these physical-particle

+ ~H + ~P'r
FIG. 25. Formal consistency of Fig. (23).
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p p (~+ M- M&)

FIG. 26. The first approximation to the
matrix elements of II.

elements' As with the overlaps each partition of the
momenta leads to a different expression for (lHl) in
terms of partial matrix elements. We must show that
the use of Fig. 22 leads to a unique set of matrix
elements. For example, in Fig. 24 we see two expressions
for (~kllal pp)

Expressing the partial overlaps through the use of
Fig. 22 gives Fig. 25 as the consistency condition.

Formal consistency can now be shown by expanding
the Pj and H~ bubbles according to Figs. 22 and 10
with the momenta partitioned so that all momenta
from I'~ or H~ which arrive at I are grouped together.
The methods used are so similar to those in Sec. IV
that we leave it to the reader to show formal self-
consistency. Also as before, we can show that if sums
over I are dominated by one-body states, then all
partitions can be shown to be identical to the "ca-
nonical" partition.

The representation of Fig. 22 is called the X-structure
for H. It is the only representation which we have
found which is formally self-consistent with the ex-
pandability and cluster structure of H.

The X™structure can be used to obtain the matrix
elements of H through an iteration method. The X-
representation is 6rst used as in Fig. 23 to express the
connected parts of H. In 6rst approximation, we replace
the sums over I by one-body parts.

This gives Fig. 26 for the connected parts of H. We
use

Hln)=M ln).

Expanding the state ln) we have

(51)

p (E1E2' ' 'l )lpllE2 'l )
0=1

=31 P e p("&(Eq l )IP,Eq ~ .l. ) ' (52)

Tak.ing matrix elements gives

P (yk] k l8lP, E]. . l )e p&"'(E] .l )
n=l

X..,~-&(E," l.). (53)

Equation (53) provides a dynamical equation for e
in terms of the matrix elements of H and the overlaps
(y kg k2 Ip, lg ).

We now approximate Eq. (53) by assuming that ln)
lies in the two-body subspace

(~,k l el p,E)e.,(E) =M.(~,k l p,E)e.,(E). (54)

We evaluate the matrix elements (y,klHlp, E) and

(y,klp, E) through the use of the X-structure for con-
nected parts in 6rst approximation.

(n,klp, E)=8 p8(k E)+(nip—,E)&y,klp), (55)

A. Two-Body Dynamics

The dynamics derives from the assumption that the
single-particle states ln) are eigenstates of H,

and
(e,k l

a
l p, l) =s.pa(k —l)pr.+z,j

+(~l&,E)(v,kl p)pt.+ m& —m, g. (56)

Using Eqs. (55) and (56), Eq. (54) becomes

X e p(l)(7lN)(Ski p)dl

=M.fe, (k)+ e.p(E)(pl 8E)(Ski p)dE]

The full matrix elements of H are now expressed in
terms of the connected matrix elements and the result
used to complete the sum over IHI. This procedure
can be iterated to obtain improved approximations for z „(k)l ~ +~„j+.L~&+.~ —~,]
H.

In this way it is possible to express the matrix
elements of H and the structure of the space in terms
of the one-body projections (ulP, Eq, E2). In the next
section we shall show how to use these constructions
to write dynamical equations for these one-body over-
laps so as to complete a circle of nonlinear equations
for these quantities.

M M %+M
VI. SELF-CONSISTENT DYN'AMICS

This 6nal section is intended as a brief survey of the
dynamical and self-consistency equations. %e examine
the way in which the structure and interactions of a
system of baryons might be generated.

e, (k) =

Xe p(E)(ylbE)(BklP)dl. (57)

In the two-body approximation, Eq. (57) is the
dynamical equation for e.
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B. Imy~oved Two-Body Approximation

Before analyzing the equations in greater detail, we
shall improve the approximation to include some
three-body effects. The structure of the diagrams we
have been analyzing could be characterized as single-
particle exchange. However, we have been working in
the approximation in which the state le& is in the two-
body subspace. We should like to include just those
three-body effects which supplement the two-body
equations and which can still be characterized as single-
particle exchange. To this end, we approximate the
three-body matrix elements by appropriate discon-
nected parts as in Fig. 27.

We introduce an expansion of the one-body state as
a two- and three-body superposition

I~)=e-p(k) I&»&+e-p(»l) I»k l) (5g)

The dynamics consists of a pair of coupled equations

e.p(k)&vp I
&Ilk)+e.8(kl)&vp IIf I +l&

=M-p-p(k) 6p I pk&+e-p(kl)&v p I pkl&j (59)
and

e-p(k)h pqlIIIPk&+e-p(kl) &vpql &IPkl&

=M.Le.p (k)&ypq I pk&+e.p(kl)&ypq I pkl&j. (60)

Using the matrix elements of Eq. (43) in Eq. (60)
gives

Mp+E(, M. —
e (k,l) =e„p(k) &yl I P& . (61)

3f.—M,—E~—E)

Pro. 27. Three-body
matrix elements in the
improved two-body ap-
proximation.

Inserting this into Eq. (59) gives us the improved
two-body equation

e.,(k) (M,+Eg M.)=—e.p(l)(y I N&&Bk I P&

(Mp Mg Eg)—(M, —M~ E()— —
X -- — dl

My+E(+Eg M—
+ e-p(k) 4 I Sl&&rl IP&

(Mp+Ey M) (M ~+—Es M)—
X dl. (62)

Mg+Eg+Ea M. —

We de6ne vertex functions p p and ~ p as follows:

v ~(k)=e ~(k)(M„+Eg M)QEI„—
p, ,(k) = &pk In&(M, +Eg—M )+El,.

Equation (62) then takes the form,

(l)e (l)*dl
v, (k) =@pe(k)

(Mp+E) M.) (M,+E(-Jr—E, M.)—
IJw(l)II ~~(l)*(M~+Ea M)—

+r~-p(k) dl. (63)
(M. Ms E~ E~)—(Mp

—Ms —Ei) (M —Ms—E~)— —

The symbol dl means dl/E&, the invariant phase-space
volume element. e p(l)&y4knIPl)+ e.p(l&, 4)&ykxk2IPl&4&dl

= &ykyk2ln&. (65b)
C. Consistency equations

The dynamical equations, either (57) or (62), must Using the matrix elements of Fig. 27 and Eq. (55) and
be supplemented with equations which connect e p(k) the e bubble from Fq. (61) in Fq. (65a) gives
and &n IPk). We shall work with the improved two-body
equations although many of the results apply to the
strict two-body approximation. The consistency equa- &&kl~&=e„(k)+ die p(l)&gklp&&&Ig&
tions are

=&7,k~" l~) (64)

We approximate the consistency by

dl, (l)( kIPl&+ (l,l )( klP, l l )dl

Mp+E( M-
+ e-p(l) h I »&&»I P&

3f —Mg —EI,—E)

Mp+Ep M-
+e.,(k) &~ll)&alP) . (66)

3f —Mg —EI,—E)

=(Vkla), (65a) Now using Eq. (62) for the 6rst term of Eq. (66)
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gives

In terms of "vertex functions" this is

Each (Pk~a. & will have the poles of the corresponding
Mp+Mg E—I, e p(k) from the first term of Eq. (70). In addition, the

second term, being a linear sum of (8~ yk& will have the
M —M~ —EI,

poles of all these other overlaps. We shall see that the
third term cancels these extra poles, leaving only the
poles of the first term of Eq. (70).

The third term is evaluated with the aid of Eq. (61).
p „(k)=@pe(k) e p(t)(ylbt)dt. (68) It is givenby

t -p(k) =I p~(k)D-p~»
where

which does not contain the poles of (yk~ tI& or e q(k).
Hence we can expect (Pk~n& to have the same pole as
e p(k) with the same residue. The projections (ptit2~n)
can be analyzed in a similar way.

D.„,= e.p(t)(V I bt&~t

Consistency will require the linear operator D to
have an eigenvalue equal to 1. We shall assume this

(~t t
~ & (l )(~t ~ &+ (l )(~t

~ &+
eigenvalue to be nondegenerate. Hence @pe must have
the form I'pqp(k). The I' are a set of constants which
satisfy

Equation (68) can easily be shown to apply to the ~&(t)(I8I'Yt&h'k I »(M&+E& M /M M7 —Ei —Ea)—
strict two-body approximation also. +e.,(k)(P~~t&(~t~t»(M, +E, M./—

In the physical case of meson-nucleon or meson- M M, E—i EI—,) . —
baryon systems the mesons are in L=i states in the
baryon bound states. This means that p~p(k) will be This together with the second term of Eq. (70) gives
of the form g p'k;p p(k) where k; is the ith comment of
the unit vector k, and q p' are constants. In order to
simplify the equations we shall assume S-wave states
so that p p(k) is a spherically symmetric function. The
extension to p wave is not dificult.

Equation (68) is then a linear relation among the M E —3f
p p of the form

F ~=Fp)D pg~,

and p(k) is a spherically symmetric function of k,

~-p(k) = I'-p~(k) (69)

Equation (69) says that any symmetries which exist
among the vertices ti p(k) at any one energy, are present
for any other value of k.

(M —M p
—Ei,—Ei,)

+symmetrizing term

~-v(ti)~v p(t~)

(M M„—Ei,) (M Mp—E,,—E„)——

+symmetrizing term. (71)

D. Singularities and the Born Approximation

From Eq. (62) we see that e ~(k) will have a pole at
Eg ——M —M~. It is interesting to determine the poles
of the projections (Pt~ u) and (Ptitm~ n).

-,

(»(~klan»dp

+ e-.(P,~)&&k I &PE&~P~V

+ -.(p,

k)(Pleat)dp

(70)

This pole structure can be used to identify the con-
ventional Born-approximation singularities in scattering
amplitudes. In order to calculate a scattering amplitude,
the dynamical equations must be solved for the con-
tinuum eigenstates. Suppose we are interested in an
eigenstate ~fs& with energy E.

~P~&=P(P, t) IP, t&+P(P, t„t,) IP,t„t,&+" . (72)

The dynamical equations in the two-body approxi-
mation give

Ai&IP, t&=EA IP, t&.

Projection onto a two-body state gives

(73)
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The matrix elements in Eq. (73) can be divided into extract out of the expression for V, the part due to the
connected and disconnected terms. poles of &n

~ y, l& and &y,k ~ P& by assuming

&n,kt HiP, l&=b pb(l —k)LM +Eij+H, (n,k; P, l)
=Hp(n, k; P,l)+H, (n,k; P,l)

&n,ktP, l&=8 p8(k —l)+C(a,k; P, l)
=A(cx, k; P,l)+C(n, k; P, l)

where d is the identity matrix.
The dynamics is summed up by the equation,

(EA Ho)f=—(H. EC) i
P—&.

Then

p.,(l)*
&~le, l&=

(M. M„—E,)—QE,

~pe(k)
&v,kl~)=

(Mp M, —EI,)Q—EI,

~-.(l)*~pv(k)
V=

(E M, —Ei, E—i)Q—Ej+Ej,
(76)

Since H, and EC are fully connected, II.—EC play
the role of an energy-dependent potential V and the
first approximation to the scattering from the appro-
priate Lippman-Schwinger equation would be V itself. "

V= H,—EC,
V(.,k; P,l) =&.~&, l&&&,k~P&PS.+M,—M,—Ej. (75)

Now if E=M +Ei,=Mp+Ei, then Eq. (75) is the
first approximation to the S matrix element. Let us

This exhibits the usual energy denominator and has
the same singularity structure as the conventional Born
approximation.

E. Further Considerations on the Dynamical and
Self-Consistency Equations

In this subsection we assume p, p(k)=I' pp(k) and
we assume p(k) is known. In fact, p(k) and v p(k) are
assumed to be smooth, slowly varying functions of EI,.

The dynamics equation is Eq. (63) which becomes

v- p(l)~*(l)
v.,(k) =rp)r„gp(k) dl

(M Mp Ei) (M, —M~ ——Ei EI,)— —

~(l)l *(l)(Mv+E~ —M-)
+v p(k)rp)r~g dl (77)

(M Mp Ei E—I,) (M—
p M—

g Ei) (M—, M—
g Ei)— —

where
dl= dl/Ei.

We shall now make the simplifying approximation
that the masses M are equals Equation (77) becomes

Equation (77) will now be continued to values of k

for which EI,= M M~. We have no—t made a complete
study of the analytic properties of p and v but we
assume that they are analytic enough to give meaning
to the required continuations. The second term of (77)
vanishes at E~=M —M~.

(l)w (k)& (l)*
dl

El(EL+Ek)

pp~(l) p,g(l)*Ei,—v.p(k) dl
EP (Ei+E~)

v p(l)g(l)*=rp)r, gp (k) dl
«(Ei+E~)

...(M. M,)=—r„r„„(M. M,)—
p(l)p(l)*E,

r„r„v.,(—k) dt . (79)
EP(«+Ek)

v-p(l)~*(l)
X dl.

(M Mp Ei) (M, M, —E,)— — —

Now at Ei, M M, we know tha=t e „—and &yk~n&

have poles of equal residue. This means that

v..(M. M,) =I .„(M. M—,)=r.,„(M. —M,). —

Since v p(k) =r py, (0) at Ei,=0 we shall take I'
p

as a first approximation to v p and p(0) will be nor-
malized to one. Equation (79) becomes

(l)v(l)*...(k) =r„r„,r.»(k) dl
(Ei+E~)Ei

Thus

~(l)~(l)*Es-r„r„,r.,v(k) dl (80)
EP(%+Ea)"E. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950}.

v p(l)p*(l)
I' ~=I p)I'~g dl (78)

(M. Mp E,) (M, —M, E,)—— —
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and Eq. (28) is

I' „=FpgF~)I.' p

(l)u (l)*

g2
(81)

Since v(0) =p(0) = 1 and dl= dl/Ei we get

Hence g2 D2+~9]3(2

where X is the integral in Eq. (81).
Substituting Eq. (82) into Eq. (80) gives

F., v (l)p, (l)*
v-. (k) = ~(k)

(Ei+Ei,)Ei

~(l)~(l)*—E.v(k) dl . (83)
EP(Ei+K)

Hence we find that v ~(k) will continue to be pro-
portional to F ~ even when E~/G. Let us suppose that
v ~(k) =I' ~v(k). The dynamical equations then give

(k) (l) (l)*
dl

FeiF, )F e v(k) (Ei+Ei,)Ei

p (l)p (l)*
dl . (84)

EP (Ei+Ei) (n(n)=1. (89)

Equations (88) and (85) are the static limit of
Cutkosky's equations. The integral in Eq. (88) is
logarithmically divergent and must be cut o6 although
we feel that the vertex functions, p, (l) and v(l) them-
selves will provide natural cuto8s.

In the approximation of Eq. (88) X and therefore
F p/F eFeqF„q is positive. This is the same as the
condition of attractive crossing matrix elements in the
S-matrix approach.

One might expect a static bootstrap to be over-
determined since a nonstatic version of the same theory
would be expected to give an equation for the mass of
each composite particle. In the static theory, the
masses are chosen inhnite and only mass differences
enter the equations. Hence only if the nonstatic theory
gives very large masses will the static theory be approxi-
mately consistent. Indeed, the present theory has one
more equation in it which overdetermines it. The extra
equation arises from the condition that the one-body
states be normalized.

Hence the dynamics factors into two parts, a part After all other equations (Cutkosky's approximate
involving I' and a part involving the p and ~. equations for example) have been solved giving v(k),

p(k), and the F, consistency can be checked by de-
r.,=zr.,r„r„ (85) manding the equation

and
e, (k)(y, k~P)+e ~(k, l)(y, k, l~P)=8 p. (90)

w(k) v(l) (l)* p(l)p(l)*
dl Ei. dl —=X. (86)

v(k) (Ei+E )Ei EP(Ei+E )

Xv(0)=p(0)
v(0)~(0)

dl.
g2

(82)

It can be shown that the spectrum of P which admit
solution to Eq. (86) is discrete. We are interested in the
largest value of X since this will correspond to the ~n)
being the lowest-energy bound states admitted by the
interactions. Hence Eq. (86) determines X and v(l) in
terms of the input p(l). Equation (85) can then be used
to determine the F.

Equations like (86) and (85) have been suggested
and studied by Cutkosky 3 He shows that such equa-
tions are intimately connected with the group-theoretic
structure of the strong interactions and that they re-
quire attractive forces for their solution. Cutkosky's
starting point is a Bethe-Salpeter equation for the
bound states. The static limit of Cutkosky's equations
can be obtained fr'om Eq. (85) and Eq. (86) by sub-
stituting the value v(0) and p(0) for v(k) and p(k) and
continuing to EI,=O.

This is as far as we shall carry the analysis of the
static model. We intend to do a complete study of the
coupled-nucleon, isobar-meson system in a future paper.

VII. CONCLUSIONS

The main object of the present paper was to introduce
some of the ideas necessary to our formulation of the
self-consistent composite quantum mechanics of the
strong interactions. It seems possible to account for
the connection between attractions and particles in this
theory via the dynamical and self-consistency equations
obtained with the aid of the Hamiltonian of Sec. V.

The anal section was by no means meant to be a
complete analysis of the static dynamics. Rather it was
a brief survey of the kinds of equations which will be
encountered in a more ambitious attempt to solve the
static baryon, meson problem. The equations are of
three kinds.

(1) We encounter the dynamical equations which
are derived from the eigenstate character of one-body
states.

Pin)=M„in).
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(2) There are the consistency requirements which
say that the one-body states are equivalent to super-
positions of multibody states.

P e p(kg 0 )(P,k~ ''0 ly, l''')=( lvlg l„).

(3) The third set of equations ensures that the one-
body states are normalized.

(2) What is the exact nature of the convergence of
the theory so that a consistent approximation method
can be obtained?

In particular, we are faced with two seemingly inde-
pendent series of approximations, the sum over the
internal I bubbles in the expressions for matrix ele-
ments, and the truncation of the series expressing the
single-particle state in multibody states.

We shall answer some of these questions in the next
paper. However, we do not as yet have a general
scheme of approximation which is convincing.

These equations are closely related to equations used
by Cutkosky to discuss symmetries and bootstraps.

We have found that in the static limit, the function
p(k) is not determined by our equations. This is, as
far as we can see, not a general situation. The nonstatic
theory does not collapse to algebra to the same extent
as does the static theory and it may be that no
ambiguity such as an arbitrary p(k) exists in the full
theory. In order to avoid these ambiguities, it seems
that one must go to the full theory in which all particles
are composite.

Among the questions which must be answered, the
following stand out as most important.

(1) Can the theory be generalized, to include all
particles as composite and will the generalization con-
tain all the required features of a covariant dynamics
of particles?
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